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Abstract

By constructing suitable operators, we investigate the existence of solutions for a
coupled system of fractional differential equations with integral boundary conditions
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1 Introduction
Fractional differential equations arise in a variety of different areas such as rheology, fluid
flows, electrical networks, viscoelasticity, chemical physics, electron-analytical chemistry,
biology, control theory etc. (see [1, 2]). Recently, more and more authors have paid their
close attention to them (see [3—24]). The existence of solutions for differential equations
at resonance has been studied by many authors (see [19-23, 25-29] and references cited
therein). In papers [19-22], the authors investigated the fractional differential equations
with multi-point boundary conditions at resonance. In paper [23], the authors discussed a
coupled system of fractional differential equations with two-point boundary condition at
resonance. In paper [24], the authors showed the existence of solutions for higher-order
fractional differential inclusions with multi-strip fractional integral boundary conditions.
In paper [26], the authors studied solvability of integer-order differential equations with
integral boundary conditions at resonance, which was the generalization of two, three,
multi-point and nonlocal boundary value problems.

Motivated by the excellent results mentioned above, in this paper, we discuss the exis-
tence of solutions for a coupled system of fractional differential equations with integral
boundary conditions at resonance

D x(t) = fi(t, x(2), y(¢), D&x(2)), O0<t<1,
Dhy(8) = folt,2(0), 5(0), D' y(8),  0<t<1,
x(0)=0,  D&'x(0) = [y (6)Di x(0) dt,
Dy x(1) = [y ha (DG x(0) dt,
20)=0,  Dh'y(0) = [y @)Dy y(B) dt,
Dy () = f, @00 () dt,
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where 2 <, 8 < 3, Dj. is the standard Riemann-Liouville fractional derivative, Dg+ ulg) =
D} u(t)|;=¢ . To the best of our knowledge, this is the first paper to study the boundary value
problems of a coupled system of fractional differential equations with integral boundary
conditions at resonance with dimKer L = 4.

In this paper, we will always suppose that the following conditions hold.

(H)2<a,p <3, h,g eL[01], [y hi(dt=1, [, g dt=1,i=1,2.

(Ha)
1 1
- th (¢) dt 1— [, thy(t)dt _ An A 40
L Pmde Y- [ Bha@dn)| A As|
| hw@d - fym@d | dn|
%fol Pa@)de 3(1- fol g (t) dt) 31 O

(Hs3) f; : [0,1] x R® — R satisfies the Carathéodory conditions and there exist func-
tions aoi(t), bol(t) coi(t), dol(t) ri(¢) € L[0,1] and constants 1,1, € (0,1) with ¢g < 1, ¢ < 1,

(2 + = L )ag <1, 2+ e 2)b/ <1, AjAzapb < 1 such that

()160 1’)

[fi(t%,9,2)| < ao1(®)lx] + bor (&) |y] + cor(B)l2] + doy ()] + 11(2),

[f2(t:%,3,2)| < aoa(t)1] + boa(2) y] + cor(B)l2] + doa (D)™ + ra(2),
where ag = [ a(£)dt, by = [, ba(D)dt, co = [y con(t) dt, do = [, dor(t)dt, ro = [ ri(t)dt,
6[0 —fo ﬂoz(t dt, b, —fo boz dt CO = fO C()z dt d(/) —fo d02 dt VO —fo 7’2 dt 0<6y,

-2

20§ 20, T+l
0, <1,A; = 1 Ay = 2 .
2554 F(a)(l—co)n?’z—ao(zn?’zﬂ)’ 2 T(B)(1-cy)ns 2 —bly 2k 2+1)

2 Preliminaries

For convenience, we introduce some notations and a theorem. For more details, see [30].
Let X and Y be real Banach spaces and L : dom(L) C X — Y be a Fredholm operator

with index zero, let P: X — X, Q: Y — Y be projectors such that

ImP=Kerl, KerQ=ImL,  X=KerL®KerP, Y=ImL®ImQ.
It follows that
Llgomznkerr : domL NKerP — ImL

is invertible. We denote the inverse by Kp.
Assume that Q is an open bounded subset of X, dom L N Q # . The map N : X — Y will
be called L-compact on Q if QN (L) is bounded and Kp(I — Q)N : @ — X is compact.

Theorem 2.1 [30] Let L:domL C X — Y be a Fredholm operator of index zero and N :
X — Y L-compact on Q. Assume that the following conditions are satisfied:
(1) Lx # ANx for every (x,A) € [(domL \ KerL) N 92] x (0,1);
(2) Nx ¢ 1ImL for every x € Ker L N 9€2;
(3) deg(QN|kerz, 2N KerL,0) #0, where Q: Y — Y is a projection such that
ImL = KerQ.
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Then the equation Lx = Nx has at least one solution in domL N Q.
The following definitions and lemmas can be found in [1, 2].
Definition 2.1 The fractional integral of order « > 0 of a function y: (0, 00) — R is given

by

I§y(t) = /0 (-3 y(s)ds, 2.1)

1
')
provided the right-hand side is pointwise defined on (0, c0).

Definition 2.2 The fractional derivative of order o > 0 of a function y: (0,00) — R is

given by

Dg.y(t) = / (t—s)"y(s)ds, (2.2)

F(n a) et
provided the right-hand side is pointwise defined on (0, c0), where n = [«] + 1.

Lemma 2.1 Assumef € L[0,1],q>p>0,g>1, then
DG Igof (6) = I5.7F ().

Lemma 2.2 Assume o >0, A > -1, then

r(x+1)  d”
Da+t)\ — - tn+k—a ,
0 I’(n+)»—a+1)dt”( )

where n is the smallest integer greater than or equal to .
Lemma 2.3 D, u(t) = 0 if and only if
o—n

u(t) = ct® 4 ot 4+t

where n is the smallest integer greater than or equalto o, ¢;€R,i=1,2,...,n

Take X = C*1[0,1] x C#71[0,1] with the norm

Dt

| 9] = max{lxllso, [¥llocs (|

where C*71[0,1] = {x | x,D‘aﬁ x € C[0,1]}, [#]lco = maxeeo,1) |#()|. Set ¥ = L[0.1] x L[0.1]
with the norm

1 1
8| = dx, dxy.
o0 = max{ [0 s, [ g as]

Define operators L :domL C X — Y, N : X — Y as follows:

L(x,9) = (D§.x,D5.y),  (xy) €edomL,  N(xy) = (Ni(x,9), Na(x,)),  (59) € X,
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domL = {(x,y) ’ (%) € X, (Dg+x, D§+y) €Y,x(0) =y(0) =0,
1 1
D1 x(0) = f Iy (0D x(t) dt, D& x(1) = / hay(£) DI (2) dit,
0 0

1 1
Dﬁwmzlgﬂwﬁwwmﬂﬁwn=ﬂgﬂmﬁMwm}

Ni(x,9) = fi(t, x(2), y(£), D& x(2)), Na(x,y) :fz(t,x(t),y(t),DgIIy(t)). Then problem (1.1) is
L(x;y) = N(x’y)
By Lemma 2.3 in [20], we get that X is a Banach space.

Definition 2.3 (x,7) € domL is a solution of problem (1.1) if it satisfies (1.1), i.e., L(x,y) =
N(x,y).

3 Main result
Define operators T;: L[0,1] — R, i=1,2,3,4, and Q;: L[0,1] — L[0,1], j = 1,2 as follows:

1 1 1 t
Tiu = / u(t)/ hi(s) dsdt, Tou = / u(t)/ hy(s) dsdt,
0 t 0 0
1 1 1 ¢
Tsu = / u(t)/ a(s)dsdt, Tou = / u(t)f o(s)dsdt,
0 t 0 0
1 1
Quu = —(ApTiu— AnTou) + —(AnTou — A Tiu)t,
Ay Aq
1 1
Qout = — (829 T3u — 891 Taur) + — (S Tau — 812 T3u)t.
Az AZ
Itis Clear that AH = T]l, A12 = T21, A21 = Tlt, A22 = T2t.

Lemma 3.1 [f(H;) and (H) hold, then L : dom L C X — Y isa Fredholm operator of index

zero, the linear continuous projectors P: X — X and Q:Y — Y can be defined as

DE%0) oy | D5730) 0y DG'90) 5y D6 9(0)
) )

H””:< r@ = Te-1) ' @ r(p-1

Q(u, V) = (Q1u¢ QZV)r

respectively, and the linear operator Kp : Im L — dom L N Ker P can be written by
Kp(u,v) = (I, I5.v).

Proof We can easily get that
KerL = {(cit*™" + cat* 2, ditP™ + dat’?) | c1,c2,dh,dr € R}.

Obviously, ImP = Ker L, P2(u,v) = P(u,v).

Page 4 of 13
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By a simple calculation, we obtain that
ImL = {(u,v) eY | Twu=Tu=Tv=Tyw= O}
and Q*(u,v) = Q(u,v). By (H,), we have Im L = Ker Q. It is clear that
X=KerP®KerlL, Y=ImL&ImQ.

This means that L is a Fredholm operator of index zero.

For (u,v) € Im L, we can easily get that Kp(u, v) = (I§. u, Ig+ v) € dom L N Ker P. Obviously,
LKp(u,v) = (4,v), (u,v) € ImL. For (x,y) € domL N KerP, by Lemma 2.3 and KpL(x,y) €
dom L, we get that

KpL(x,y) = () + a1t + ot 2, y(t) + ditP ™' + dpt?2).
It follows from (x, ) € Ker P that D% x(0) = D%*x(0) = Dg:ly(O) = D§+_2y(0) = 0. This, to-

gether with KpL(x,y) € Ker P, means that ¢; = ¢; = dj = dy = 0. So, KpL(x,) = (x,y). There-
fore, Kp = (L|domznkerp) " The proof is completed. O

Lemma 3.2 Suppose that (H), (Hy) and (Hs) hold. If @ C X is an open bounded subset
and domL N Q # @, then N is L-compact on Q.

Proof Since S is bounded, there exists a constant r > 0 such that ||(x,7)|| <7, (x,y) € Q. It
follows from condition (H3) that there exist functions ®; € L[0,1] such that |f;(¢,x,y,2)| <
®;(¢) for all |x|, |y, |z| € [0,7], a.e. t € [0,1], i = 1,2. Thus,

| TiNi(x,9)| = ‘_/olNl(x,y)/tlhl(s)dsdt’

<[ o0 | )| ds< 100, (5,9) €T
| ToNi ()| = ‘/OIM(x,y)/Othz(s)dsdt’

=< /01d>1(t)dt/01|h2(s)\ds< +0o0, (%,7) €,
| 3N, (x,9) | = ‘/OlNz(x,y)/tlgl(s) dsdt‘

< /01¢2(t)dt/01|g1(5)|dS< +00, (%,y) €%,
| TaNs(x,9)| = ‘/OlNz(x,y)fotgz(s) dsdt‘

1 1
5/ CI>2(t)dt/ ’gz(s)’ ds < +00, (x,9) € Q.
0 0
These mean that there exist constants a; > 0, b; > 0, i = 1,2, such that
|QINi(x,9)| a1+ bit,  |QeNa(w,))| <@ +bot,  (x,9) € Q,2€(0,1],

i.e., QN(RQ) C Y is bounded. Now we will prove that Kp(I — Q)N : @ — X is compact.
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Obviously, Kp(I — Q)IN(2) is bounded. For 0 < t; < £, <1, (x,7) € , we have

Kp(I - QN (x,9)(t2) — Kp(I - QN (x,5)(t1)
= (I8 (o — QN1 (x%,9)(£2), 1. (Io — Q)N (x, ) (£2))
— (I8 (o = QN1 (%, 9)(11), 1} (Io — Q2)Na (%, 7) (1))
= (I§+ To — QUN1 (%, ¥)(t2) — 1§ (Io — Q1)Ni(x,)(11),
I (o — Q)Na(x,9)(t2) — I, (o — Q2)Na (3%, 9)(11)),

where I, : L[0,1] — L[0,1] is an identical mapping.
It follows from

15+ (I — QUN1 (%, ) (t2) — I+ (o — Ql)Nl(x:y)(tl)|

- ﬁ /0 (12— 9% 1y - QuIN: (x(5),¥(5)) ds

- /O (61— %Ml — QN (x(),(5)) ds

=< ﬁ |:/(; 1((t2 — s)"“l _ (tl - s)a—l)(d)l(s) +a + b1S) ds

+ /tz (D1(s) + a1 + bys) ds],
| DS (Io — QN (%, 9)(82) = DI (Io — Qi)Ni (%, 9)(81) |

- ’ /0 (o = QN (x(6), ¥(s)) ds — /0 o = QU (x(s),5(6)) ds

5]
< / (D1(s) + a1 + bys) ds,
5]

|12, (I = Qa)Na(x,9)(t2) = I (Io — Q2)Na (%, ) (11)|

t

! [ 0290 QN ()50 s

- 5

- / (1= 9P o — QN3 (x(s), ¥(s)) ds

—,B |:/ (k2 =97 = (61— 9)P1) (@2(5) + a3 + bys) ds

/ d>2(s) +dy + bys ds],
|DEIE, (o — Qo)Na(x,9)(82) — D 15, (I — Qa)Na (%, ) (1)

= ‘/0 (lo = Q2)Na (x(s), y(s)) ds

- /0 (o — QN (x(5),5(6)) ds

5]
< / (@a(s) + ay + bys) ds,
5]
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the uniform continuity of (¢t — s)*~! and (¢ — s)#~! on [0,1] x [0,1], the absolute continuity
of integral of ®; +a; + b;t on [0,1], i = 1,2, and the Ascoli-Arzela theorem that Kp(I — Q)N
© — X is compact. The proof is completed. O

In order to obtain our main results, we present the following conditions.
(H,) There exist constants M; >0, L; > 0, i = 1,2, such that if either

min |x(t)\ >M; or min |D‘6‘I1x(t)| > L,
t€[ni1] telni]

then either
1 1
./o ﬁ(t,x(t),y(t),D‘(’)‘le(t)) / hi(s)dsdt #0

or

1 t
/ ﬁ(t,x(t),y(t),DgIIx(t)) / hy(s)dsdt #0,
0 0
and if either

min ‘y(t | >M, or min ‘Dg:ly(t)’ > Lo,
tena,1] te[na,1]

then either

1 1
| te.x0,50,04:50) [ a0 dsate 70

or

/fz (£, x(t), y(2), Dy y(t ))/0 g(s)dsdt #0,

where 1;, i = 1,2, are the same as in (H3).
(Hs) For (c1297! + 6272, di P71 + dptP~2) € Ker L, there exist constants ky, ks, {1, I such
that either (1) or (2) holds, where

1) aTiN; (clt‘"‘1 + ot L dy P+ dytP?) > 0, if || > Ky,
e ToNi (et + et 2, dytP 7 + dytP2) > 0, if 1| < ky, leal > ko,
di TsNy (c1t* ™ + et %, dy tP 71 + dyt?P72) > 0, if |dy| > by,
dy TuNs (187! + ¢t 2, dytP 1 + dyt?72) > 0, if |di| < b, |da| > .
2) aTiNy(at*™ + ct* 2, dit? ™ + dytP2) <0, if|c] > Ky,
e ToNy (c Ly ot 2, ditP1 + dgtﬂ’z) <0, iflci| <ki,lca| > ke,
d T3Ny (1% + et 72, ditP 7! + dytP2) < 0
)

dy TyN, (Clta_l + Czta_z, dltﬂ_l + dztﬁ_z <0

if |dy| > I,
if |[di| < b, |da| > L.
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Lemma 3.3 Suppose that (Hy)-(Hy) hold, then the set
Q; = {(x,y) e domL\ KerL | L(x,y) = AN (x,y), 1 € (0,1)}
is bounded in X.

Proof Take (x,y) € Q1. By L(x,y) = AN (x,y), we get

x(t) = F(a fo(t ) Hi(s, x(s), y(s), DY 1x(s))ds+a1t" +ast® 2,

3.1
() = w55 Jo (&= )P o5, x(5),3(5), DG 3(8)) dhs + brtP 1 + bytP 2. 3D
By Lemmas 2.1, 2.2 and (3.1), we have
D'x(t) = & [, fi(s,%(5), y(s), D' x(s)) ds + aa T (av), -

DR y(E) = & o fols x(5), ¥(s), Df: y(s)) ds + BT (B).

It follows from N(x,y) € Im L that

1
/fl tx (), y(t), D3+ x(t))/ hi(s)dsdt =0,
/ﬁ(t,x(t),y(t),DgIIx(t))/ hy(s)dsdt =0,
0 0
1 1
fo F(&x0), (), Dy y(0) / ai(s)dsdt =0,
1 t
/ F(6,x(0),30), DL (1) / () dsdt = 0.
0 0

These, together with (H,), mean that there exist constants &y, & € [m1,1] and £, ¢ € [12,1]
such that

x(t)| <My, |DER@)| <L, ()| <Ma,  [DETY(E)| <L (33)
By (3.2), we get
t
D& x(t) = )L/ ﬁ(s,x(s),y(s),Dg‘le(s)) ds + D&x(t),
Dy (@) / Sa(s,x(s),y (s), D y(s ) ds + Dg:ly(ti).

By (3.3) and (H3), we obtain that

1D %l < 12 = L (@ol%lloo + bollylloo + dollxl1% + 7o + L), (3.4)

1057 oo < - (@ lllow + B ¥loc + dplIyIEE + 7 + Lo).
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Instead of ¢ by £, ¢ in (3.1) and #;, £] in (3.2), respectively, we get

x(t) = r(a [fo(t‘s)a Yfi(s, x(s), y(s), D§"x(s)) dis
+ 172ty — t) [ fi(s,(5), 9(5), DG x(s)) s
- ig—i 50 (to — )% i(s, %(5), 9(5), DS x(s)) ]
+ B Dy (b))t~ to) + ig—?ix“o%

9(8) = 5 Lo (£ = )P fals, 2(5), 9(5), Db 9(s)) dis
0 -t ) Jyfo(s,2(5),(5), D y(s)) ds

_ tp2

77 o (8 - s)P 1fz(s,x(S) y(s), D= "y(s)) ds]

W)Dfifym)( — )+ L)

It follows from (3.4), (3.5) and (H3) that

|x(t)|§r(1a)< )/ Ifi (s, %(s), y(s), D" x(s )|ds+<FL(;)+ 1(\1/112)

1
1"(0[)

+< Lo, Ml)
e "

1 1
<—— 2+ — )(aol|x]lco + b +do|lx% + 7o + coL
< F(a)(l—co)( 77‘11_2)( ollxlloo + bollylloo +dollxlIEL + 1o +coLs)

1
( - 2)(aonxnm + Bolylloo + co| DET | _ + do 1% + ro)

and

2 My
/ [fg (s, %(5), y(s), D y(s))|ds+ (F(,B) )

5 ) (@ l1xlle + By 1yl + co | Doy ]| + do vl + 7o)

1 1 / /
- I‘(ﬂT—co)( —>(“o||x||oo+b ¥lloo + dy I + 7 + chLs)

ey
r'(B) r]§72 '

Thus,

1lloo < A1 [Bollylloo + dollx1%] + Mo,

Iylloo < Aa[agllxllo +dyllyI2] + M,

(3.6)

3.7)
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where M() —Al[(Vo +COL1) + (F(a) )/ (2 + a 2)] M; —Az[(}'J +C0L2) +(
) i 2+ )l

By (Hg) (3 4), (3. 6) and (3.7), we can get that €; is bounded in X. The proof is com-
pleted. d

Lemma 3.4 Suppose that (H,), (H,), (H3) and (Hs) hold, then the set

Q= {(x9) | (x,) € KerL,N(x,y) € ImL}
is bounded in X.
Proof For (x,7) € Q, we have (x,y) = (c1t% 7 + ¢t 2, ditP 7 + daotP7?), 1, ¢, dy, dy € R and
T1N1(C1ta71 + Cgl’aiz, dyfﬂfl + dztﬂfz) = TQNI(CltOhl + Cztaiz, dﬂ’ﬁfl + dztﬂfz) = TgNQ(Cﬂ’ail +
cot® 2, ditP 7+ dytP2) = TuNo(crt®™! + cot* 2, ditP™! + dytP~?) = 0. By (H), we get that
le1| < ka, |ea| < ko, |dh| < b, |da| < Ih. These imply that 2, is bounded in X. O
Lemma 3.5 Suppose that (H,), (H,), (H3) and (Hs) hold. The set

Q3 = {(x,y) € KerL | M (x,9) + 1 - L)OQN(x,9) = (0,0), » € [0,1]}
is bounded in X, where ] : Ker L — Im Q is a linear isomorphism given by

](Clta_l + Cgta_Z,dltﬂ_l + dgtﬁ_z)

fl(A Azcr) 1(A At
= — - Ayey) + — ¢ —Apa)t,
X 22€1 21C2 ) 11€2 12€1
1(8d 8ndy) 1((Sd S10dh)t
— p— +_ — »
2221 2142 2112 1241

1,  if (Hs5)(1) holds,
-1, if (H5)(2) holds.

Proof For (c;t*7! + cpt*72,dtP7! + dytP~2) € Q3, there exists A € [0,1] such that
)»](Clta 1+Czta -2 dltﬁ -1 +d2t/3 2) (1 )\)GQN(Clta -1 +Czta -2 dltﬁ 1+d2tﬂ 2)
This means that

rcp = —(1-1)0TIN; (clt‘)‘_1 + 0t 2 ditP T dztﬁ_Z),
Acy = —(1-A1)0T,N; (clt“_l +ot* 2, ditP 1+ dztﬁ_z),
Adi = —(1-A1)0T3N, (clt"‘_1 + ot ditP T + dztﬂ_z),
Ay = —(1 = WOTuN (et + c2t* 2, ditP ™ + dptP2).

Ifx=0, by (H5), we get lall <k, leal < ko, |di| < h, ldy| <. IfA=1,thenc; =¢cy =d; =
dy =0.For A € (0,1), if |c1] > k1, we can get

= —(1 A)GclTlNl(clt“ 1 +Czta -2 dltﬁ 1 +d2t’3 2) 0,
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a contradiction. If |¢;| < k; and |cy| > k», we can get
}ch = —(1 - )L)QCZ T2N1 (Clta_l + C2ta_2, dltﬂ_l + dztﬂ_Z) <0.

This is a contradiction, too. Thus, |¢;| < k;, i = 1,2. By the same methods, we can obtain
that |d;| <I;, i = 1,2. This means that Q3 is bounded in X. O

Theorem 3.1 Suppose that (Hy)-(Hs) hold. Then problem (1.1) has at least one solution
in X.

Proof Let 2D U?:l ©;U{(0,0)} be abounded open subset of X. It follows from Lemma 3.2
that N is L-compact on Q. By Lemmas 3.3 and 3.4, we get

(1) L(x,y) # AN(x,y) for every (x,y,A) € [(dom L \ KerL) N 9] x (0,1),

(2) N(x,9) ¢ ImL for every (x,y) € KerL N 9<2.

We need only to prove

(3) deg(QNlkerz, 2 NKerL,(0,0)) #0.

Take

H(x,y,1) = A (x,9) + 0(1 - A)QN (x, ).

According to Lemma 3.5, we know H(x,7,A) # (0,0) for (x,7) € 32 N Ker L. By the ho-
motopy of degree, we get that

deg(QN kerz, @ NKerL, (0,0)) = deg(0H(-,0),2NKerL,(0,0))
= deg(0H(-1), 2 NKerL,(0,0))

= deg(0],2 NKerL,(0,0)) #0.

By Theorem 2.1, we can get that L(x,y) = N(x,) has at least one solution in dom L N &,
i.e., (1.1) has at least one solution in X. The proof is completed. d

4 Example
Let us consider the following system of fractional differential equations at resonance:

§+x(t) — AL x(0),9(0), Dix(t)), 0<t<l,
D&y =f(t, x( ), y(t), Do+y( )), 0<t<l,
x(0) =0, D§+x(0 fo n(t D02+x (¢) dt,
D(%x fo h2 D§+x (¢) dt,
»0)=0, DEy(0) = [ @Dy dr,
Dy(1) = 3 (0D 0)de,

(4.1)

where

Ttsinx + 1£3siny, telo,
i 1,3
N(tx,y,2) = gtsinx + g siny + 1z, te(g,

) 1.3 - . 1
glx + gt’siny + tsinz, te([3,1],
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$3sinx + 15 siny, tel0,3),
falt,x,9,2) = §t3smx+ siny + tz, te[g,l)
ssinx+ 5y + tsinz, e [3,1],
2, tel0,3) 0, te[0,d),
h(t) = . hy(t) = . >
0; te [E:l], 2, te [3;1]1
tE[O,%, 0: tE[O,}L)
ai(t) = . &) = N )
y te[z,l], 3 te[ ,1]

Corresponding to problem (1.1), we have o« = 8 = %,

Ay = Ay =

_17(0
T4 77

gl»— ool

ﬁl»—t =
o i

Obviously, fol hi(t)dt =1, fol g t) dt =1,i=1,2. Thus, conditions (Hl) and (H,) are satis-
fied. It is easy to get that gy = s' bg = %, Co= ;g, ay = 32, by = 0, co = ﬁ Take M; = 8,
Ly=1,m=7 My=20,Ly=4,m=

satisfied and the following inequations hold

%. By a simple calculation, we can get that (H3) is

if mm ‘D0+ x t)} > L,

1 1
/ﬁ(t,x(t),y(t),D‘(’)‘le(t))/ hi(s)dsdt #0,

if min |x |>M1,
te[n,]

/fl (6x(2),5(t), D§+ x(t))/o hy(s)dsdt #0,

if mm |D

(t){ > LZ)
tena,

1
fo f(t20,50,0750) [ a9 dsde £,

and

if ten{})mﬂ’y | > M.

1 t
| w0005 50) [ e)dsar 7o,
0 0
So, (Ha4) holds. Set k1 =1, ky = 20, ; = 4, I, = 140. By a simple calculation, we can obtain
that condition (Hs) is satisfied.
By Theorem 3.1, problem (4.1) has at least one solution.
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