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Abstract
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1 Introduction
Fractional differential equations arise in a variety of different areas such as rheology, fluid
flows, electrical networks, viscoelasticity, chemical physics, electron-analytical chemistry,
biology, control theory etc. (see [, ]). Recently, more and more authors have paid their
close attention to them (see [–]). The existence of solutions for differential equations
at resonance has been studied by many authors (see [–, –] and references cited
therein). In papers [–], the authors investigated the fractional differential equations
withmulti-point boundary conditions at resonance. In paper [], the authors discussed a
coupled system of fractional differential equations with two-point boundary condition at
resonance. In paper [], the authors showed the existence of solutions for higher-order
fractional differential inclusions with multi-strip fractional integral boundary conditions.
In paper [], the authors studied solvability of integer-order differential equations with
integral boundary conditions at resonance, which was the generalization of two, three,
multi-point and nonlocal boundary value problems.
Motivated by the excellent results mentioned above, in this paper, we discuss the exis-

tence of solutions for a coupled system of fractional differential equations with integral
boundary conditions at resonance

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
+x(t) = f(t,x(t), y(t),Dα–

+ x(t)),  < t < ,
Dβ

+y(t) = f(t,x(t), y(t),Dβ–
+ y(t)),  < t < ,

x() = , Dα–
+ x() =

∫ 
 h(t)D

α–
+ x(t)dt,

Dα–
+ x() =

∫ 
 h(t)D

α–
+ x(t)dt,

y() = , Dβ–
+ y() =

∫ 
 g(t)D

β–
+ y(t)dt,

Dβ–
+ y() =

∫ 
 g(t)D

β–
+ y(t)dt,

(.)
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where  < α,β ≤ ,Dα
+ is the standard Riemann-Liouville fractional derivative,Dγ

+u(ξ ) :=
Dγ

+u(t)|t=ξ . To the best of our knowledge, this is the first paper to study the boundary value
problems of a coupled system of fractional differential equations with integral boundary
conditions at resonance with dimKerL = .
In this paper, we will always suppose that the following conditions hold.
(H)  < α,β ≤ , hi, gi ∈ L[, ],

∫ 
 hi(t)dt = ,

∫ 
 gi(t)dt = , i = , .

(H)

� =

∣∣∣∣∣
∫ 
 th(t)dt  –

∫ 
 th(t)dt



∫ 
 t

h(t)dt 
 ( –

∫ 
 t

h(t)dt)

∣∣∣∣∣ :=
∣∣∣∣∣
� �

� �

∣∣∣∣∣ �= ,

� =

∣∣∣∣∣
∫ 
 tg(t)dt  –

∫ 
 tg(t)dt



∫ 
 t

g(t)dt 
 ( –

∫ 
 t

g(t)dt)

∣∣∣∣∣ :=
∣∣∣∣∣
δ δ

δ δ

∣∣∣∣∣ �= .

(H) fi : [, ] × R → R satisfies the Carathéodory conditions and there exist func-
tions ai(t),bi(t), ci(t),di(t), ri(t) ∈ L[, ] and constants η,η ∈ (, ) with c < , c′ < ,


	(α)(–c)

( + 
ηα–


)a < , 
	(β)(–c′)

( + 
η
β–


)b′
 < , AAa′

b <  such that

∣∣f(t,x, y, z)∣∣ ≤ a(t)|x| + b(t)|y| + c(t)|z| + d(t)|x|θ + r(t),∣∣f(t,x, y, z)∣∣ ≤ a(t)|x| + b(t)|y| + c(t)|z| + d(t)|y|θ + r(t),

where a =
∫ 
 a(t)dt, b =

∫ 
 b(t)dt, c =

∫ 
 c(t)dt, d =

∫ 
 d(t)dt, r =

∫ 
 r(t)dt,

a′
 =

∫ 
 a(t)dt, b

′
 =

∫ 
 b(t)dt, c

′
 =

∫ 
 c(t)dt, d

′
 =

∫ 
 d(t)dt, r

′
 =

∫ 
 r(t)dt,  ≤ θ,

θ < , A =
ηα–

 +
	(α)(–c)ηα–

 –a(ηα–
 +) , A =

ηβ–
 +

	(β)(–c′)η
β–
 –b′

(η
β–
 +)

.

2 Preliminaries
For convenience, we introduce some notations and a theorem. For more details, see [].
Let X and Y be real Banach spaces and L : dom(L) ⊂ X → Y be a Fredholm operator

with index zero, let P : X → X, Q : Y → Y be projectors such that

ImP =KerL, KerQ = ImL, X =KerL⊕KerP, Y = ImL⊕ ImQ.

It follows that

L|domL∩KerP : domL∩KerP → ImL

is invertible. We denote the inverse by KP .
Assume that � is an open bounded subset of X, domL∩� �= ∅. The mapN : X → Y will

be called L-compact on � if QN(�) is bounded and KP(I –Q)N : � → X is compact.

Theorem . [] Let L : domL ⊂ X → Y be a Fredholm operator of index zero and N :
X → Y L-compact on �. Assume that the following conditions are satisfied:
() Lx �= λNx for every (x,λ) ∈ [(domL \KerL)∩ ∂�]× (, );
() Nx /∈ ImL for every x ∈ KerL∩ ∂�;
() deg(QN |KerL,� ∩KerL, ) �= , where Q : Y → Y is a projection such that

ImL =KerQ.
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Then the equation Lx =Nx has at least one solution in domL∩ �.

The following definitions and lemmas can be found in [, ].

Definition . The fractional integral of order α >  of a function y : (,∞) → R is given
by

Iα+y(t) =


	(α)

∫ t


(t – s)α–y(s)ds, (.)

provided the right-hand side is pointwise defined on (,∞).

Definition . The fractional derivative of order α >  of a function y : (,∞) → R is
given by

Dα
+y(t) =


	(n – α)

dn

dtn

∫ t


(t – s)n–α–y(s)ds, (.)

provided the right-hand side is pointwise defined on (,∞), where n = [α] + .

Lemma . Assume f ∈ L[, ], q ≥ p≥ , q > , then

Dp
+ I

q
+ f (t) = Iq–p+ f (t).

Lemma . Assume α > , λ > –, then

Dα
+ t

λ =
	(λ + )

	(n + λ – α + )
dn

dtn
(
tn+λ–α

)
,

where n is the smallest integer greater than or equal to α.

Lemma . Dα
+u(t) =  if and only if

u(t) = ctα– + ctα– + · · · + cntα–n,

where n is the smallest integer greater than or equal to α, ci ∈ R, i = , , . . . ,n.

Take X = Cα–[, ]×Cβ–[, ] with the norm

∥∥(x, y)∥∥ =max
{‖x‖∞,‖y‖∞,

∥∥Dα–
+ x

∥∥∞,
∥∥Dβ–

+ y
∥∥∞

}
,

where Cα–[, ] = {x | x,Dα–
+ x ∈ C[, ]}, ‖x‖∞ = maxt∈[,] |x(t)|. Set Y = L[.] × L[.]

with the norm

∥∥(f , g)∥∥ =max

{∫ 



∣∣f (x)∣∣dx,
∫ 



∣∣g(x)∣∣dx
}
.

Define operators L : domL⊂ X → Y , N : X → Y as follows:

L(x, y) =
(
Dα

+x,D
β

+y
)
, (x, y) ∈ domL, N(x, y) =

(
N(x, y),N(x, y)

)
, (x, y) ∈ X,
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where

domL =
{
(x, y)

∣∣ (x, y) ∈ X,
(
Dα

+x,D
β

+y
) ∈ Y ,x() = y() = ,

Dα–
+ x() =

∫ 


h(t)Dα–

+ x(t)dt,Dα–
+ x() =

∫ 


h(t)Dα–

+ x(t)dt,

Dβ–
+ y() =

∫ 


g(t)Dβ–

+ y(t)dt,Dβ–
+ y() =

∫ 


g(t)Dβ–

+ y(t)dt
}
,

N(x, y) = f(t,x(t), y(t),Dα–
+ x(t)), N(x, y) = f(t,x(t), y(t),Dβ–

+ y(t)). Then problem (.) is
L(x, y) =N(x, y).
By Lemma . in [], we get that X is a Banach space.

Definition . (x, y) ∈ domL is a solution of problem (.) if it satisfies (.), i.e., L(x, y) =
N(x, y).

3 Main result
Define operators Ti : L[, ]→ R, i = , , , , and Qj : L[, ]→ L[, ], j = ,  as follows:

Tu =
∫ 


u(t)

∫ 

t
h(s)dsdt, Tu =

∫ 


u(t)

∫ t


h(s)dsdt,

Tu =
∫ 


u(t)

∫ 

t
g(s)dsdt, Tu =

∫ 


u(t)

∫ t


g(s)dsdt,

Qu =


�
(�Tu –�Tu) +


�

(�Tu –�Tu)t,

Qu =


�
(δTu – δTu) +


�

(δTu – δTu)t.

It is clear that � = T, � = T, � = Tt, � = Tt.

Lemma . If (H) and (H) hold, then L : domL⊂ X → Y is a Fredholm operator of index
zero, the linear continuous projectors P : X → X and Q : Y → Y can be defined as

P(x, y) =
(
Dα–

+ x()
	(α)

tα– +
Dα–

+ x()
	(α – )

tα–,
Dβ–

+ y()
	(β)

tβ– +
Dβ–

+ y()
	(β – )

tβ–
)
,

Q(u, v) = (Qu,Qv),

respectively, and the linear operator KP : ImL → domL∩KerP can be written by

KP(u, v) =
(
Iα+u, I

β

+v
)
.

Proof We can easily get that

KerL =
{(
ctα– + ctα–,dtβ– + dtβ–

) | c, c,d,d ∈ R
}
.

Obviously, ImP =KerL, P(u, v) = P(u, v).
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By a simple calculation, we obtain that

ImL =
{
(u, v) ∈ Y | Tu = Tu = Tv = Tv = 

}

and Q(u, v) =Q(u, v). By (H), we have ImL =KerQ. It is clear that

X =KerP ⊕KerL, Y = ImL⊕ ImQ.

This means that L is a Fredholm operator of index zero.
For (u, v) ∈ ImL, we can easily get that KP(u, v) = (Iα+u, I

β

+v) ∈ domL∩KerP. Obviously,
LKP(u, v) = (u, v), (u, v) ∈ ImL. For (x, y) ∈ domL ∩ KerP, by Lemma . and KPL(x, y) ∈
domL, we get that

KPL(x, y) =
(
x(t) + ctα– + ctα–, y(t) + dtβ– + dtβ–

)
.

It follows from (x, y) ∈KerP that Dα–
+ x() =Dα–

+ x() =Dβ–
+ y() =Dβ–

+ y() = . This, to-
gether with KPL(x, y) ∈KerP, means that c = c = d = d = . So, KPL(x, y) = (x, y). There-
fore, KP = (L|domL∩KerP)–. The proof is completed. �

Lemma . Suppose that (H), (H) and (H) hold. If � ⊂ X is an open bounded subset
and domL∩ � �= ∅, then N is L-compact on �.

Proof Since � is bounded, there exists a constant r >  such that ‖(x, y)‖ < r, (x, y) ∈ �. It
follows from condition (H) that there exist functions �i ∈ L[, ] such that |fi(t,x, y, z)| ≤
�i(t) for all |x|, |y|, |z| ∈ [, r], a.e. t ∈ [, ], i = , . Thus,

∣∣TN(x, y)
∣∣ =

∣∣∣∣
∫ 


N(x, y)

∫ 

t
h(s)dsdt

∣∣∣∣
≤

∫ 


�(t)dt

∫ 



∣∣h(s)∣∣ds < +∞, (x, y) ∈ �,

∣∣TN(x, y)
∣∣ =

∣∣∣∣
∫ 


N(x, y)

∫ t


h(s)dsdt

∣∣∣∣
≤

∫ 


�(t)dt

∫ 



∣∣h(s)∣∣ds < +∞, (x, y) ∈ �,

∣∣TN(x, y)
∣∣ =

∣∣∣∣
∫ 


N(x, y)

∫ 

t
g(s)dsdt

∣∣∣∣
≤

∫ 


�(t)dt

∫ 



∣∣g(s)∣∣ds < +∞, (x, y) ∈ �,

∣∣TN(x, y)
∣∣ =

∣∣∣∣
∫ 


N(x, y)

∫ t


g(s)dsdt

∣∣∣∣
≤

∫ 


�(t)dt

∫ 



∣∣g(s)∣∣ds < +∞, (x, y) ∈ �.

These mean that there exist constants ai > , bi > , i = , , such that

∣∣QN(x, y)
∣∣ ≤ a + bt,

∣∣QN(x, y)
∣∣ ≤ a + bt, (x, y) ∈ �, t ∈ [, ],

i.e., QN(�) ⊂ Y is bounded. Now we will prove that KP(I –Q)N : � → X is compact.

http://www.advancesindifferenceequations.com/content/2013/1/324
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Obviously, KP(I –Q)N(�) is bounded. For ≤ t < t ≤ , (x, y) ∈ �, we have

KP(I –Q)N(x, y)(t) –KP(I –Q)N(x, y)(t)

=
(
Iα+(I –Q)N(x, y)(t), Iβ+(I –Q)N(x, y)(t)

)
–

(
Iα+(I –Q)N(x, y)(t), Iβ+(I –Q)N(x, y)(t)

)
=

(
Iα+(I –Q)N(x, y)(t) – Iα+(I –Q)N(x, y)(t),

Iβ+(I –Q)N(x, y)(t) – Iβ+(I –Q)N(x, y)(t)
)
,

where I : L[, ]→ L[, ] is an identical mapping.
It follows from

∣∣Iα+(I –Q)N(x, y)(t) – Iα+(I –Q)N(x, y)(t)
∣∣

=


	(α)

∣∣∣∣
∫ t


(t – s)α–(I –Q)N

(
x(s), y(s)

)
ds

–
∫ t


(t – s)α–(I –Q)N

(
x(s), y(s)

)
ds

∣∣∣∣
≤ 

	(α)

[∫ t



(
(t – s)α– – (t – s)α–

)(
�(s) + a + bs

)
ds

+
∫ t

t

(
�(s) + a + bs

)
ds

]
,

∣∣Dα–
+ Iα+(I –Q)N(x, y)(t) –Dα–

+ Iα+(I –Q)N(x, y)(t)
∣∣

=
∣∣∣∣
∫ t


(I –Q)N

(
x(s), y(s)

)
ds –

∫ t


(I –Q)N

(
x(s), y(s)

)
ds

∣∣∣∣
≤

∫ t

t

(
�(s) + a + bs

)
ds,

∣∣Iβ+(I –Q)N(x, y)(t) – Iβ+(I –Q)N(x, y)(t)
∣∣

=


	(β)

∣∣∣∣
∫ t


(t – s)β–(I –Q)N

(
x(s), y(s)

)
ds

–
∫ t


(t – s)β–(I –Q)N

(
x(s), y(s)

)
ds

∣∣∣∣
≤ 

	(β)

[∫ t



(
(t – s)β– – (t – s)β–

)(
�(s) + a + bs

)
ds

+
∫ t

t

(
�(s) + a + bs

)
ds

]
,

∣∣Dβ–
+ Iβ+(I –Q)N(x, y)(t) –Dβ–

+ Iβ+(I –Q)N(x, y)(t)
∣∣

=
∣∣∣∣
∫ t


(I –Q)N

(
x(s), y(s)

)
ds

–
∫ t


(I –Q)N

(
x(s), y(s)

)
ds

∣∣∣∣
≤

∫ t

t

(
�(s) + a + bs

)
ds,
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the uniform continuity of (t – s)α– and (t – s)β– on [, ]× [, ], the absolute continuity
of integral of�i +ai +bit on [, ], i = , , and the Ascoli-Arzela theorem that KP(I –Q)N :
� → X is compact. The proof is completed. �

In order to obtain our main results, we present the following conditions.
(H) There exist constantsMi > , Li > , i = , , such that if either

min
t∈[η,]

∣∣x(t)∣∣ >M or min
t∈[η,]

∣∣Dα–
+ x(t)

∣∣ > L,

then either

∫ 


f
(
t,x(t), y(t),Dα–

+ x(t)
)∫ 

t
h(s)dsdt �= 

or

∫ 


f
(
t,x(t), y(t),Dα–

+ x(t)
)∫ t


h(s)dsdt �= ,

and if either

min
t∈[η,]

∣∣y(t)∣∣ >M or min
t∈[η,]

∣∣Dβ–
+ y(t)

∣∣ > L,

then either

∫ 


f

(
t,x(t), y(t),Dβ–

+ y(t)
)∫ 

t
g(s)dsdt �= 

or

∫ 


f

(
t,x(t), y(t),Dβ–

+ y(t)
)∫ t


g(s)dsdt �= ,

where ηi, i = , , are the same as in (H).
(H) For (ctα– + ctα–,dtβ– + dtβ–) ∈ KerL, there exist constants k, k, l, l such

that either () or () holds, where

() cTN
(
ctα– + ctα–,dtβ– + dtβ–

)
> , if |c| > k,

cTN
(
ctα– + ctα–,dtβ– + dtβ–

)
> , if |c| ≤ k, |c| > k,

dTN
(
ctα– + ctα–,dtβ– + dtβ–

)
> , if |d| > l,

dTN
(
ctα– + ctα–,dtβ– + dtβ–

)
> , if |d| ≤ l, |d| > l.

() cTN
(
ctα– + ctα–,dtβ– + dtβ–

)
< , if |c| > k,

cTN
(
ctα– + ctα–,dtβ– + dtβ–

)
< , if |c| ≤ k, |c| > k,

dTN
(
ctα– + ctα–,dtβ– + dtβ–

)
< , if |d| > l,

dTN
(
ctα– + ctα–,dtβ– + dtβ–

)
< , if |d| ≤ l, |d| > l.

http://www.advancesindifferenceequations.com/content/2013/1/324
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Lemma . Suppose that (H)-(H) hold, then the set

� =
{
(x, y) ∈ domL \KerL | L(x, y) = λN(x, y),λ ∈ (, )

}

is bounded in X.

Proof Take (x, y) ∈ �. By L(x, y) = λN(x, y), we get

⎧⎨
⎩
x(t) = λ

	(α)
∫ t
 (t – s)α–f(s,x(s), y(s),Dα–

+ x(s))ds + atα– + atα–,

y(t) = λ
	(β)

∫ t
 (t – s)β–f(s,x(s), y(s),Dβ–

+ y(s))ds + btβ– + btβ–.
(.)

By Lemmas ., . and (.), we have

⎧⎨
⎩
Dα–

+ x(t) = λ
∫ t
 f(s,x(s), y(s),D

α–
+ x(s))ds + a	(α),

Dβ–
+ y(t) = λ

∫ t
 f(s,x(s), y(s),D

β–
+ y(s))ds + b	(β).

(.)

It follows from N(x, y) ∈ ImL that

∫ 


f
(
t,x(t), y(t),Dα–

+ x(t)
)∫ 

t
h(s)dsdt = ,

∫ 


f
(
t,x(t), y(t),Dα–

+ x(t)
)∫ t


h(s)dsdt = ,

∫ 


f

(
t,x(t), y(t),Dβ–

+ y(t)
)∫ 

t
g(s)dsdt = ,

∫ 


f

(
t,x(t), y(t),Dβ–

+ y(t)
)∫ t


g(s)dsdt = .

These, together with (H), mean that there exist constants t, t ∈ [η, ] and t′, t′ ∈ [η, ]
such that

∣∣x(t)∣∣ ≤M,
∣∣Dα–

+ x(t)
∣∣ ≤ L,

∣∣y(t′)∣∣ ≤M,
∣∣Dβ–

+ y
(
t′

)∣∣ ≤ L. (.)

By (.), we get

Dα–
+ x(t) = λ

∫ t

t
f
(
s,x(s), y(s),Dα–

+ x(s)
)
ds +Dα–

+ x(t),

Dβ–
+ y(t) = λ

∫ t

t′
f

(
s,x(s), y(s),Dβ–

+ y(s)
)
ds +Dβ–

+ y
(
t′

)
.

By (.) and (H), we obtain that

⎧⎨
⎩

‖Dα–
+ x‖∞ ≤ 

–c
(a‖x‖∞ + b‖y‖∞ + d‖x‖θ∞ + r + L),

‖Dβ–
+ y‖∞ ≤ 

–c′
(a′

‖x‖∞ + b′
‖y‖∞ + d′

‖y‖θ∞ + r′ + L).
(.)

http://www.advancesindifferenceequations.com/content/2013/1/324
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Instead of t by t, t′ in (.) and t, t′ in (.), respectively, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = λ
	(α) [

∫ t
 (t – s)α–f(s,x(s), y(s),Dα–

+ x(s))ds

+ tα–(t – t)
∫ t
 f(s,x(s), y(s),Dα–

+ x(s))ds

– tα–
tα–

∫ t
 (t – s)α–f(s,x(s), y(s),Dα–

+ x(s))ds]

+ tα–
	(α)D

α–
+ x(t)(t – t) + tα–

tα–
x(t),

y(t) = λ
	(β) [

∫ t
 (t – s)β–f(s,x(s), y(s),Dβ–

+ y(s))ds

+ tβ–(t′ – t)
∫ t′
 f(s,x(s), y(s),Dβ–

+ y(s))ds

– tβ–

t′β–

∫ t′
 (t′ – s)β–f(s,x(s), y(s),Dβ–

+ y(s))ds]

+ tβ–
	(β)D

β–
+ y(t′)(t – t′) +

tβ–

t′β–
y(t′).

(.)

It follows from (.), (.) and (H) that

∣∣x(t)∣∣ ≤ 
	(α)

(
 +


ηα–


)∫ 



∣∣f(s,x(s), y(s),Dα–
+ x(s)

)∣∣ds +
(

L
	(α)

+
M

ηα–


)

≤ 
	(α)

(
 +


ηα–


)(
a‖x‖∞ + b‖y‖∞ + c

∥∥Dα–
+ x

∥∥∞ + d‖x‖θ∞ + r
)

+
(

L
	(α)

+
M

ηα–


)

≤ 
	(α)( – c)

(
 +


ηα–


)(
a‖x‖∞ + b‖y‖∞ + d‖x‖θ∞ + r + cL

)

+
(

L
	(α)

+
M

ηα–


)

and

∣∣y(t)∣∣ ≤ 
	(β)

(
 +


η

β–


)∫ 



∣∣f(s,x(s), y(s),Dβ–
+ y(s)

)∣∣ds +
(

L
	(β)

+
M

η
β–


)

≤ 
	(β)

(
 +


η

β–


)(
a′
‖x‖∞ + b′

‖y‖∞ + c′
∥∥Dβ–

+ y
∥∥∞ + d′

‖y‖θ∞ + r′
)

+
(

L
	(β)

+
M

η
β–


)

≤ 
	(β)( – c′)

(
 +


η

β–


)(
a′
‖x‖∞ + b′

‖y‖∞ + d′
‖y‖θ∞ + r′ + c′L

)

+
(

L
	(β)

+
M

η
β–


)
.

Thus,

‖x‖∞ ≤ A
[
b‖y‖∞ + d‖x‖θ∞

]
+M, (.)

‖y‖∞ ≤ A
[
a′
‖x‖∞ + d′

‖y‖θ∞
]
+M′

, (.)

http://www.advancesindifferenceequations.com/content/2013/1/324
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whereM = A[(r + cL) + ( L
	(α) +

M
ηα–


)/ 
	(α)(–c)

( + 
ηα–


)],M′
 = A[(r′ + c′L) + ( L

	(β) +
M

η
β–


)/ 
	(β)(–c′)

( + 
η
β–


)].
By (H), (.), (.) and (.), we can get that � is bounded in X. The proof is com-

pleted. �

Lemma . Suppose that (H), (H), (H) and (H) hold, then the set

� =
{
(x, y) | (x, y) ∈ KerL,N(x, y) ∈ ImL

}

is bounded in X.

Proof For (x, y) ∈ �, we have (x, y) = (ctα– + ctα–,dtβ– + dtβ–), c, c,d,d ∈ R and
TN(ctα– + ctα–,dtβ– +dtβ–) = TN(ctα– + ctα–,dtβ– +dtβ–) = TN(ctα– +
ctα–,dtβ– + dtβ–) = TN(ctα– + ctα–,dtβ– + dtβ–) = . By (H), we get that
|c| ≤ k, |c| ≤ k, |d| ≤ l, |d| ≤ l. These imply that � is bounded in X. �

Lemma . Suppose that (H), (H), (H) and (H) hold. The set

� =
{
(x, y) ∈ KerL | λJ(x, y) + ( – λ)θQN(x, y) = (, ),λ ∈ [, ]

}

is bounded in X, where J :KerL → ImQ is a linear isomorphism given by

J
(
ctα– + ctα–,dtβ– + dtβ–

)

=
(


�

(�c –�c) +


�
(�c –�c)t,


�

(δd – δd) +


�
(δd – δd)t

)
,

θ =

⎧⎨
⎩
, if (H)() holds,

–, if (H)() holds.

Proof For (ctα– + ctα–,dtβ– + dtβ–) ∈ �, there exists λ ∈ [, ] such that

λJ
(
ctα– + ctα–,dtβ– + dtβ–

)
= –( – λ)θQN

(
ctα– + ctα–,dtβ– + dtβ–

)
.

This means that

λc = –( – λ)θTN
(
ctα– + ctα–,dtβ– + dtβ–

)
,

λc = –( – λ)θTN
(
ctα– + ctα–,dtβ– + dtβ–

)
,

λd = –( – λ)θTN
(
ctα– + ctα–,dtβ– + dtβ–

)
,

λd = –( – λ)θTN
(
ctα– + ctα–,dtβ– + dtβ–

)
.

If λ = , by (H), we get |c| ≤ k, |c| ≤ k, |d| ≤ l, |d| ≤ l. If λ = , then c = c = d =
d = . For λ ∈ (, ), if |c| > k, we can get

λc = –( – λ)θcTN
(
ctα– + ctα–,dtβ– + dtβ–

)
< ,

http://www.advancesindifferenceequations.com/content/2013/1/324
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a contradiction. If |c| ≤ k and |c| > k, we can get

λc = –( – λ)θcTN
(
ctα– + ctα–,dtβ– + dtβ–

)
< .

This is a contradiction, too. Thus, |ci| ≤ ki, i = , . By the same methods, we can obtain
that |di| ≤ li, i = , . This means that � is bounded in X. �

Theorem . Suppose that (H)-(H) hold. Then problem (.) has at least one solution
in X.

Proof Let� ⊃ ⋃
i= �i∪{(, )} be a bounded open subset ofX. It follows fromLemma .

that N is L-compact on �. By Lemmas . and ., we get
() L(x, y) �= λN(x, y) for every (x, y,λ) ∈ [(domL \KerL)∩ ∂�]× (, ),
() N(x, y) /∈ ImL for every (x, y) ∈KerL∩ ∂�.
We need only to prove
() deg(QN |KerL,� ∩KerL, (, )) �= .
Take

H(x, y,λ) = λJ(x, y) + θ ( – λ)QN(x, y).

According to Lemma ., we know H(x, y,λ) �= (, ) for (x, y) ∈ ∂� ∩ KerL. By the ho-
motopy of degree, we get that

deg
(
QN |KerL,� ∩KerL, (, )

)
= deg

(
θH(·, ),� ∩KerL, (, )

)
= deg

(
θH(·, ),� ∩KerL, (, )

)
= deg

(
θ J ,� ∩KerL, (, )

) �= .

By Theorem ., we can get that L(x, y) =N(x, y) has at least one solution in domL ∩ �,
i.e., (.) has at least one solution in X. The proof is completed. �

4 Example
Let us consider the following system of fractional differential equations at resonance:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D


+x(t) = f(t,x(t), y(t),D



+x(t)),  < t < ,

D


+y(t) = f(t,x(t), y(t),D



+y(t)),  < t < ,

x() = , D


+x() =

∫ 
 h(t)D



+x(t)dt,

D


+x() =

∫ 
 h(t)D



+x(t)dt,

y() = , D


+y() =

∫ 
 g(t)D



+y(t)dt,

D


+y() =

∫ 
 g(t)D



+y(t)dt,

(.)

where

f(t,x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩


 t sinx +


 t

 sin y, t ∈ [,  ),

 t sinx +


 t

 sin y + tz, t ∈ [  ,

 ),


 tx +


 t

 sin y + t sin z, t ∈ [  , ],
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f(t,x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩


 t

 sinx + 
 sin y, t ∈ [,  ),


 t

 sinx + 
 sin y + tz, t ∈ [  ,


 ),


 t

 sinx + 
y + t sin z, t ∈ [  , ],

h(t) =

⎧⎨
⎩
, t ∈ [,  ),

, t ∈ [  , ],
h(t) =

⎧⎨
⎩
, t ∈ [,  ),

, t ∈ [  , ],

g(t) =

⎧⎨
⎩
, t ∈ [,  ),

, t ∈ [  , ],
g(t) =

⎧⎨
⎩
, t ∈ [,  ),

 , t ∈ [  , ].

Corresponding to problem (.), we have α = β = 
 ,

� =

∣∣∣∣∣












∣∣∣∣∣ =



�= , � =

∣∣∣∣∣












∣∣∣∣∣ =



�= .

Obviously,
∫ 
 hi(t)dt = ,

∫ 
 gi(t)dt = , i = , . Thus, conditions (H) and (H) are satis-

fied. It is easy to get that a = 
 , b =


 , c =


 , a

′
 =


 , b

′
 =


 , c

′
 =


 . Take M = ,

L = , η = 
 , M = , L = , η = 

 . By a simple calculation, we can get that (H) is
satisfied and the following inequations hold

∫ 


f
(
t,x(t), y(t),Dα–

+ x(t)
)∫ 

t
h(s)dsdt �= , if min

t∈[η,]
∣∣Dα–

+ x(t)
∣∣ > L,

∫ 


f
(
t,x(t), y(t),Dα–

+ x(t)
)∫ t


h(s)dsdt �= , if min

t∈[η,]
∣∣x(t)∣∣ >M,

∫ 


f

(
t,x(t), y(t),Dβ–

+ y(t)
)∫ 

t
g(s)dsdt �= , if min

t∈[η,]
∣∣Dβ–

+ y(t)
∣∣ > L,

and

∫ 


f

(
t,x(t), y(t),Dβ–

+ y(t)
)∫ t


g(s)dsdt �= , if min

t∈[η,]
∣∣y(t)∣∣ >M.

So, (H) holds. Set k = , k = , l = , l = . By a simple calculation, we can obtain
that condition (H) is satisfied.
By Theorem ., problem (.) has at least one solution.
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