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1 Introduction
Fractional differential equations appear more and more frequently in various research ar-
eas, such as inmodelingmechanical and electrical properties of realmaterials, as well as in
rheological theory and other physical problems, etc.; see, e.g., [–]. Differential equations
involving the Riemann-Liouville, Caputo, and Grünwald-Letnikov differential operators
of fractional order  < q <  appear to be important in a number of works, especially in the
theory of viscoelasticity and in hereditary solid mechanics.
In [], the authors obtained new oscillation criteria for a fractional differential equations

of the form

aD
q
t x + f(t,x) = v(t) + f(t,x), lim

t→a+
J–qa x(t) = a, ()

where the functions f, f, and v are continuous.
In this paper, we consider the oscillation theory for a fractional differential equationwith

mixed nonlinearities of the type

aD
q
t x – p(t)x(t) +

m∑
i=

qi(t)
∣∣x(t)∣∣λi–x(t) = v(t), lim

t→a+
J–qa x(t) = a, ()

where {p(t)}, {v(t)}, and {qi(t)} ( ≤ i ≤ m) are continuous functions on [a, +∞), and λi

( ≤ i≤m) are ratios of odd positive integers with λ > · · · > λl >  > λl+ > · · · > λm.
By a solution of equation () we mean a function x(t) which is defined for t ≥ a and

satisfies equation (). Such a solution is said to be oscillatory if it has arbitrarily large zeros
on [a,∞); otherwise, it is called nonoscillatory. Equation () is said to be oscillatory if all
its solutions are oscillatory.
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By aD
q
t we denote the Riemann-Liouville differential operator of order q with  < q ≤ .

For p ≥ , the operator Jpa defined by

Jpa x(t) =


�(p)

∫ t

a
(t – s)p–x(s)ds, Ja x = x ()

is called the Riemann-Liouville fractional integral operator. The Riemann-Liouville dif-
ferential operator aD

q
t of order q for  < q ≤  is defined by aD

q
t x(t) = d

dt J
–q
a x(t) and, more

generally, ifm ≥  is an integer andm –  < q ≤m, then

aD
q
t x(t) =

dm

dtm
Jm–q
a x(t). ()

In [, Lemma .], under much weaker assumptions on p(t), v(t) and qi(t), the initial
value problem () is equivalent to the Volterra fractional integral equation

x(t) =
a(t – a)q–

�(q)

+


�(q)

∫ t

a
(t – s)q–

[
v(s) + p(s)x(s) –

m∑
i=

qi(s)
∣∣x(s)∣∣λi–x(s)

]
ds. ()

Therefore, a function x(t) is a solution of () if and only if it is a solution of fractional
differential equation ().
In this paper, using the similar methods as that in [], we give new oscillation criteria for

equation () which generalize and improve the main results in paper [] and references
cited therein. Examples are given to each of these equations.

2 Oscillation criteria of Riemann-Liouville fractional differential equations
Lemma . (see []) Suppose that X, Y and U , V are nonnegative, then

(I) λXY λ– –Xλ ≤ (λ – )Y λ, λ > , ()

(II) μUVμ– –Uμ ≥ (μ – )Vμ,  < μ < , ()

where each equality holds if and only if X = Y or U = V .

Using the knowledge of linear algebra, we can easily obtain Lemma ..

Lemma . Let (α,α, . . . ,αm) be an m-tuple satisfying α > · · · > αl >  > αl+ > · · · > αm >
. Then there exists an m-tuple (η,η, . . . ,ηm) satisfying

l∑
i=

αiηi =
m∑

i=l+

αiηi

with
∑m

i= ηi =  and  < ηi <  for i = , , . . . ,m.

Theorem . Assume

p(t) > , qi(t)

{
≥  for ≤ i ≤ l;
≤  for l + ≤ i ≤m.

()
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If for some constant K > ,

lim inf
t→∞ t–q

∫ t

a
(t – s)q–

(
v(s) +K

m∑
i=

p
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi

)
ds = –∞ ()

and

lim sup
t→∞

t–q
∫ t

a
(t – s)q–

(
v(s) +K

m∑
i=

p
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi

)
ds =∞, ()

then every solution of equation () is oscillatory.

Proof Suppose to the contrary that there exists a nonoscillatory solution x(t) of equa-
tion (). Without loss of generality, we may suppose that x(t) >  for t ≥ T . It follows from
equation () that

x(t)≤ (t – a)q–

�(q)
|a| + 

�(q)

∫ T

a
(t – s)q–

∣∣F(s)∣∣ds
+


�(q)

∫ t

T
(t – s)q–v(s)ds

+


�(q)

∫ t

T
(t – s)q–

(
p(s)x(s) –

m∑
i=

qi(s)xλi (s)

)
ds, ()

where F(s) = v(s) + p(s)x(s) –
∑m

i= qi(s)xλi (s).
For t ≥ T , multiplying the inequality () by �(q)t–q, we find that

�(q)t–qx(t)≤ C(T) + t–q
∫ t

T
(t – s)q–v(s)ds

+ t–q
∫ t

T
(t – s)q–

[ l∑
i=

(
λip(s)x(s) – qi(s)xλi (s)

)]
ds

+ t–q
∫ t

T
(t – s)q–

[ m∑
i=l+

(
–Ap(s)x(s) +

∣∣qi(s)∣∣xλi (s)
)]

ds, ()

where C(T) = ( T
T–a )

–q|a| +
∫ T
a ( T

T–s )
–q|F(s)|ds and A = (

∑l
i= λi – )/(m – l) > .

For t ≥ T , set

Xi = q

λi
i (s)x(s) and Yi =

(
p(s)q

– 
λi

i (s)
) 

λi– , ≤ i≤ l,

Ui =
∣∣qi(s)∣∣ 

λi x(s) and Vi =
(
A
λi
p(s)

∣∣qi(s)∣∣– 
λi

) 
λi–

, l +  ≤ i ≤m,
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using Lemma .(I) for ≤ i≤ l and (II) for l +  ≤ i≤m to obtain

�(q)t–qx(t)≤ C(T) + t–q
∫ t

T
(t – s)q–v(s)ds

+ t–q
∫ t

T
(t – s)q–

l∑
i=

(λi – )p
λi

λi– (s)q


–λi
i (s)ds

+ t–q
∫ t

T
(t – s)q–

m∑
i=l+

( – λi)
(

λi

A

) λi
–λi

p
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi ds

≤ C(T) + t–q
∫ t

T
(t – s)q–v(s)ds

+ t–q
∫ t

T
(t – s)q–K

m∑
i=

p
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi ds, t ≥ T , ()

where K =max{λ – ,maxl+≤i≤m( – λi)( λi
A )

λi
–λi }. Note that the improper integral on the

right is divergent. Taking the limit inferior of both sides of inequality () as t → ∞, we get
a contradiction to condition (). In the case x(t) is eventually negative, a similar argument
leads to a contradiction to (). This completes the proof of Theorem .. �

Following the proof of Theorem ., we can easily obtain the following corollaries.
Letting l =m in equation (), we get λ > λ > · · · > λm > .

Corollary . Suppose p(t) > , qi(t) ≥ ,  ≤ i ≤ m. If (), () hold for some constant
K > , then equation () is oscillatory.

Proof Suppose to the contrary that there exists a nonoscillatory solution x(t) of equa-
tion (). Without loss of generality, we may suppose that x(t) is an ultimately positive so-
lution of equation (). So, there exists T > a such that x(t) >  for t ≥ T . It follows from
equation () that

�(q)t–qx(t)≤ C(T) + t–q
∫ t

T
(t – s)q–v(s)ds

+ t–q
∫ t

T
(t – s)q–

[ m∑
i=

(

m
p(s)x(s) – qi(s)xλi (s)

)]
ds.

For t ≥ T , set

Xi = q

λi
i (s)x(s) and Yi =

(


mλi
p(s)q

– 
λi

i (s)
) 

λi–
, ≤ i ≤m,

and, using Lemma .(I), we obtain

�(q)t–qx(t)≤ C(T) + t–q
∫ t

T
(t – s)q–v(s)ds

+ t–q
∫ t

T
(t – s)q–K

m∑
i=

p
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi ds, t ≥ T ,
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where K ≥ λ–
m . The remaining part is similar to that of Theorem ., so we omit the

details. The proof of Corollary . is finished. �

If l =  in equation (), then  > λ > λ > · · · > λm. Similarly, we obtain the following
corollary.

Corollary . Suppose p(t) < , qi(t) ≤ ,  ≤ i ≤ m. If (), () hold for some constant
K > , then equation () is oscillatory.

If p(s) ≡  and  < l <m in equation (), we obtain the following corollary.

Corollary . Assume

qi(t)

{
≥  for ≤ i≤ l;
≤  for l +  ≤ i≤m.

()

If there exists a positive function r(t) on [a,∞) such that for some constant K > ,

lim inf
t→∞ t–q

∫ t

a
(t – s)q–

(
v(s) +K

m∑
i=

r
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi

)
ds = –∞

and

lim sup
t→∞

t–q
∫ t

a
(t – s)q–

(
v(s) +K

m∑
i=

r
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi

)
ds = ∞,

then every solution of equation () is oscillatory.

Proof For λ > · · · > λl >  > λl+ > · · · > λm, by Lemma ., there exists an m-tuple
(η, . . . ,ηm) satisfying

l∑
i=

λiηi =
m∑

i=l+

λiηi.

Suppose to the contrary that there exists a nonoscillatory positive solution x(t) for t ≥ T .
It follows from equation () that

�(q)t–qx(t)≤ C(T) + t–q
∫ t

T
(t – s)q–v(s)ds

+ t–q
∫ t

T
(t – s)q–

[ l∑
i=

(
λiηir(s)x(s) – qi(s)xλi (s)

)]
ds

+ t–q
∫ t

T
(t – s)q–

[ m∑
i=l+

(
–λiηir(s)x(s) +

∣∣qi(s)∣∣xλi (s)
)]

ds.

The remainder of the proof is similar, so we omit the details. �
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Remark . When l = , m =  and p(t) ≡ , a similar result is obtained by []. However,
our result, Corollary ., is different from that obtained in [] since an auxiliary function
r(t) is involved.

Remark . The results remain valid for fractional differential equations involving the
Riemann-Liouville differential operator aD

q
t of order q withm–  < q ≤m, wherem ≥  is

an integer of the form

aD
q
t x – p(t)x(t) +

m∑
i=

qi(t)
∣∣x(t)∣∣λi–x(t) = v(t),

aD
q–k
t x(a) = ak , k = , . . . ,m – ,

lim
t→a+

Jm–q
a x(t) = am.

()

In fact, initial value problem () is equivalent to the Volterra fractional integral equation

x(t) =
m∑
k=

ak(t – a)q–k

�(q – k + )
+


�(q)

∫ t

a
(t – s)q–

[
v(s) + p(s)x(s) –

m∑
i=

qi(s)
∣∣x(s)∣∣λi–x(s)

]
ds.

We have similar theorems in such a case as that in  < q ≤ .

3 Oscillation of Caputo fractional differential equations
In this section, we give oscillation criteria for equation () under the Caputo fractional
derivatives approach. Caputo’s definition can be written as

C
a D

q
t x(t) = Jm–q

a x(m)(t), m –  < q ≤m,

where x(t) is anm times differentiable function. The initial value problem of equation ()
should be replaced by

C
a D

q
t x – p(t)x(t) +

m∑
i=

qi(t)
∣∣x(t)∣∣λi–x(t) = v(t), x(k)(a) = ak , k = , , . . . ,m. ()

Moreover, the corresponding Volterra fractional integral equation, see [, Lemma .],
becomes

x(t) =
m–∑
k=

ak(t – a)k

k!

+


�(q)

∫ t

a
(t – s)q–

[
v(s) + p(s)x(s) –

m∑
i=

qi(t)
∣∣x(t)∣∣λi–x(t)

]
ds.

Using similar methods, the oscillation criteria can be obtained for Caputo’s case.

Theorem . Assume that condition () holds. If

lim inf
t→∞ t–m

∫ t

a
(t – s)q–

(
v(s) +K

m∑
i=

p
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi

)
ds = –∞ ()
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and

lim sup
t→∞

t–m
∫ t

a
(t – s)q–

(
v(s) +K

m∑
i=

p
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi

)
ds = ∞ ()

for some constant K > , then every solution of equation () is oscillatory.

Corollary . Suppose p(t) > , qi(t) ≥ ,  ≤ i ≤ m. If (), () hold for some constant
K > , then equation () is oscillatory.

Corollary . Suppose p(t) > , qi(t) ≤ ,  ≤ i ≤ m. If (), () hold for some constant
K > , then equation () is oscillatory.

Corollary . If condition () holds, and there exists a positive function r(t) on [a,∞)
such that

lim inf
t→∞ t–m

∫ t

a
(t – s)q–

[
v(s) +K

m∑
i=

r
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi

]
ds = –∞

and

lim sup
t→∞

t–m
∫ t

a
(t – s)q–

[
v(s) +K

m∑
i=

r
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi

]
ds =∞

for some constant K > , then every solution of equation () is oscillatory.

Remark . In [], the Grünwald-Letnikov fractional derivative, under the assumption
that the function x(t) must be m +  times continuously differentiable, can be obtained
from () under the same assumption by performing repeatedly integration by parts and
differentiation. Therefore, our results are suitable for the Grünwald-Letnikov fractional
derivative approaches, too.

4 Examples
In this section, we give the following examples to illustrate the effectiveness of our theo-
rems.

Example . Consider the following fractional differential equation:

D


t x – tx + t|x|  x – t|x|– 

 x = sin t, lim
t→+

J


 x(t) = . ()

It is easy to obtain K = 
 . Using Theorem ., we get

lim inf
t→∞ t–q

∫ t

a
(t – s)q–

(
v(s) +K

m∑
i=

p
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi

)
ds

= lim inf
t→∞ t




∫ t


(t – s)–




(
sin s +




)
ds = lim inf

t→∞ t



(∫ t


(t – s)–


 sin s ds +



t



)
.
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Since the integral
∫ t
 (t – s)– 

 sin s ds is negative for t = kπ – π
 , k = , , , . . . , we get

lim inf
t→∞ t




(∫ t


(t – s)–


 sin s ds +



t



)
= –∞.

Furthermore, for the same reason,

lim sup
t→∞

t



(∫ t


(t – s)–


 sin s ds +



t



)
=∞.

So, equation () is oscillatory.

Example . Consider the following fractional differential equation:

D/
t x – tx + t|x|  x = t–q

�( – q)
+ t/ – t, lim

t→+
J/ x(t) = . ()

Since t–q
�(–q) + t/ – t ≥  and

t–q
∫ t

a
(t – s)q–

(
v(s) +K

m∑
i=

p
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi

)
ds

≥ t–q
∫ t

a
(t – s)q–K

m∑
i=

p
λi

λi– (s)
∣∣qi(s)∣∣ 

–λi ds

= t/
∫ t



K

(t – s)–/ ds

=
K

t,

we get that neither () nor () is satisfied. We can also easily verify that x(t) = t is a
nonoscillatory solution of ().
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