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Abstract
In this paper, we consider a (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli
equation. We employ the Hirota bilinear method to obtain the bilinear form of the
(3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear
form, we derive exact three-wave solutions by using an extended three-soliton
method. In addition, we also get the trajectory of some solution with the help of
MAPLE.
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1 Introduction
Integrable systems and nonlinear evolution equations [–] have attracted much atten-
tion of mathematicians and physicists. Especially, exact solutions of nonlinear evolution
equations play a pivotal role in the study of mathematical physical phenomena. Not only
can these exact solutions describemany important phenomena in physics and other fields,
but they can also help physicists to understand the mechanisms of the complicated phys-
ical phenomena. A variety of powerful methods have been employed to study nonlinear
phenomena, such as the inverse scattering transform [], the tanh function method [],
the extended tanh-functionmethod [], the homogeneous balance method [], the aux-
iliary functionmethod [], and the exp-functionmethod [], the Pfaffian technique [],
the dressing method [], the Bäcklund transformation method [], the Darboux trans-
formation [], the generalized symmetry method, the tri-function method [] and the
G′/G-expansion method [], the modified CK direct method [].
Very recently, Dai et al. proposed a new technique called the three-wave approach to

seek periodic solitary wave solutions for integrable equations []. The method is to use
Frobenius’ idea [] to reduce the PDE into integrable ODEs. Frobenius’ idea was suc-
cessfully used to establish the transformed rational function method [] and to solve the
KPP equation []. In fact, the Tanh function method and the G′/G expansion method
are special cases of the reduction idea raised in [], say, the general Frobenius idea. Fur-
thermore, a three-wave solution in ( + )-dimension was obtained by using the multiple
exp-function method [, ]. With the rapid development of computer technology and
the help of symbolic computation, this approach is of utmost simplicity. Hence, it can be
applied to many kinds of nonlinear evolution equations and higher-dimensional soliton
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equations. Zitian Li obtained periodic cross-kink wave solutions, doubly periodic solitary
wave solutions and breather type of two-solitary wave solutions for the (+)-dimensional
Jimbo-Miwa equation by this method []. Wang applied the method to a higher dimen-
sional KdV-type equation [].
The BLMP equation was first derived in []:

uyt + uxxxy – uxxuy – uxuxy = , ()

where u = u(x, y, t) and subscripts represent partial differentiationwith respect to the given
variable. Boiti et al. [] also discussed the Painlevé property, Lax pairs and some exact so-
lutions of (+)-dimensional BLMP. Through the Bäcklund transformation, Bai and Zhao
got some new solutions of the BLMP equation. By means of the multilinear variable sepa-
ration approach, a general variable separation solution of the BLMP equation was derived
in []. Liu proposed a simple Bäcklund transformation of a potential BLMP system by us-
ing the standard truncated Painlevé expansion and symbolic computation, and a solution
of the potential BLMP system with three arbitrary functions was given in []. The sym-
metry, similarity reductions and new solutions of the ( + )-dimensional BLMP equation
were obtained in []. These solutions include rational function solutions, double-twisty
function solutions, Jacobi oval function solutions and triangular cycle solutions. In [],
based on the binary Bell polynomials, the bilinear form for the BLMP equation was ob-
tained. The new exact solutions were derived with an arbitrary function in y, and soli-
ton interaction properties were discussed by the graphical analysis. The author in []
discussed the BLMP equation and generalized breaking soliton equations by using the
exponential function and obtained some new exact solutions of the equations. By using
the modified Clarkson-Kruskal (CK) direct method, Li et al. [] constructed a Bäcklund
transformation of the ( + )-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equa-
tion. Laurent Delisle and Masoud Mosaddeghi proposed the study of the BLMP equation
from two points of view: the classical and the super symmetric. They constructed new
solutions of this equation fromWronskian formalism and the Hirota method in [].
In this paper, we consider the ( + )-dimensional Boiti-Leon-Manna-Pempinelli equa-

tion

uyt + uzt + uxxxy + uxxxz – ux(uxy + uxz) – uxx(uy + uz) = , ()

which was introduced by Darvishi in []. We apply the extended three-soliton method
to the ( + )-dimensional Boiti-Leon-Manna-Pempinelli equation, obtaining more exact
solutions including a complexiton solution, periodic cross-kink solutions about it.

2 Methodology
In this section, we briefly highlight the main features of the extended three-soliton
method. Let us consider a PDE for u(x, z, t) in the form

P(u,ut ,ux,uz,utt ,utx,utz,uxx,uxz,uzz, . . .) = , ()

where P is a polynomial in its arguments. The solution method will also work for systems
of nonlinear equations and high-dimensional ones.
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Step . Firstly, we introduce the D-operator which was proposed by Hirota [] and
defined as

Dm
t D

n
xa(t,x)·b(t,x) =

∂m

∂sm
∂n

∂yn
a(t + s,x + y)b(t – s,x – y)|s=,y=. ()

By transformation u = a ln f , u = G(f )
f and D-operator definition, Eq. () can be turned into

F(D,Dt ,Dx,Dz,Dtt ,Dtx,Dtz, . . .)f ·f = , ()

where F is a polynomial in its arguments.
Step . To seek the three-wave solution of Eq. (), let us consider the solution of Eq. ()

in the following form:

f = cos(ξ ) + a– exp(–θ ) + a exp(θ ) + a sinh(η), ()

where ξ = p(x+ γz + βy+ αt), η = p(x+ γz + βy+ αt), θ = p(x+ γz + βy+ αt) and
pi, αi, βi, γi (i = , , ) are free constants to be determined later.
Step . Substituting Eq. () into Eq. (), and collecting the coefficient of sinh(η) cos(ξ ),

sinh(η) exp(θ ), sinh(η) exp(–θ ), cosh(η) sin(ξ ), cosh(η) exp(θ ), cosh(η) exp(–θ ), sin(ξ ) exp(θ ),
sin(ξ ) exp(–θ ), cos(ξ ) exp(θ ), cos(ξ ) exp(–θ ) to zero, we can derive a set of algebraic equa-
tions for a–, a, a, pi, αi, βi, γi (i = , , ).
Step . Solving the set of algebraic equations defined by Step  with the help of MAPLE,

we can derive parameters a–, a, a, pi, αi, βi, γi (i = , , ). Therefore, we can obtain
abundant exact multi-wave solutions of Eq. ().

3 Exact three-wave solutions for the (3 + 1)-dimensional
Boiti-Leon-Manna-Pempinelli equation

In this section, we consider the following ( + )-dimensional Boiti-Leon-Manna-Pempi-
nelli equation Eq. ():

uyt + uzt + uxxxy + uxxxz – ux(uxy + uxz) – uxx(uy + uz) = ,

or, equivalently,

(uy + uz)t + (uy + uz)xxx – ux(uy + uz)x – uxx(uy + uz) = . ()

Under the dependent variable transformation,

u = –(ln f )x, ()

where f (x, y, z, t) is an unknown real function, system () is turned into

– fyft – fzft – fxxxfy – fxxyfx + fxxfxy – fxxxfz – fxxzfx + fxxfxz

+ fytf + fztf + fxxxyf + fxxxzf = . ()
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Equivalently, Eq. () can be mapped into the Hirota bilinear equation

(
DyDt +DzDt +DyD

x +DzD
x
)
f ·f = . ()

According to the methodology in Section , we can derive a set of algebraic equations for
a–, a, a, pi, αi, βi, γi (i = , , )

sinh(η) cos(ξ ) :

–pp

γ


 + pα


β – pαγ + pαγ – pαβ – pp


β – pp


β – pp


γ

+ pβ + pβ + pγ + pγ = ,

sinh(η) exp(θ ), sinh(η) exp(–θ ) :

pp

γ + pp


γ + pγ + pβ + pp


β + pβ + pp


β + pγ + pβγ

+ pαγ + pαβ + pγα = ,

cosh(η) sin(ξ ) :

–pβ + pβ + pγ – pγ + pγ – pγ + βα + γα + γα

+ βα – pβ + pβ = ,

cosh(η) exp(θ ), cosh(η) exp(–θ ) :

βα + pβ + βα + pβ + γα + pγ + γα + pγ + pβ

+ pγ + pβ + pγ = ,

sin(ξ ) exp(θ ), sin(ξ ) exp(–θ ) :

–βα + pβ + pγ – pγ + pβ + pγ – pβ – βα – pγ

– γα – pβ – γα = ,

cos(ξ ) exp(θ ), cos(ξ ) exp(–θ ) :

pβα – pαγ – pp

β + pγα – pp


β + pβ – pp


γ + pβ

– pp

γ + pγ – pαβ + pγ = ,

and constant term:

–ap

αβ – ap


αγ – pαβ – pαγ – ap


β – ap


γ + a–paβ

+ a–paγ + a–pβaα + a–pγaα + pβ + pγ = .

Solving the above algebraic equations with the help of MAPLE gives the following solu-
tions.
Case .

a– = a–, a = a, a = a, p = , p = , p = p,

α = α, α = α, α = –p,
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Figure 1 The propagation of solution u1 with a–1 = –1, a1 = 1, p3 = 1, γ3 = 1, z = 1.

β = –
βα + γα + γα

α
, β = β, β = –γ,

γ = γ, γ = γ, γ = γ.

In this case, we obtain the single soliton solution

u = –
–a–pe–p[x+γ(z–y)–pt] + apep[x+γ(z–y)–pt]

 + a–e–p[x+γ(z–y)–pt] + aep[x+γ(z–y)–pt]
, ()

where a–, a, p, γ are free constants. The propagation of solution u is described in
Figure .
Case .

a– = a–, a = a, a = a, p = p, p = , p = ,

α = p , α = α, α = α,

β = –γ, β = –
βα + γα + γα

α
, β = β,

γ = γ, γ = γ, γ = γ.

Then we obtain new periodic solutions as follows:

u =
p sin(p[x + γ(z – y) + p t])

cos(p[x + γ(z – y) + p t]) + a– + a
, ()

where a–, a, p, γ are free constants. The propagation of solution u is described in
Figure .
Case .

a– = , a = a, a = a, p = , p = p, p = p,

α = α, α = –p, α = –p,

β = β, β = –γ, β = –γ, γ = γ, γ = γ, γ = γ.
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Figure 2 The propagation of solution u2 with a–1 = 1, a1 = 1, p1 = –1, γ1 = 1, z = 5.

We then obtain

u = –
apep[x+γ(z–y)–pt] + ap sinh(p[x + γ(z – y) – pt])
 + aep[x+γ(z–y)–pt] + a cosh(p[x + γ(z – y) – pt])

, ()

where a, a, p, p, γ are arbitrary constants.
Case .

a– =


a
, a = a, a = a, p = pi, p = , p = p,

α = –p, α = –p, α = –p,

β = –γ – β – γ, β = β, β = β, γ = γ, γ = γ, γ = γ.

We then obtain a complexiton solution

u = –
–pi sin(ξ ) – pe

–p(x+γz+βy–pt)

a
+ apep(x+γz+βy–pt)

cos(ξ ) + e–p(x+γz+βy–pt)

a
+ aep(x+γz+βy–pt)

, ()

where ξ = ip(x + γz + (–γ – β – γ)y – pt) and a, p, α, β, γ, γ are free constants.
Case .

a– = a–, a = a, a = a, p = p, p = ,

p = p, α = p , α = α,

α = α, β = –γ, β = –γ, β = –γ,

γ = γ, γ = γ, γ = γ.

We then obtain new periodic cross-kink solutions

u = –
–p sin(ξ) – a–pe–p(x+γz+βy–pt) + apep(x+γz–γy+αt)

cos(ξ) + a–ep(x+γz–γy+αt) + aep(x+γz–γy+αt)
, ()

where ξ = p(x + γz – γy + p t) and a–, a, p, p, α, γ are free constants.
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Case .

a– = –
pγ + pβ + apγ + apβ

(β + γ)pa
, a = a, a = a,

p = p, p = p, p = p, α = –p + p , α = p – p,

α = p – p, β = β, β = –γ – γ – β, β = β,

γ = γ, γ = γ, γ = γ.

We then obtain new periodic cross-kink solutions

u = –
–p sin(ξ) +

pγ+p

β+a


p


γ+a


p


β

(β+γ)pa
e–θ + apeθ + ap cosh(η)

cos(ξ) –
pγ+p


β+a


p


γ+a


p


β

(β+γ)pa
e–θ + aeθ + a sinh(η)

, ()

where ξ = p(x + γz + βy + (–p + p )t), θ = p(x + γz + βy + (p – p)t), η = p(x +
γz + (–γ – γ – β)y + (p – p)t) and a, a, p, p, β, β, γ, γ, γ are free constants.
Case .

a– = , a = a, a = a, p = ip, p = p,

p = p, α = –p, α = –p, α = –
pp + p – pp + p

p
,

β = –
pβ + pγ + pγ

p
, β = –

pβ + pγ + pγ
p

, β = β,

γ = γ, γ = γ, γ = γ.

We then obtain a new complexiton solution

u = –
–ip sin(ξ) + ape

p(x+γz+βy–
pp+p


–p


p+p




p
t) + ap cosh(η)

cos(ξ) + ae
p(x+γz+βy–

pp+p

–p


p+p




p
t) + a sinh(η)

, ()

where ξ = p(x + γz – pβ+pγ+pγ
p

y – pt), η = p(x + γz – pβ+pγ+pγ
p

y – pt) and
a, a, p, p, β, γ, γ, γ are free constants.
Case .

a– = a–, a = a, a = a, p = p, p = p,

p = , α = p , α = –p, α = α,

β = –γ, β = –γ, β = β,

γ = γ, γ = γ, γ = γ.

We then obtain new periodic cross-kink solutions

u = –
–p sin(p(x + γz – γy + p t)) + ap cosh(p(x + γz – γy – pt))

cos(p(x + γz – γy + p t)) + a– + a + a sinh(p(x + γz – γy – pt))
, ()

where a–, a, a, p, p, α, β, γ, γ and γ are free constants.
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Figure 3 The propagation of solution u3 with a1 = 1, a2 = 1, p2 = 1, p3 = 1, γ2 = 1, γ3 = 1, z = 1.

Figure 4 The propagation of solution u5 with a–1 = 1, a1 = 1, p1 = 1, p3 = 1, α1, γ1 = 1, γ3 = 1, z = 1.

Case .

a– =
(aβ + β + γ + aγ)p

(β + γ)pa
a = a, a = a, p = ip,

p = p, p = p, α = –p – p, α = –p – p, α = –p – p,

β = β, β = –β – γ – γ, β = β, γ = γ, γ = γ, γ = γ.

We then obtain a complexiton solution

u = –
–ip sin(ξ) –

aβ+β+γ+aγ
(β+γ)pa

e–θ + apeθ + ap cosh(η)

cos(ξ) +
aβ+β+γ+aγ
(β+γ)pa

e–θ + aeθ + a cosh(η)
, ()

where ξ = ip(x + γz + βy + (–p – p)t), θ = p(x + γz + βy + (–p – p)t), η =
p(x + γz + (–β – γ – γ)y + (–p – p)t) and a, a, p, p, β, β, γ, γ, γ are free
constants. Figures , , ,  described the solution of u, u, u and u respectively.

Remark  Noting if we set βi = –γi in Case  to Case  of the solutions above are special
solutions of the equation, we can see that for an arbitrary function, u(x, y – z, t) is also a
solution. However, the other cases are different.
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Figure 5 The propagation of solution u6 with a1 = 1, a2 = 1, p1 = 1, p3 = 1, β1 = 1, β3 = 1, γ1 = 1,
γ2 = –1, γ3 = 1, z = 1.

Figure 6 The propagation of solution u8 with a–1 = 1, a1 = 1, a2 = 1, p1 = 1, p2 = 1, γ1 = 1, γ2 = –1,
z = 1.

Remark  Noting sinh(ix) = i sin(x) and cos(ix) = cosh(x), the solutions presented in this
paper can be obtained by using the multiple exp-function. Furthermore, we can get an N-
soliton solution just by modifying the ansatz and using the exp expanding method [].

4 Conclusion
In this paper, we obtained three-wave solutions to the ( + )-dimensional Boiti-Leon-
Manna-Pempinelli equation with the extended three-soliton method. All the presented
solutions show remarkable richness of the solution space of the ( + )-dimensional Boiti-
Leon-Manna-Pempinelli equation and also that the ( + )-dimensional integrable system
may have very rich dynamical behavior. The considered solutions are of complexiton type
[]. There is also a generalized theory of the Bell polynomials method which describes
the generalized bilinear differential equations [, ]. To our knowledge, our solutions
are novel. They cannot be obtained just through the simple generalization of the ( + )-
dimensional BLMP equation. In fact, the extended three-soliton method is entirely algo-
rithmic and involves a large amount of tedious calculations. However, the method is di-
rect, concise and effective. Therefore, we can apply the method to the variety of dynamics
of a higher-dimensional nonlinear system and many other types of a nonlinear evolution
equation in further work.
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