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1 Introduction, definitions and notations
The generalized Bernoulli polynomials B,(f’)(x) of order o € Ny and the generalized Euler
polynomials £ (x) of order « € Ny, each of degree n as well as in «, are defined respec-

tively by the following generating functions [1-3]:

n! et

> B - ( t_l)ae” (I < 2m,1%:=1), w

Zé’,(,“)(x) e = ( 2 )ae’” (It < 7,17 :=1). (2)

The generalized Apostol-Bernoulli polynomials B (x; 1) of order o € Ny and the gen-
eralized Apostol-Euler polynomials £ (x;1) of order o € Ny are defined respectively by

© 2013 Kurt; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

L]
@ Sprlnger tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.


http://www.advancesindifferenceequations.com/content/2013/1/32
mailto:vkurt@akdeniz.edu.tr
http://dx.doi.org/11.1155/2008/914347
http://dx.doi.org/10.1016/j.2011.09.010.2011
http://creativecommons.org/licenses/by/2.0

Kurt Advances in Difference Equations 2013, 2013:32
http://www.advancesindifferenceequations.com/content/2013/1/32

the following generating functions [3]:
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Recently, Garg et al. in [4] introduced the following generalization of the Hurwitz-Lerch
zeta function ®(z, s, a):

(neC a veC\Z; p,o eR*, p<o whens,ze C(lz] <1); p=0 and R(s—pn+v) >0
when |z| = 1). It is obvious that
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(for details on this subject, see [3-5]).
The multiple power sums and the A-multiple alternating sums are defined by Luo [6] as
follows:
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From (6) and (7), we have
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(see [6]).

From (8) and (9), for [ = 1, we have respectively
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Symmetry property and some recurrence relations of the Bernoulli polynomials, Euler
polynomials, Apostol-Bernoulli polynomials and Apostol-Euler polynomials have been
investigated by a lot of mathematicians [1-24]. Firstly, Yang [22] proved symmetry rela-
tion for Bernoulli polynomials. Wang et al. in [1, 20, 21] gave some symmetry relations for
the Apostol-Bernoulli polynomials. Kim in [8, 10, 11, 14, 15] proved symmetric identities
for the Bernoulli polynomials and Euler polynomials. Luo in [6, 17] gave multiplication for-
mulas for the Apostol-Bernoulli and Apostol-Euler polynomials. Also, he defined A-power
sums. Srivastava et al. [2, 3, 5] proved some theorems and relations for these polynomials.
They proved some symmetry identities for these polynomials.

In this work, we give some symmetry identities for the Apostol-type polynomials related
to multiple alternating sums.

2 Symmetry identities for the Apostol-Bernoulli polynomials
We will prove the following theorem for the Apostol-Euler polynomials, which are sym-

metric in a and b.

Theorem 2.1 There is the following relation between Apostol-Bernoulli polynomials and
the Hurwitz-Lerch zeta function ®*(z,s, a):
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In a similar manner,
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Since |log A + £| < m1n(2” 2”) after the Cauchy product, we have
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Compressing to coefficients % and by using (5), we prove the theorem.

Theorem 2.2 Forall a,b,m € N, n € Ny, we have the following symmetry identity:
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In a similar manner,
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Comparing the coefficients of ;—n!, we proved the theorem. d

Corollary 2.3 Weputa=>b=x=1in(13). We have
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3 Some symmetry identities for the Apostol-Euler polynomials
Theorem 3.1 Let a and b be positive integers with the same parity. Then
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Equating the coefficient of tn—n, in the two expressions for /(t) gives us the desired result.
O

Theorem 3.2 Let a and b be positive integers with the same parity. Then
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Since (—1)**! = (-1)*1, the expression for A(t) is symmetric in @ and b.
In a similar manner, we have

oo

Z[Z( ) 1 (g 20

Equating the coefficient of tn—y: in the two expressions for k(t) gives us the desired result.
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On the other hand, we write the function k(¢) as
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Equating the coefficient of %, we obtain (16). O
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