Some symmetry identities for the Apostol-type polynomials related to multiple alternating sums

Veli Kurt*
*Correspondence:
vkurt@akdeniz.edu.tr Department of Mathematics, Faculty of Science, Akdeniz University, Campus, Antalya, 07058, Turkey

Abstract

In recent years, symmetry properties of the Bernoulli polynomials and the Euler polynomials have been studied by a large group of mathematicians (He and Wang in Discrete Dyn. Nat. Soc. 2012:927953, 2012, Kim et al. in J. Differ. Equ. Appl. 14:1267-1277, 2008; Abstr. Appl. Anal. 2008, doi:11.1155/2008/914347, Yang et al. in Discrete Math. 308:550-554, 2008; J. Math. Res. Expo. 30:457-464, 2010). Luo (Integral Transforms Spec. Funct. 20:377-391, 2009), introduced the lambda-multiple power sum and proved the multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order. Ozarslan (Comput. Math. Appl. 2011:2452-2462, 2011), Lu and Srivastava (Comput. Math. Appl. 2011, doi:10.1016/j.2011.09.010.2011) gave some symmetry identities relations for the Apostol-Bernoulli and Apostol-Euler polynomials.

In this work, we prove some symmetry identities for the Apostol-Bernoulli and Apostol-Euler polynomials related to multiple alternating sums.

AMS Subject Classification: 11F20; 11B68; 11M35; 11M41
Keywords: Bernoulli polynomials; Euler polynomials; Apostol-Bernoulli polynomials; Apostol-Euler polynomials; symmetry relation; power sums; alternating sums

1 Introduction, definitions and notations

The generalized Bernoulli polynomials $\mathcal{B}_{n}^{(\alpha)}(x)$ of order $\alpha \in \mathbb{N}_{0}$ and the generalized Euler polynomials $\mathcal{E}_{n}^{(\alpha)}(x)$ of order $\alpha \in \mathbb{N}_{0}$, each of degree n as well as in α, are defined respectively by the following generating functions [1-3]:

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{B}_{n}^{(\alpha)}(x) \frac{t^{n}}{n!}=\left(\frac{t}{e^{t}-1}\right)^{\alpha} e^{x t} \tag{1}\\
& \left(|t|<2 \pi, 1^{\alpha}:=1\right) \tag{2}\\
& \sum_{n=0}^{\infty} \mathcal{E}_{n}^{(\alpha)}(x) \frac{t^{n}}{n!}=\left(\frac{2}{e^{t}+1}\right)^{\alpha} e^{x t}
\end{align*} \quad\left(|t|<\pi, 1^{\alpha}:=1\right) .
$$

The generalized Apostol-Bernoulli polynomials $\mathcal{B}_{n}^{(\alpha)}(x ; \lambda)$ of order $\alpha \in \mathbb{N}_{0}$ and the generalized Apostol-Euler polynomials $\mathcal{E}_{n}^{(\alpha)}(x ; \lambda)$ of order $\alpha \in \mathbb{N}_{0}$ are defined respectively by

[^0]the following generating functions [3]:
\[

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{B}_{n}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!}=\left(\frac{t}{\lambda e^{t}-1}\right)^{\alpha} e^{x t} \quad(|z|<2 \pi \text { when } \lambda=1,|z|<|\ln \lambda| \text { when } \lambda \neq 1), \tag{3}\\
& \sum_{n=0}^{\infty} \mathcal{E}_{n}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!}=\left(\frac{2}{\lambda e^{t}+1}\right)^{\alpha} e^{x t} \quad(|z|<\pi \text { when } \lambda=1,|z|<|\ln (-\lambda)| \text { when } \lambda \neq 1) . \tag{4}
\end{align*}
$$
\]

Recently, Garg et al. in [4] introduced the following generalization of the Hurwitz-Lerch zeta function $\Phi(z, s, a)$:

$$
\Phi_{\mu, v}^{(\rho, \sigma)}(z, s, a):=\sum_{n=0}^{\infty} \frac{(\mu)_{\rho n}}{(v)_{\sigma n}} \frac{z^{n}}{(n+a)^{s}}
$$

$\left(\mu \in \mathbb{C}, a, v \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, \rho, \sigma \in \mathbb{R}^{+}, \rho<\sigma\right.$ when $s, z \in \mathbb{C}(|z|<1) ; \rho=\sigma$ and $\mathfrak{R}(s-\mu+\nu)>0$ when $|z|=1$). It is obvious that

$$
\begin{equation*}
\Phi_{\mu, 1}^{(1,1)}(z, s, a)=\Phi_{\mu}^{*}(z, s, a)=\sum_{n=0}^{\infty} \frac{(\mu)_{n}}{n!} \frac{z^{n}}{(n+a)^{s}} \tag{5}
\end{equation*}
$$

(for details on this subject, see [3-5]).
The multiple power sums and the λ-multiple alternating sums are defined by Luo [6] as follows:

$$
\begin{align*}
S_{k}^{(l)}(m ; \lambda)= & \sum_{\substack{0 \leq v_{1} \leq \cdots \leq v_{m} \leq l \\
v_{1}+v_{2}+\cdots+v_{m}}}\binom{l}{v_{1}, v_{2}, \ldots, v_{m}} \lambda^{v_{1}+2 v_{2}+\cdots+m v_{m}}\left(v_{1}+2 v_{2}+\cdots+m v_{m}\right)^{k} \tag{6}\\
T_{k}^{(l)}(m ; \lambda)= & (-1)^{l} \sum_{\substack{0 \leq v_{1} \leq \cdots \leq v_{m} \leq l \\
v_{1}+v_{2}+\cdots+v_{m}}}\binom{l}{v_{1}, v_{2}, \ldots, v_{m}}(-\lambda)^{v_{1}+2 v_{2}+\cdots+m v_{m}} \\
& \times\left(v_{1}+2 v_{2}+\cdots+m v_{m}\right)^{k} \tag{7}
\end{align*}
$$

From (6) and (7), we have

$$
\begin{equation*}
\left(\frac{1-\lambda^{m} e^{m t}}{1-\lambda e^{t}}\right)^{l}=\lambda^{(-l)} \sum_{n=0}^{\infty}\left\{\sum_{p=0}^{n}\binom{n}{p}(-l)^{n-p} S^{(l)}(m ; \lambda)\right\} \frac{t^{n}}{n!} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1+(-1)^{m+1}\left(\lambda e^{t}\right)^{m}}{1+\lambda e^{t}}\right)^{l}=\lambda^{(-l)} \sum_{n=0}^{\infty}\left\{\sum_{p=0}^{n}\binom{n}{p}(-l)^{n-p} T^{(l)}(m ; \lambda)\right\} \frac{t^{n}}{n!} \tag{9}
\end{equation*}
$$

(see [6]).
From (8) and (9), for $l=1$, we have respectively

$$
\begin{align*}
& \frac{1-\lambda^{m} e^{m t}}{1-\lambda e^{t}}=\frac{1}{\lambda} \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} S_{k}^{(l)}(m ; \lambda)\right) \frac{t^{n}}{n!}, \tag{10}\\
& \frac{1+(-1)^{m+1}\left(\lambda e^{t}\right)^{m}}{1+\lambda e^{t}}=\frac{1}{\lambda} \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} T_{k}^{(l)}(m ; \lambda)\right) \frac{t^{n}}{n!} . \tag{11}
\end{align*}
$$

Symmetry property and some recurrence relations of the Bernoulli polynomials, Euler polynomials, Apostol-Bernoulli polynomials and Apostol-Euler polynomials have been investigated by a lot of mathematicians [1-24]. Firstly, Yang [22] proved symmetry relation for Bernoulli polynomials. Wang et al. in $[1,20,21]$ gave some symmetry relations for the Apostol-Bernoulli polynomials. Kim in [8, 10, 11, 14, 15] proved symmetric identities for the Bernoulli polynomials and Euler polynomials. Luo in $[6,17]$ gave multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials. Also, he defined λ-power sums. Srivastava et al. [2, 3,5] proved some theorems and relations for these polynomials. They proved some symmetry identities for these polynomials.
In this work, we give some symmetry identities for the Apostol-type polynomials related to multiple alternating sums.

2 Symmetry identities for the Apostol-Bernoulli polynomials

We will prove the following theorem for the Apostol-Euler polynomials, which are symmetric in a and b.

Theorem 2.1 There is the following relation between Apostol-Bernoulli polynomials and the Hurwitz-Lerch zeta function $\Phi^{*}(z, s, a)$:

$$
\begin{align*}
& \sum_{s=0}^{n}\binom{n}{s} b^{s+1-\alpha} a^{n-s}(-1)^{\alpha-1} \sum_{k=0}^{s}\binom{s}{k} \sum_{p=0}^{r}\binom{r}{p}(-1)^{r-p} \lambda^{-b} \\
& \times S_{p}\left(a ; \lambda^{b}\right) \mathcal{B}_{k}^{(\alpha-1)}\left(a y ; \lambda^{b}\right) \Phi_{\mu}^{*}(\lambda, s-n, b x) \\
&= \sum_{s=0}^{n}\binom{n}{s} a^{s+1-\alpha} b^{n-s}(-1)^{\alpha-1} \sum_{k=0}^{s}\binom{s}{k} \sum_{p=0}^{r}\binom{r}{p}(-1)^{r-p} \lambda^{-a} \\
& \quad \times S_{p}\left(b ; \lambda^{a}\right) \mathcal{B}_{k}^{(\alpha-1)}\left(b y ; \lambda^{a}\right) \Phi_{\mu}^{*}(\lambda, s-n, a x) . \tag{12}
\end{align*}
$$

Proof Let $f(t)=\frac{t^{\alpha-1} e^{a b x t}\left(1-\lambda^{a b} e^{a b t}\right) e^{a b y t}}{\left(1-\lambda^{a} e^{a t}\right)^{\alpha}\left(1-\lambda^{b} e^{b t}\right)^{\alpha}}$. Then

$$
f(t)=\frac{1}{b^{\alpha-1}} \frac{e^{a b x t}}{\left(1-\lambda^{a} e^{a t}\right)^{\alpha}}\left(\frac{1-\lambda^{a b} e^{a b t}}{1-\lambda^{b} e^{b t}}\right)\left(\frac{b t}{1-\lambda^{b} e^{b t}}\right)^{\alpha-1} e^{a b y t}
$$

From (3) and (10), we write

$$
\begin{aligned}
f(t)= & \frac{(-1)^{\alpha-1}}{b^{\alpha-1}} \sum_{\beta=0}^{\infty}\binom{\beta+\alpha-1}{\beta} \lambda^{\alpha \beta} e^{a t(\beta+b x)} \frac{1}{\lambda^{b}} \sum_{r=0}^{\infty} \sum_{p=0}^{r}\binom{r}{p}(-1)^{r-p} S_{p}\left(a ; \lambda^{b}\right) \frac{b^{r} t^{r}}{r!} \\
& \times \sum_{k=0}^{\infty} \mathcal{B}_{k}^{(\alpha-1)}\left(a y ; \lambda^{b}\right) \frac{b^{k} t^{k}}{k!}
\end{aligned}
$$

where $|\log \lambda+t|<\min \left(\frac{2 \pi}{a}, \frac{2 \pi}{b}\right)$. After the Cauchy product, we have

$$
\begin{aligned}
= & \sum_{n=0}^{\infty}\left\{\sum_{s=0}^{n}\binom{n}{s} b^{s+1-\alpha} a^{n-s}(-1)^{\alpha-1} \sum_{k=0}^{s}\binom{s}{k} \sum_{p=0}^{r}\binom{r}{p}(-1)^{r-p} \lambda^{-b}\right. \\
& \left.\times S_{p}\left(a ; \lambda^{b}\right) \mathcal{B}_{k}^{(\alpha-1)}\left(a y ; \lambda^{b}\right) \sum_{\beta=0}^{\infty}\binom{\beta+\alpha-1}{\beta} \frac{\lambda^{\alpha \beta}}{(\beta+b x)^{s-n}}\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

In a similar manner,

$$
\begin{aligned}
f(t) & =\frac{t^{\alpha-1} e^{a b y t}\left(1-\lambda^{a b} e^{a b t}\right) e^{a b x t}}{\left(1-\lambda^{b} e^{b t}\right)^{\alpha}\left(1-\lambda^{a} e^{a t}\right)^{\alpha}} \\
& =\frac{1}{a^{\alpha-1}} \frac{e^{a b x t}}{\left(1-\lambda^{b} e^{b t}\right)^{\alpha}}\left(\frac{1-\lambda^{a b} e^{a b t}}{1-\lambda^{a} e^{a t}}\right)\left(\frac{a t}{1-\lambda^{a} e^{a t}}\right)^{\alpha-1} e^{a b y t} .
\end{aligned}
$$

From (3) and (10), we write

$$
\begin{aligned}
f(t)= & \frac{(-1)^{\alpha-1}}{a^{\alpha-1}} \sum_{\beta=0}^{\infty}\binom{\beta+\alpha-1}{\beta} \lambda^{\alpha \beta} e^{b t(\beta+a x)} \frac{1}{\lambda^{a}} \sum_{r=0}^{\infty} \sum_{p=0}^{r}\binom{r}{p}(-1)^{r-p} S_{p}\left(b ; \lambda^{a}\right) \frac{a^{r} t^{r}}{r!} \\
& \times \sum_{k=0}^{\infty} \mathcal{B}_{k}^{(\alpha-1)}\left(b y ; \lambda^{a}\right) \frac{a^{k} t^{k}}{k!} .
\end{aligned}
$$

Since $|\log \lambda+t|<\min \left(\frac{2 \pi}{a}, \frac{2 \pi}{b}\right)$, after the Cauchy product, we have

$$
\begin{aligned}
= & \sum_{n=0}^{\infty}\left\{\sum_{s=0}^{n}\binom{n}{s} a^{s+1-\alpha} b^{n-s}(-1)^{\alpha-1} \sum_{k=0}^{s}\binom{s}{k} \sum_{p=0}^{r}\binom{r}{p}(-1)^{r-p} \lambda^{-a}\right. \\
& \left.\times S_{p}\left(b ; \lambda^{a}\right) \mathcal{B}_{k}^{(\alpha-1)}\left(b y ; \lambda^{a}\right) \sum_{\beta=0}^{\infty}\binom{\beta+\alpha-1}{\beta} \frac{\lambda^{b \beta}}{(\beta+a y)^{s-n}}\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

Compressing to coefficients $\frac{t^{n}}{n!}$ and by using (5), we prove the theorem.
Theorem 2.2 For all $a, b, m \in \mathbb{N}, n \in \mathbb{N}_{0}$, we have the following symmetry identity:

$$
\begin{array}{rl}
b^{m+1} & a \sum_{r=0}^{n}\binom{n}{r} \mathcal{B}_{n-r}^{(m+1)}\left(b x ; \lambda^{a}\right) a^{n-r} \lambda^{-m b} \\
& \times \sum_{k=0}^{r}\binom{r}{k} \sum_{p=0}^{k}\binom{k}{p}(-l)^{k-p} S_{p}^{(m)}\left(a ; \lambda^{b}\right) \mathcal{B}_{r-k}\left(a y ; \lambda^{b}\right) b^{r} \\
= & a^{m+1} b \sum_{r=0}^{n}\binom{n}{r} \mathcal{B}_{n-r}^{(m+1)}\left(a y ; \lambda^{b}\right) b^{n-r} \lambda^{-m a} \\
& \times \sum_{k=0}^{r}\binom{r}{k} \sum_{p=0}^{k}\binom{k}{p}(-l)^{k-p} S_{p}^{(m)}\left(b ; \lambda^{a}\right) \mathcal{B}_{r-k}\left(b x ; \lambda^{a}\right) a^{r} . \tag{13}
\end{array}
$$

Proof Let $h(t)=\frac{t^{2 m+1} e^{a b x t}\left(1-\lambda^{a b} e^{a b t}\right)^{m} e^{a b y t}}{\left(1-\lambda^{a} e^{a t t}\right)^{m+1}\left(1-\lambda^{b} e^{b t}\right)^{m+1}}$. Then

$$
h(t)=\frac{1}{a^{m+1} b}\left(\frac{a t}{1-\lambda^{a} e^{a t}}\right)^{m+1} e^{a b x t}\left(\frac{1-\lambda^{a b} e^{a b t}}{1-\lambda^{b} e^{b t}}\right)^{m}\left(\frac{b t}{1-\lambda^{b} e^{b t}}\right) e^{a b y t} .
$$

From (3) and (8), we have

$$
\begin{aligned}
h(t)= & \frac{(-1)^{m}}{a^{m+1} b} \sum_{n=0}^{\infty}\left\{\sum_{r=0}^{n}\binom{n}{r} \mathcal{B}_{n-r}^{(m+1)}\left(b x ; \lambda^{a}\right) a^{n-r} \lambda^{-m b} \sum_{k=0}^{r}\binom{r}{k}\right. \\
& \left.\times \sum_{p=0}^{k}\binom{k}{p}(-l)^{k-p} S_{p}^{(m)}\left(a ; \lambda^{b}\right) \mathcal{B}_{r-k}\left(a y ; \lambda^{b}\right) b^{r}\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

In a similar manner,

$$
\begin{aligned}
h(t)= & \frac{(-1)^{m}}{b^{m+1} a} \sum_{n=0}^{\infty}\left\{\sum_{r=0}^{n}\binom{n}{r} \mathcal{B}_{n-r}^{(m+1)}\left(a y ; \lambda^{b}\right) b^{n-r} \lambda^{-m a} \sum_{k=0}^{r}\binom{r}{k}\right. \\
& \left.\times \sum_{p=0}^{k}\binom{k}{p}(-l)^{k-p} S_{p}^{(m)}\left(b ; \lambda^{a}\right) \mathcal{B}_{r-k}\left(a x ; \lambda^{a}\right) a^{r}\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$, we proved the theorem.

Corollary 2.3 We put $a=b=\lambda=1$ in (13). We have

$$
\sum_{k=0}^{n}\binom{n}{k} \mathcal{B}_{k}^{(m+1)}(y) \mathcal{B}_{n-k}(x)=\sum_{k=0}^{n}\binom{n}{k} \mathcal{B}_{k}^{(m+1)}(x) \mathcal{B}_{n-k}(y) .
$$

3 Some symmetry identities for the Apostol-Euler polynomials

Theorem 3.1 Let a and b be positive integers with the same parity. Then

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k} \mathcal{E}_{k}\left(b x ; \lambda^{a}\right) \lambda^{-b} a^{k} b^{n-k} \sum_{p=0}^{n-k}\binom{n-k}{p}(-1)^{n-k-p} T_{n-k}\left(a ; \lambda^{b}\right) \\
& \quad=\sum_{k=0}^{n}\binom{n}{k} \mathcal{E}_{k}\left(a x ; \lambda^{b}\right) \lambda^{-a} b^{k} a^{n-k} \sum_{p=0}^{n-k}\binom{n-k}{p}(-1)^{n-k-p} T_{n-k}\left(b ; \lambda^{a}\right) . \tag{14}
\end{align*}
$$

$$
\begin{aligned}
h(t) & =\sum_{k=0}^{\infty} \mathcal{E}_{k}\left(b x ; \lambda^{a}\right) \frac{a^{k} t^{k}}{k!} \frac{1}{\lambda^{a}} \sum_{l=0}^{\infty} \sum_{p=0}^{l}\binom{l}{p}(-1)^{l-p} T_{p}\left(a ; \lambda^{b}\right) \frac{b^{l} t^{l}}{l!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} \mathcal{E}_{k}\left(b x ; \lambda^{a}\right) \lambda^{-b} a^{k} b^{n-k} \sum_{p=0}^{n-k}\binom{n-k}{p}(-1)^{n-k-p} T_{n-k}\left(a ; \lambda^{b}\right)\right) \frac{t^{n}}{n!} .
\end{aligned}
$$

Since $(-1)^{a+1}=(-1)^{b+1}$, the expression for $h(t)=\frac{2 e^{a b x t}}{\lambda^{b} e^{b t}+\frac{1+(-1)^{b+1}\left(\lambda^{a} e^{a t}\right)^{b}}{\lambda^{a} e^{a t}+1} \text { is symmetric in } a}$ and b. Therefore, we obtain the following power series for $h(t)$ by symmetry:

$$
h(t)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} \mathcal{E}_{k}\left(a x ; \lambda^{b}\right) \lambda^{-a} b^{k} a^{n-k} \sum_{p=0}^{n-k}\binom{n-k}{p}(-1)^{n-k-p} T_{n-k}\left(b ; \lambda^{a}\right)\right) \frac{t^{n}}{n!} .
$$

Equating the coefficient of $\frac{t^{n}}{n!}$ in the two expressions for $h(t)$ gives us the desired result.

Theorem 3.2 Let a and b be positive integers with the same parity. Then

$$
\sum_{s=0}^{n}\binom{n}{s} \mathcal{E}_{n-s}^{(\alpha+1)}\left(b x ; \lambda^{a}\right) \lambda^{(-b \alpha)} a^{n-s} \sum_{k=0}^{s}\binom{s}{k} \sum_{p=0}^{k}\binom{k}{p}(-\alpha)^{k-p} T_{k}^{(\alpha)}\left(a ; \lambda^{b}\right) \mathcal{E}_{s-k}\left(a y ; \lambda^{b}\right) b^{s}
$$

$$
\begin{align*}
= & \sum_{s=0}^{n}\binom{n}{s} \mathcal{E}_{n-s}^{(\alpha+1)}\left(a y ; \lambda^{b}\right) \lambda^{(-a \alpha)} b^{n-s} \\
& \times \sum_{k=0}^{s}\binom{s}{k} \sum_{p=0}^{k}\binom{k}{p}(-\alpha)^{k-p} T_{k}^{(\alpha)}\left(b ; \lambda^{a}\right) \mathcal{E}_{s-k}\left(b x ; \lambda^{b}\right) a^{s} . \tag{15}
\end{align*}
$$

Proof Let $k(t)=\frac{2^{\alpha+2} e^{a b x t}\left(1+(-1)^{a+1}\left(\lambda^{a b} e^{a b t}\right)\right)^{\alpha}}{\left(\lambda^{a} e^{a t}+1\right)^{\alpha+1}\left(\lambda^{b} e^{b t}+1\right)^{\alpha+1}} e^{a b y t}$. From (4) and (9), we write

$$
\begin{aligned}
k(t)= & \left(\frac{2}{\lambda^{a} e^{a t}+1}\right)^{(\alpha+1)} e^{a b x t}\left(\frac{1+(-1)^{a+1}\left(\lambda^{a b} e^{a b t}\right)}{\lambda^{b} e^{b t}+1}\right)^{\alpha}\left(\frac{2}{\lambda^{b} e^{b t}+1}\right) e^{a b y t} \\
= & \sum_{n=0}^{\infty} \mathcal{E}_{n}^{(\alpha+1)}\left(b x ; \lambda^{a}\right) \frac{a^{n} t^{n}}{n!} \frac{1}{\lambda^{b \alpha}} \sum_{n=0}^{\infty} \sum_{n=0}^{p}\binom{p}{n}(-\alpha)^{n-p} T_{p}^{(\alpha)}\left(a ; \lambda^{b}\right) \frac{b^{n} t^{n}}{n!} \\
& \times \sum_{n=0}^{\infty} \mathcal{E}_{n}\left(a y ; \lambda^{b}\right) \frac{b^{n} t^{n}}{n!} \\
= & \sum_{n=0}^{\infty}\left\{\sum_{s=0}^{n}\binom{n}{s} \mathcal{E}_{n-s}^{(\alpha+1)}\left(b x ; \lambda^{a}\right) \lambda^{(-b \alpha)} a^{n-s}\right. \\
& \left.\times \sum_{k=0}^{s}\binom{s}{k} \sum_{p=0}^{k}\binom{k}{p}(-\alpha)^{k-p} T_{k}^{(\alpha)}\left(a ; \lambda^{b}\right) \mathcal{E}_{s-k}\left(a y ; \lambda^{b}\right) b^{s}\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

Since $(-1)^{a+1}=(-1)^{b+1}$, the expression for $h(t)$ is symmetric in a and b.
In a similar manner, we have

$$
\begin{aligned}
k(t)= & \sum_{n=0}^{\infty}\left\{\sum_{s=0}^{n}\binom{n}{s} \mathcal{E}_{n-s}^{(\alpha+1)}\left(a y ; \lambda^{b}\right) \lambda^{(-a \alpha)} b^{n-s}\right. \\
& \left.\times \sum_{k=0}^{s}\binom{s}{k} \sum_{p=0}^{k}\binom{k}{p}(-\alpha)^{k-p} T_{k}^{(\alpha)}\left(b ; \lambda^{a}\right) \mathcal{E}_{s-k}\left(b x ; \lambda^{b}\right) a^{s}\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

Equating the coefficient of $\frac{t^{n}}{n!}$ in the two expressions for $k(t)$ gives us the desired result.

Theorem 3.3 Let p, l, a, b and n be positive integers and a, b be of the same parity. Then

$$
\begin{align*}
& \sum_{l=0}^{n}\binom{n}{l} \mathcal{B}_{n-l}\left(n ; \lambda^{a}\right) a^{n-l} \lambda^{-a} \sum_{p=0}^{l}\binom{l}{p}(-1)^{l-p} T_{p}\left(b ; \lambda^{a}\right) a^{l} \\
& \quad=2^{n-l} a^{n}\left(\mathcal{B}_{n}\left(\frac{n}{2} ; \lambda^{2 a}\right)+\frac{(-1)^{b+1} \lambda^{a b}}{2} \mathcal{B}_{n}\left(\frac{b+n}{2} ; \lambda^{n}\right)\right) . \tag{16}
\end{align*}
$$

Proof Let $k(t)=\frac{a t e^{a n t}}{\lambda^{a} e^{a t}-1} \frac{1+(-1)^{b}\left(\lambda^{b} e^{b t}\right)^{a}}{\lambda^{a} e^{a t}+1}$. From (3) and (10), we have

$$
\begin{aligned}
k(t) & =\frac{a t e^{a n t}}{\lambda^{a} e^{a t}-1} \frac{1+(-1)^{b+1}\left(\lambda^{b} e^{b t}\right)^{a}}{\lambda^{a} e^{a t}+1} \\
& =\sum_{n=0}^{\infty} \mathcal{B}_{n}\left(n ; \lambda^{a}\right) \frac{a^{n} t^{n}}{n!} \lambda^{-\alpha} \sum_{n=0}^{\infty} \sum_{n=0}^{p}\binom{p}{n}(-1)^{n-p} T_{p}\left(b ; \lambda^{a}\right) \frac{a^{n} t^{n}}{n!}
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} \mathcal{B}_{n-l}\left(n ; \lambda^{a}\right) a^{n-l} \lambda^{-a} \sum_{p=0}^{l}\binom{l}{p}(-1)^{l-p} T_{p}\left(b ; \lambda^{a}\right) a^{l}\right) \frac{t^{n}}{n!} .
$$

On the other hand, we write the function $k(t)$ as

$$
\begin{aligned}
k(t) & =\frac{1}{2} \frac{2 a e^{\frac{n}{2}(2 a t)}}{\lambda^{2 a} e^{2 a t}-1}+\frac{(-1)^{b+1} \lambda^{a b} 2 a t e^{2 a t\left(\frac{n+b}{2}\right)}}{2\left(\lambda^{2 a} e^{2 a t}-1\right)} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \mathcal{B}_{n}\left(\frac{n}{2} ; \lambda^{2 a}\right) 2^{n} \frac{a^{n} t^{n}}{n!}+\frac{(-1)^{b+1} \lambda^{a b}}{2} \sum_{n=0}^{\infty} \mathcal{B}_{n}\left(\frac{b+n}{2} ; \lambda^{2 a}\right) 2^{n} \frac{a^{n} t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(2^{n-l} a^{n}\left(\mathcal{B}_{n}\left(\frac{n}{2} ; \lambda^{2 a}\right)+\frac{(-1)^{b+1} \lambda^{a b}}{2} \mathcal{B}_{n}\left(\frac{b+n}{2} ; \lambda^{n}\right)\right)\right) \frac{t^{n}}{n!} .
\end{aligned}
$$

Equating the coefficient of $\frac{t^{n}}{n!}$, we obtain (16).

Competing interests

The author declares that they have no competing interests.

Acknowledgements

Dedicated to Professor Hari M Srivastava.
This paper was supported by the Scientific Research Project Administration of Akdeniz University.
Received: 9 November 2012 Accepted: 22 January 2013 Published: 11 February 2013

References

1. Liu, H, Wang, W: Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums. Discrete Math. 309, 3346-3363 (2009)
2. Lu, D-Q, Srivastava, HM: Some series identities involving the generalized Apostol type and related polynomials. Comput. Math. Appl. 62, 3591-3602 (2011).
3. Srivastava, HM, Garg, M, Choudhary, S: A new generalization of the Bernoulli and related polynomials. Russ. J. Math. Phys. 20, 251-261 (2010)
4. Garg, M, Jain, K, Srivastava, HM: Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta function. Integral Transforms Spec. Funct. 17, 803-825 (2006)
5. Choi, J, Jang, SD, Srivastava, HM: A generalization of the Hurwitz-Lerch zeta functions. Integral Transforms Spec. Funct. 19, 65-79 (2008)
6. Luo, Q-M: The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order. Integral Transforms Spec. Funct. 20, 377-391 (2009)
7. He, Y, Wang, C: Some formulae of products of the Apostol-Bernoulli and Apostol-Euler polynomials. Discrete Dyn. Nat. Soc. 2012, Art. ID 927953, 11 pp. (2012)
8. Jang, L-C, Yi, H, Shivashankara, K, Kim, T, Kim, YH, Lee, B: A note on symmetric properties of the twisted q-Bernoulli polynomials and the twisted generalized q-Bernoulli polynomials. Adv. Differ. Equ. 2010, Art. ID 801580, 13 pp. (2010)
9. Jolany, H, Sharifi, H, Alikelaye, RE: Some results for the Apostol-Genocchi polynomials of higher order. Bull. Malays. Math. Sci. Soc. 36 (2012)
10. Kim, T: Symmetry p-adic invariant integral on Z_{p} for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 14, 1267-1277 (2008)
11. Kim, T: On the symmetries of the q-Bernoulli polynomials. Abstr. Appl. Anal. (2008). doi:10.1155/2008/914347
12. Kim, T: On the analogs of the Euler numbers and polynomials associated with p-adic q-integral on \mathbb{Z}_{p} at $q=-1$. J. Math. Anal. Appl. 331, 779-792 (2007)
13. Kim, Y-H, Hwang, K-W: Symmetry of power sum and twisted Bernoulli polynomials. Adv. Stud. Contemp. Math Jang'jun Math. Soc. 18, 127-133 (2009)
14. Kim, DS, Kim, T, Choi, J, Kim, Y-H: Some identities on Bernoulli and Euler numbers. Discrete Dyn. Nat. Soc. (2012). doi:10.1155/2012/486158
15. Kim, DS, Kim, T, Dolgy, D-V, Lee, S-H: Some identities on Bernoulli and Euler polynomials associated with p-adic integral on Z_{p}. Abstr. Appl. Anal. (2012). doi:10.1155/2012/847901
16. Kurt, V : A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials. Appl. Math. Sci. (Ruse) 3, 2757-2764 (2009)
17. Luo, Q-M: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 51, 631-642 (2006)
18. Ozarslan, MA: Unified Apostol-Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 62, 2452-2462 (2011)
19. Simsek, Y: Complete sum of products oh (h, q)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 11, 1331-1348 (2010)
20. Wang, W, Wang, W: Some results on power sums and Apostol type polynomials. Integral Transforms Spec. Funct. 21, 307-318 (2010)
21. Wang, W, Jia, C, Wang, T: Some results on the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 55, 1322-1332 (2008)
22. Yang, SL: An identity of symmetry for the Bernoulli polynomials. Discrete Math. 308, 550-554 (2008)
23. Yang, SL, Qıao, ZK: Some symmetry identities for the Euler polynomials. J. Math. Res. Expo. 30, 457-464 (2010)
24. Zhang, Z, Yang, H: Some identities for the generalized Apostol-Bernoulli polynomials. Comput. Math. Appl. 56, 2993-2999 (2008)

doi:10.1186/1687-1847-2013-32

Cite this article as: Kurt: Some symmetry identities for the Apostol-type polynomials related to multiple alternating sums. Advances in Difference Equations 2013 2013:32.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © 2013 Kurt; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

