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Abstract
In recent years, symmetry properties of the Bernoulli polynomials and the Euler
polynomials have been studied by a large group of mathematicians (He and Wang in
Discrete Dyn. Nat. Soc. 2012:927953, 2012, Kim et al. in J. Differ. Equ. Appl.
14:1267-1277, 2008; Abstr. Appl. Anal. 2008, doi:11.1155/2008/914347, Yang et al. in
Discrete Math. 308:550-554, 2008; J. Math. Res. Expo. 30:457-464, 2010). Luo (Integral
Transforms Spec. Funct. 20:377-391, 2009), introduced the lambda-multiple power
sum and proved the multiplication formulas for the Apostol-Bernoulli and
Apostol-Euler polynomials of higher order. Ozarslan (Comput. Math. Appl.
2011:2452-2462, 2011), Lu and Srivastava (Comput. Math. Appl. 2011,
doi:10.1016/j.2011.09.010.2011) gave some symmetry identities relations for the
Apostol-Bernoulli and Apostol-Euler polynomials.
In this work, we prove some symmetry identities for the Apostol-Bernoulli and

Apostol-Euler polynomials related to multiple alternating sums.
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1 Introduction, definitions and notations
The generalized Bernoulli polynomials B(α)

n (x) of order α ∈ N and the generalized Euler
polynomials E (α)

n (x) of order α ∈ N, each of degree n as well as in α, are defined respec-
tively by the following generating functions [–]:
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The generalized Apostol-Bernoulli polynomials B(α)
n (x;λ) of order α ∈ N and the gen-

eralized Apostol-Euler polynomials E (α)
n (x;λ) of order α ∈ N are defined respectively by
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the following generating functions []:
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Recently, Garg et al. in [] introduced the following generalization of the Hurwitz-Lerch
zeta function �(z, s,a):
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(for details on this subject, see [–]).
The multiple power sums and the λ-multiple alternating sums are defined by Luo [] as

follows:
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(see []).
From () and (), for l = , we have respectively
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Symmetry property and some recurrence relations of the Bernoulli polynomials, Euler
polynomials, Apostol-Bernoulli polynomials and Apostol-Euler polynomials have been
investigated by a lot of mathematicians [–]. Firstly, Yang [] proved symmetry rela-
tion for Bernoulli polynomials. Wang et al. in [, , ] gave some symmetry relations for
the Apostol-Bernoulli polynomials. Kim in [, , , , ] proved symmetric identities
for the Bernoulli polynomials and Euler polynomials. Luo in [, ] gavemultiplication for-
mulas for theApostol-Bernoulli andApostol-Euler polynomials. Also, he defined λ-power
sums. Srivastava et al. [, , ] proved some theorems and relations for these polynomials.
They proved some symmetry identities for these polynomials.
In this work, we give some symmetry identities for theApostol-type polynomials related

to multiple alternating sums.

2 Symmetry identities for the Apostol-Bernoulli polynomials
We will prove the following theorem for the Apostol-Euler polynomials, which are sym-
metric in a and b.

Theorem . There is the following relation between Apostol-Bernoulli polynomials and
the Hurwitz-Lerch zeta function �∗(z, s,a):
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In a similar manner,
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Compressing to coefficients tn
n! and by using (), we prove the theorem. �
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In a similar manner,
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Comparing the coefficients of tn
n! , we proved the theorem. �
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Equating the coefficient of tn
n! in the two expressions for h(t) gives us the desired result.
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Equating the coefficient of tn
n! , we obtain (). �
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