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1 Introduction and preliminaries
The concept of differential subordination was introduced in [, ] and developed in [] by
Miller andMocanu. The concept of differential superordination was introduced in [] like
a dual problem of the differential subordination by Miller and Mocanu and developed in
[]. The concept of strong differential subordination was introduced in [] by Antonino
and Romaguera and developed in [–]. The concept of strong differential superordina-
tion was introduced in [] like a dual concept of the strong differential subordination and
developed in [–].
In [] the author defines the following classes:
Denote byH(U ×U) the class of analytic functions in U ×U , where

U =
{
z ∈ C : |z| < 

}
, U =

{
z ∈C : |z| ≤ 

}
, ∂U =

{
z ∈C : |z| = 

}
.

For a ∈C and n ∈N
∗, we denote by

Hξ [a,n] =
{
f (z, ξ ) ∈H(U ×U) : f (z, ξ ) = a + an(ξ )zn + an+(ξ )zn+ + · · ·},

with z ∈U , ξ ∈ U , ak(ξ ) holomorphic functions in U , k ≥ n. Let

Aξn =
{
f (z, ξ ) ∈H(U ×U) : f (z, ξ ) = z + an+(ξ )zn+ + · · ·},

with z ∈U , ξ ∈U , ak(ξ ) holomorphic functions in U , k ≥ n + , and Aξ = Aξ ,

Hξu(U) =
{
f (z, ξ ) ∈Hξ [a,n] : f (z, ξ ) is univalent in U for all ξ ∈ U

}
,

Sξ =
{
f (z, ξ ) ∈ Aξn : f (z, ξ ) univalent in U for all ξ ∈ U

}
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denote the class of univalent functions inH(U ×U),

S∗ξ =
{
f (z, ξ ) ∈ Aξ : Re

zf ′
z (z, ξ )
f (z, ξ )

> , z ∈U , for all ξ ∈U
}

denote the class of normalized starlike functions in U ×U ,

Kξ =
{
f (z, ξ ) ∈ Aξ : Re

(
zf ′′

z (z, ξ )
f ′
z (z, ξ )

+ 
)

≥ , z ∈U , for all ξ ∈ U
}

denote the class of normalized convex functions in U ×U .
Let A(p)ξ denote the subclass of the functions f (z, ξ ) ∈H(U ×U) of the form

f (z, ξ ) = zp +
∞∑

k=p+

ak(ξ )zk , p ∈N , z ∈U , for all ξ ∈U , and set A()ξ = Aξ .

To prove our main results, we need the following definitions and lemmas.

Definition . [, ] Let F(z, ξ ) and f (z, ξ ) be members ofH(U×U). The function f (z, ξ )
is said to be strongly subordinate to F(z, ξ ), or F(z, ξ ) is said to be strongly superordinate
to f (z, ξ ) if there exists a function w analytic in U , with w() =  and |w(z)| <  such that
f (z, ξ ) = F(w(z), ξ ) for all ξ ∈ U . In such a case, we write f (z, ξ ) ≺≺ F(z, ξ ), z ∈ U , ξ ∈ U .
If F(z, ξ ) is univalent, then f (z, ξ )≺≺ F(z, ξ ) if and only if F(, ξ ) = f (, ξ ) and f (U ×U) ⊂
F(U ×U).

Remark . If F(z, ξ ) ≡ F(z) and f (z, ξ ) ≡ f (z), then the strong differential subordination
or superordination becomes the usual notions of differential subordination and superor-
dination, respectively.

Definition . [] We denote by Qξ the set of functions q(·, ξ ) that are analytic and in-
jective, as functions of z onU \E(q(z, ξ )), where E(q(z, ξ )) = {ζ ∈ ∂U : limz→ζ q(z, ξ ) = ∞},
and are such that q′(ζ , ξ ) �=  for ζ ∈ ∂U \ E(q(z, ξ )), ξ ∈ U . The subclass of Qξ for which
q(, ξ ) = a is denoted by Qξ (a).
Let � : C × U × U → C, and let h(z, ξ ) be univalent in U for all ξ ∈ U . If p(z, ξ ) is

analytic in U ×U and satisfies the (second-order) strong differential subordination

�
(
p(z, ξ ), zp′

z(z, ξ ), z
p′′

z (z, ξ ); z, ξ
) ≺≺ h(z, ξ ), z ∈U , ξ ∈ U , (.)

then p(z, ξ ) is called a solution of the strong differential subordination.
The univalent function q(z, ξ ) is called a dominant of the solutions of the strong differen-

tial subordination, or simply a dominant, if p(z, ξ ) ≺≺ q(z, ξ ) for all p(z, ξ ) satisfying (.).
A dominant q̃(z, ξ ) that satisfies q̃(z, ξ ) ≺≺ q(z, ξ ) for all dominants q(z, ξ ) of (.) is said
to be the best dominant of (.). Note that the best dominant is unique up to a rotation of
U ×U .
Let ϕ : C × U × U → C, and let h(z, ξ ) be analytic in U × U . If p(z, ξ ) and ϕ(p(z, ξ ),

zp′
z(z, ξ ), zp′′

z (z, ξ ); z, ξ ) are univalent in U for all ξ ∈ U and satisfy the (second-order)
strong differential superordination,

h(z, ξ ) ≺≺ ϕ
(
p(z, ξ ), zp′

z(z, ξ ), z
p′′

z (z, ξ ); z, ξ
)
, z ∈U , ξ ∈ U , (.′)
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then p(z, ξ ) is called a solution of the strong differential superordination. An analytic func-
tion q(z, ξ ) is called a subordinant of the solutions of the strong differential superordina-
tion, or more simple a subordinant if q(z, ξ ) ≺≺ p(z, ξ ) for all p(z, ξ ) satisfying (.′). A uni-
valent subordinant q̃(z, ξ ) that satisfies q(z, ξ ) ≺≺ q̃(z, ξ ) for all subordinants q(z, ξ ) of (.′)
is said to be the best subordinant. Note that the best subordinant is unique up to a rotation
of U ×U .

We rewrite the operators defined in [] for the classes presented earlier as follows.

Definition . [] For f (z, ξ ) ∈ Aξn, n ∈N∗,m ∈N , γ ∈ C, let Lγ be the integral operator
given by Lγ : Aξn → Aξn,

Lγ f (z, ξ ) = f (z, ξ ),

Lγ f (z, ξ ) =
γ + 
zγ

∫ z


Lγ f (t, ξ )t

γ– dt,

Lγ f (z, ξ ) =
γ + 
zγ

∫ z


Lγ f (t, ξ )t

γ– dt, . . . ,

Lmγ f (z, ξ ) =
γ + 
zγ

∫ z


Lm–

γ f (t, ξ ) · tγ– dt.

By using Definition ., we can prove the following properties for this integral operator:
For f (z, ξ ) ∈ Aξn, n ∈ N

∗,m ∈N, γ ∈C, we have

Lmγ f (z, ξ ) = z +
∞∑

k=n+

(γ + )m

(γ + k)m
· ak(ξ )zk , z ∈U , ξ ∈ U , (.)

and

z · [Lmγ f (z, ξ )]′
z = (γ + )Lm–

γ f (z, ξ ) – γLmγ f (z, ξ ), z ∈U , ξ ∈ U . (.)

Definition . [] For p ∈ N ,m ∈N , f (z, ξ ) ∈ A(p)ξ , letH be the integral operator given
by H : A(p)ξ → A(p)ξ ,

Hf (z, ξ ) = f (z, ξ ),

Hf (z, ξ ) =
p + 
z

∫ z


Hf (t, ξ )dt,

Hf (z, ξ ) =
p + 
z

∫ z


Hf (t, ξ )dt, . . . ,

Hmf (z, ξ ) =
p + 
z

∫ z


Hm–f (t, ξ )dt.

By using Definition ., we can prove the following properties for this integral operator:
For f (z, ξ ) ∈ A(p)ξ ,m ∈N, p ∈ N, we have

Hmf (z, ξ ) = zp +
∞∑

k=p+

(p + )m

(p + k)m
ak(ξ )zk , z ∈U , ξ ∈U , (.)
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and

z
[·Hmf (z, ξ )

]′ = (p + )Hm–f (z, ξ ) –Hmf (z, ξ ), z ∈U , ξ ∈ U . (.)

We rewrite the following lemmas for the classes presented earlier (the proofs are similar
to those found in []).

Lemma . [, Th. ., p.] Let the function q(z, ξ ) be univalent in U for all ζ ∈ U ,
and let θ and ϕ be analytic in a domain D containing q(U × U) with q(ω, ξ ) �=  when
ω ∈ q(U ×U).
Set Q(z, ξ ) = zq′

z(z, ξ ) · ϕ(q(z, ξ )) and h(z, ξ ) = θ (q(z, ξ )) +Q(z, ξ ). Suppose that
(i) Q(z, ξ ) is starlike univalent in U for all ξ ∈ U ,
(ii) Re zh′

z(z,ξ )
Q(z,ξ ) > , z ∈U for all ξ ∈ U .

If p(z, ξ ) is analytic in U ×U with p(, ξ ) = q(, ξ ), p(U ×U) ⊆D and

θ
(
p(z, ξ )

)
+ zp′(z, ξ ) · ϕ(

p(z, ξ )
) ≺≺ θ

(
q(z, ξ )

)
+ zq′(z, ξ ) · ϕ(

q(z, ξ )
)
,

then p(z, ξ ) ≺≺ q(z, ξ ), z ∈ U , ξ ∈ U and q(z, ξ ) is the best strong dominant.

Lemma . [, Corollary .] Let α,β ,γ ∈ C, and let h(z, ξ ) be convex in U for all ζ ∈ U ,
with h(, ξ ) = a and q(z, ξ ) ≺≺ h(z, ξ ), z ∈U , ξ ∈ U . Suppose that the differential equation
q(z, ξ ) + zq′

z(z,ξ )
q(z,ξ ) = h(z, ξ ) has a univalent solution q(z, ξ ) that satisfies q(, ξ ) = a.

If p(z, ξ ) ∈ [a, ]∩Qξ and p(z, ξ )+
zp′

z(z,ξ )
βp(z,ξ )+γ

is univalent in U for all ξ ∈ U , then h(z, ξ ) ≺≺
p(z, ξ ) + zp′

z(z,ξ )
βp(z,ξ )+γ

implies q(z, ξ ) ≺≺ p(z, ξ ), z ∈ U , ξ ∈ U . The function q(z, ξ ) is the best
subordinant.

2 Main results
We first give results related to strong differential subordinations.

Theorem . Let q(z, ξ ) be univalent in U for all ξ ∈ U , with q(, ξ ) =  and q(z, ξ ) �= ,
and suppose that

(j) Req(z, ξ ) > ,

(jj) Re( +
zq′′

z
(z,ξ )

q′
z(z,ξ )

– zq′
z(z,ξ )

q(z,ξ ) ) > .
Let n ∈N∗, γ ∈C, f (z, ξ ) ∈ Aξn and

Lmγ f (z, ξ ) · [Lmγ f (z, ξ )]′z
z

+
z[Lmγ f (z, ξ )]′′z
[Lmγ f (z, ξ )]′z

+
[Lmγ f (z, ξ )]′z
Lmγ f (z, ξ )

– 

≺≺ q(z, ξ ) +
zq′

z(z, ξ )
q(z, ξ )

, z ∈ U , ξ ∈U , (.)

then

[Lmγ f (z, ξ )]′z · Lmγ f (z, ξ )
z

≺≺ q(z, ξ ), z ∈U , ξ ∈ U ,

and q(z, ξ ) is the best dominant.
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Proof We let

p(z, ξ ) =
[Lmγ f (z, ξ )]′z · Lmγ f (z, ξ )

z
, z ∈U , ξ ∈U . (.)

Using (.) in (.), we have

p(z, ξ ) =
[z +

∑∞
k=n+

(γ+)m
(γ+k)m ak(ξ )z

k]′[z +
∑∞

k=n+
(γ+)m
(γ+k)m ak(ξ )z

k]
z

=  +An(ξ )zn + · · · ,

and since p(, ξ ) = , we obtain that p(z, ξ ) ∈ ξ [,n].
Differentiating (.), and after a short calculus, we obtain

p(z, ξ ) +
zp′

z(z, ξ )
p(z, ξ )

=
[Lmγ f (z, ξ )]′z · Lmγ f (z, ξ )

z
+
z[Lmγ f (z, ξ )]′′z
[Lmγ f (z, ξ )]′z

+
z[Lmγ f (z, ξ )]′z
Lmγ f (z, ξ )

– . (.)

Using (.) in (.), the strong differential subordination (.) becomes

p(z, ξ ) +
zp′

z(z, ξ )
p(z, ξ )

≺≺ q(z, ξ ) +
zq′

z(z, ξ )
q(z, ξ )

, z ∈U , ξ ∈ U . (.)

In order to prove the theorem,we shall use Lemma .. For that, we show that the necessary
conditions are satisfied. Let the functions � :C →C and ϕ :C →C, with

�(ω) = ω (.)

and

ϕ(ω) =

ω
, ϕ(w) �= . (.)

We check the conditions from the hypothesis of Lemma .. Using (.), we have

Q(z, ξ ) =
zq′

z(z, ξ )
q(z, ξ )

. (.)

Differentiating (.), and after a short calculus, we obtain

zQ′
z(z, ξ )

Q(z, ξ )
=  +

zq′′
z (z, ξ )

q′
z(z, ξ )

–
zq′

z(z, ξ )
qz(z, ξ )

. (.)

Using (jj) in (.), we have

Re
zQ′

z(z, ξ )
Q(z, ξ )

> , z ∈U , ξ ∈ U , (.)

hence the function Q(z, ξ ) is starlike in U for all ξ ∈ U . Using (.) we have

h(z, ξ ) = θ
(
q(z, ξ )

)
+Q(z, ξ ) = q(z, ξ ) +Q(z, ξ ). (.)

http://www.advancesindifferenceequations.com/content/2013/1/317
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Differentiating (.) and using (.), after a short calculus, we obtain

Re
zh′

z(z, ξ )
Q(z, ξ )

= Re

[
q(z, ξ ) +

zQ′
z(z, ξ )

Q(z, ξ )

]
. (.)

Using (j) and (.) in (.), we have Re zh′
z(z,ξ )

Q(z,ξ ) > , z ∈ U , ξ ∈ U . Using (.) and (.), we
get

θ
(
p(z, ξ )

)
= p(z, ξ ), ϕ

(
p(z, ξ )

)
=


p(z, ξ )

,

Q
(
q(z, ξ )

)
= q(z, ξ ), ϕ

(
q(z, ξ )

)
=


q(z, ξ )

,

and the strong differential subordination (.) becomes

Q
(
p(z, ξ )

)
+ zp′(z, ξ ) · ϕ(

p(z, ξ )
) ≺≺ θ

(
q(z, ξ )

)
+ zq′(z, ξ ) · ϕ(

q(z, ξ )
)
.

Using Lemma ., we obtain

p(z, ξ ) ≺≺ q(z, ξ ), i.e.
[Lmγ f (z, ξ )]′z · Lmγ f (z, ξ )

z
≺≺ q(z, ξ ), z ∈ U , ξ ∈ U ,

and q(z, ξ ) is the best dominant. �

Theorem. Let q(z, ξ ) be univalent inU for all ξ ∈ U ,with q(, ξ ) = p– and q(z, ξ ) �= –,
z ∈U , for all ξ ∈ U , and suppose that

(l) Req(z, ξ ) > –,

(ll) Re[ +
zq′′

z
(z,ξ )

q′
z(z,ξ )

– zq′
z(z,ξ )

+q(z,ξ ) ] > , z ∈U , ξ ∈ U .
Let p ∈ N, f (z, ξ ) ∈ A(p)ξ and

z(Hmf (z, ξ ))′′z
(Hmf (z, ξ ))′z

+
(Hmf (z, ξ )] ′

z
zp–

–p+ ≺≺ q(z, ξ )++
zq′

z(z, ξ )
q(z, ξ ) + 

, z ∈U , ξ ∈ U , (.)

then z(Hmf (z,ξ ))′z
zp– –  ≺≺ q(z, ξ ), and q(z, ξ ) is the best dominant.

Proof We let

 + p(z, ξ ) =
(Hmf (z, ξ ))′z

zp–
, z ∈ U , ξ ∈U . (.)

From (.), we have

p(z, ξ ) +  =
(zp +

∑∞
k=p+

(p+)m
(p+k)m ak(ξ )z

k)′

zp–
= p +

∞∑
k=p+

(p + )m

(p + k)m
ak(ξ )kz.

Since p(, ξ ) = p– , we obtain that p(z, ξ ) ∈Hξ [p– , ]. Differentiating (.), and after a
short calculus, we obtain

z(Hmf (z, ξ ))′′z
(Hmf (z, ξ ))′z

+
(Hmf (z, ξ )] ′

z
zp–

– p +  = p(z, ξ ) +  +
zp′

z(z, ξ )
p(z, ξ ) + 

. (.)
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Using (.) in (.), the strong differential subordination becomes

p(z, ξ ) +  +
zp′

z(z, ξ )
p(z, ξ ) + 

≺≺ q(z, ξ ) +  +
zq′

z(z, ξ )
q(z, ξ ) + 

, z ∈U , ξ ∈ U . (.)

In order to prove the theorem,we shall use Lemma .. For that, we show that the necessary
conditions are satisfied. Let the functions � :C →C and ϕ :C →C, with

�(ω) = ω +  (.)

and

ϕ(ω) =


ω + 
, ϕ(w) �= . (.)

We check the conditions from the hypothesis of Lemma .. Using (.), we have

Q(z, ξ ) = zq′
z(z, ξ ) · ϕ

(
q(z, ξ )

)
= zq′

z(z, ξ ) ·


q(z, ξ ) + 
. (.)

Differentiating (.), and after a short calculus, we obtain

zQ′
z(z, ξ )

Q(z, ξ )
=  +

zq′′
z (z, ξ )

q′
z(z, ξ )

–
zq′

z(z, ξ )
qz(z, ξ ) + 

. (.)

Using (ll) in (.), we have

Re
zQ′

z(z, ξ )
Q(z, ξ )

= Re

(
 +

zq′′
z (z, ξ )

q′
z(z, ξ )

–
zq′

z(z, ξ )
qz(z, ξ ) + 

)
> , z ∈U , ξ ∈ U , (.)

hence the function Q(z, ξ ) is starlike in U for all ξ ∈ U . Using (.) we have

h(z, ξ ) = θ
(
q(z, ξ )

)
+Q(z, ξ ) = q(z, ξ ) +  +Q(z, ξ ). (.)

Differentiating (.) and using (.), (.) and (l), after a short calculus, we obtain

Re
zh′

z(z, ξ )
Q(z, ξ )

= Re

[
q(z, ξ ) +  +

zQ′
z(z, ξ )

Q(z, ξ )

]
> . (.)

Using (.) and (.), we get

θ
(
p(z, ξ )

)
= p(z, ξ ) + , ϕ

(
p(z, ξ )

)
=


p(z, ξ ) + 

,

θ
(
q(z, ξ )

)
= q(z, ξ ) + , ϕ

(
q(z, ξ )

)
=


q(z, ξ ) + 

,

and the strong differential subordination (.) becomes

θ
(
p(z, ξ )

)
+ zp′

z(z, ξ ) · ϕ
(
p(z, ξ )

) ≺≺ θ
(
q(z, ξ )

)
+ zq′

z(z, ξ ) · ϕ
(
q(z, ξ )

)
.

Using Lemma ., we have p(z, ξ ) ≺≺ q(z, ξ ), i.e., [Hmf (z,ξ )]′z
zp– –  ≺≺ q(z, ξ ) and q(z, ξ ) is the

best dominant. �
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Next we give results related to strong differential superordinations.

Theorem . Let h(z, ξ ) be convex in U for all ξ ∈ U , with h(, ξ ) = a. Suppose that the
differential equation

q(z, ξ ) +
zq′

z(z, ξ )
q(z, ξ )

= h(z, ξ ), z ∈U , ξ ∈ U , (.)

has a univalent solution q(z, ξ ) that satisfies q(, ξ ) = a and q(z, ξ ) ≺≺ h(z, ξ ).
If p(z, ξ ) ∈ H[a, ] ∩ Qξ and p(z, ξ ) + zp′

z(z,ξ )
p(z,ξ ) is univalent in U for all ξ ∈ U , f (z, ξ ) ∈ Aξ ,

then

h(z, ξ ) ≺≺ Lmγ f (z, ξ )
z

+
z(Lmγ f (z, ξ ))′z
Lmγ f (z, ξ )

–  (.)

implies q(z, ξ ) ≺≺ Lmγ f (z,ξ )
z , z ∈U , ξ ∈U . The function q(z, ξ ) is the best subordinant.

Proof We let

p(z, ξ ) =
Lmγ f (z, ξ )

z
, z ∈ U , ξ ∈U . (.)

From (.), we have

p(z, ξ ) =
z +

∑∞
k=

(γ+)m
(γ+k)m ak(ξ )z

k

z
=  +

∞∑
k=

(γ + )m

(γ + k)m
ak(ξ )zk– (.)

and since p(, ξ ) = , we obtain that p(z, ξ ) ∈H[, ]∩Qξ .
Differentiating (.), and after a short calculus, we obtain

p(z, ξ ) +
zp′

z(z, ξ )
p(z, ξ )

=
z(Lmγ f (z, ξ ))′z
Lmγ f (z, ξ )

+
Lmγ f (z, ξ )

z
– . (.)

Using (.) in (.), the strong differential superordination becomes

q(z, ξ ) +
zq′

z(z, ξ )
q(z, ξ )

≺≺ p(z, ξ ) +
zp′

z(z, ξ )
p(z, ξ )

, z ∈U , ξ ∈ U . (.)

Using Lemma ., we obtain q(z, ξ ) ≺≺ p(z, ξ ), i.e., q(z, ξ ) ≺≺ Lmγ f (z,ξ )
z , z ∈U , ξ ∈U . �

Example . Let h(z, ξ ) = –zξ
+zξ , z ∈ U , ξ ∈ U , with Re( +

zh′′
z
(z,ξ )

h′
z(z,ξ )

) = Re –zξ
+zξ > , z ∈ U ,

ξ ∈ U . From Theorem . we have that if m = , n = , γ = – + i, f (z, ξ ) = z + ξ

 z
, and

+i
 z + +ξ +i

 z
+ +i


ξ
 z

is univalent in U for ξ ∈U , then

 – zξ
 + zξ

≺≺  + i


z +
 + ξ +i

 z
 + +i


ξ

 z
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implies


 + zξ

≺≺ z +
ξ


 + i


z, z ∈U , ξ ∈U .

Theorem . Let h(z, ξ ) be convex in U for all ξ ∈ U , with h(, ξ ) = p. Suppose that the
differential equation

q(z, ξ ) +
zq′

z(z, ξ )
q(z, ξ )

= h(z, ξ ), z ∈U , ξ ∈ U ,

has a univalent solution q(z, ξ ) that satisfies q(, ξ ) = p and q(z, ξ ) ≺≺ h(z, ξ ).
If p(z, ξ ) ∈ H[p, ]∩Qξ and p(z, ξ )+

zp′
z(z,ξ )

p(z,ξ ) is univalent in U for all ξ ∈U , f (z, ξ ) ∈ A(p)ξ ,
then

h(z, ξ ) ≺≺  +
z(Hmf (z, ξ ))′′z
(Hmf (z, ξ ))′z

, z ∈U , ξ ∈U , (.)

implies q(z, ξ ) ≺≺ z(Hmf (z,ξ ))′z
Hmf (z,ξ ) . The function q(z, ξ ) is the best subordinant.

Proof Using (.) in (.), the strong differential superordination becomes

h(z, ξ ) ≺≺  +
z(Hmf (z, ξ ))′′z
(Hmf (z, ξ ))′z

. (.)

We let

p(z, ξ ) =
z(Hmf (z, ξ ))′z
Hmf (z, ξ )

. (.)

From (.), we have

p(z, ξ ) =
z(pzp– +

∑∞
k=p+

(p+)m
(p+k)m ak(ξ )kz

k–)

zp +
∑∞

k=p+
(p+)m
(p+k)m ak(ξ )zk

=
p +

∑∞
k=p+

(p+)m
(p+k)m ak(ξ )z

k

 +
∑∞

k=p+
(p+)m
(p+k)m ak(ξ )zk–p

.

Since p(, ξ ) = p, we obtain that p(z, ξ ) ∈ H[p, ]∩Qξ .
Differentiating (.), and after a short calculus, we obtain

p(z, ξ ) +
zp′

z(z, ξ )
p(z, ξ )

=  +
z(Hmf (z, ξ ))′′z
(Hmf (z, ξ ))′z

. (.)

Using (.) in (.), the strong differential superordination becomes

h(z, ξ ) ≺≺ p(z, ξ ) +
zp′

z(z, ξ )
p(z, ξ )

, z ∈U , ξ ∈ U . (.)

Using Lemma ., we obtain q(z, ξ ) ≺≺ p(z, ξ ), i.e., q(z, ξ ) ≺≺ z(Hmf (z,ξ ))′z
Hmf (z,ξ ) . �

Remark . Using another integral operator, the author finds interesting results in strong
differential subordinations and superordinations in [].
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