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1 Introduction and preliminaries
The concept of differential subordination was introduced in [1, 2] and developed in [3] by
Miller and Mocanu. The concept of differential superordination was introduced in [4] like
a dual problem of the differential subordination by Miller and Mocanu and developed in
[5]. The concept of strong differential subordination was introduced in [6] by Antonino
and Romaguera and developed in [7-17]. The concept of strong differential superordina-
tion was introduced in [18] like a dual concept of the strong differential subordination and
developed in [19-21].

In [8] the author defines the following classes:

Denote by H(U x U) the class of analytic functions in U/ x U, where

L[:{ze(C:|z|<1}, E:{ze(C:|z|§1}, 8U:{ze(C:|z|:1}.
For a € C and n € N*, we denote by

Hela,n] = {f(z,6) e H(U x U) :f(2,€) = a + an(§)2" + ana(§)2"" + -},
with z € U, & € U, ax(£) holomorphic functions in U, k > n. Let

Aty ={f(z,6) e H(U x U) :f(2,6) =2+ @ (E)Z™ + -+,
with z € U, & € U, ax(€) holomorphic functions in U, k > n + 1, and A& = AE,

HEL(U) = {f(z,é) € Héla,n) : f(z,&) is univalent in U for all € € ﬁ},
S& = {f(z,é) € A, :f(z,&) univalent in U for all & € E}
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denote the class of univalent functions in H (U x U),

2f}(z,€)
f(z,8)

S*S:{f(z,E)GAE:Re >0,zel, forall & GU}

denote the class of normalized starlike functions in U x U,

zf) (z,€)

K& = {f(Z,t’;:) € A& IRC(W

+1>20,zeu, forall“;‘eU}

denote the class of normalized convex functions in U x U.
Let A(p)€ denote the subclass of the functions f(z,&) € H(U x U) of the form

f@8) =2+ Y a§)s, peN,zel, forall¢ €U, and set A(1)§ = Aé.
k=p+1

To prove our main results, we need the following definitions and lemmas.

Definition 1.1 [7,18] Let F(z,£) and f(z,£) be members of H(U x U). The function f(z, £)
is said to be strongly subordinate to F(z,&), or F(z, &) is said to be strongly superordinate
to f(z,&) if there exists a function w analytic in U, with w(0) = 0 and |w(z)| < 1 such that
f(z,€) = F(w(2),£) for all £ € U. In such a case, we write f(z,&) << F(z,£),ze U, £ € U.
If F(z, &) is univalent, then f(z,&) << F(z,£) if and only if F(0,&) = £(0,£) and f(U x U) C
F(U x U).

Remark 1.1 If F(z,&) = F(z) and f(z, &) = f(z), then the strong differential subordination
or superordination becomes the usual notions of differential subordination and superor-

dination, respectively.

Definition 1.2 [7] We denote by Qg the set of functions ¢(-,§) that are analytic and in-
jective, as functions of z on U \ E(q(z, €)), where E(q(z,€)) = {¢ € 0U :lim,_,; q(z,£) = o0},
and are such that ¢/(¢,&) #0 for ¢ € U \ E(q(z,£)), &€ € U. The subclass of Qs for which
q(0,£) = a is denoted by Q¢ (a).

Let W :C? x U x U — C, and let h(z,£) be univalent in U for all £ € U. If p(z,&) is
analytic in U x U and satisfies the (second-order) strong differential subordination

V(p(z€),2p,(2,€), 2o (2,6);2,E) << h(z,§), zel,§el, (L1)

then p(z, &) is called a solution of the strong differential subordination.

The univalent function ¢(z, §) is called a dominant of the solutions of the strong differen-
tial subordination, or simply a dominant, if p(z, &) << ¢(z, &) for all p(z, &) satistying (1.1).
A dominant g(z, &) that satisfies §(z,&) << g(z, &) for all dominants g(z,£) of (1.1) is said
to be the best dominant of (1.1). Note that the best dominant is unique up to a rotation of
uxu.

Let ¢ : C> x U x U — C, and let h(z,£) be analytic in U x U. If p(z,£) and ¢(p(z,£),
zp,(z, € ),zzp/z'z (z,€);z,&) are univalent in U for all £ € U and satisfy the (second-order)

strong differential superordination,

h(z,€) << ¢(p(2,£),2p,(2,£), 2P (2,£);2,E), zeU£ el (11)
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then p(z, ) is called a solution of the strong differential superordination. An analytic func-
tion ¢g(z, &) is called a subordinant of the solutions of the strong differential superordina-
tion, or more simple a subordinant if g(z, &) << p(z, &) for all p(z, &) satisfying (1.1'). A uni-
valent subordinant g(z, £ ) that satisfies g(z, §) << ¢(z, &) for all subordinants g(z, §) of (1.1)
is said to be the best subordinant. Note that the best subordinant is unique up to a rotation
of U x U.

We rewrite the operators defined in [22] for the classes presented earlier as follows.

Definition 1.3 [22] Forf(z,&) € A§,,ne N*,me N,y € C,let L, be the integral operator
given by L, : A&, — A&,

Lgf(z’s) :f(z, g);

y+1 (7 ~
Lfee) -0 [ oriar

y+1 [ _
Lf@8§=— | Lf@&&e " d, ...,

0

L;”f(z,%‘) = )/Z_-:l/(; L;ﬂflf(t,g) L gy

By using Definition 1.3, we can prove the following properties for this integral operator:
For f(z,&) e A&, ne N*, me N, y € C, we have

oo

m _ (y + 1)
Lyf(z,€) —ug;1 YT

car&), zel,t e, (1.2)

and

2 (L) = (v + DI (e 8) - v LIS (28), zelg el (13)

Definition 1.4 [22] Forp e N,m e N, f(z,&) € A(p)§, let H be the integral operator given
by H: A(p)§ — A(p)§,
H% (2,€) =f(2,%),

HY (e - 2L / “HOf (e 8) d,
z 0

2 _p+l ‘o
Hf(z,&) = . /OHf(t,E)dt, e

p+1l [*

H"f(z,€) = i H"™'f(t,&)dt.

4

By using Definition 1.4, we can prove the following properties for this integral operator:
For f(z,£) e A(p)§, m e N, p € N, we have

(p+1)"
(p+ k)

H'f(z§) =2+ )

k=p+1

ar€)z, zel,gel, (1.4)
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and

Z[H"f(2,6)] = (p+ DVH" 'f(2,6) -H"f(2,6), zel,§ell. (1L5)

We rewrite the following lemmas for the classes presented earlier (the proofs are similar
to those found in [6]).

Lemma 1.1 [3, Th. 3.4, p.132] Let the function q(z,&) be univalent in U for all ¢ € U,
and let 6 and ¢ be analytic in a domain D containing q(U x U) with q(w,&) # 0 when
weq x U).

Set Q(z,£) = 2q,(2,€) - ¢(q(2,§)) and h(z,§) = 0(q(z,§)) + Q(z,§). Suppose that

(i) Q(z,¢) is starlike univalent in U for all & € U,

(ii) ReZh Zé >0,zeUforall& eU.
Ifp(z,§) is analytzc in U x U with p(0,&) = q(0,£), p(U x U) € D and

0(p(z,8)) +20'(2,6) - 0 (p(2,§)) << 0(q(2.8)) + 24 (2,§) - ¢(q(2, £)),
then p(z,€) << q(z,£), z€ U, & € U and q(z,&) is the best strong dominant.

Lemma 1.2 [5, Corollary 1.1] Let a, B,y € C, and let h(z,£) be convex in U for all ¢ € U,
with h(0,€) = a and q(z,&) << h(z,&), z € U, & € U. Suppose that the differential equation
q(z,&) + =) h(z, &) has a univalent solution q(z, &) that satisfies q(0,&) = a

q(z§)
Ifp(z,&) € [a,11N Q¢ and p(z,§) + ﬂjf;{ ;i)y is univalent in U for all & € U, then h(z,£) <<
p(z,€) + ﬁjﬁz(;iy implies q(z,&) << p(z,€), z € U, & € U. The function q(z,£) is the best
subordinant.

2 Main results

We first give results related to strong differential subordinations.

Theorem 2.1 Let q(z,£) be univalent in U for all & € U, with q(0,€) = 1 and q(z,&) #0,
and suppose that

0) Req(z,&) > 0,

) Re(1 + 25 “)) 5 0,

q(Zé)
LetneN*, y €C, f(z,£) eAE,, and

Lf@8) - L @E), ZLf@EO,  [L7f(zE),

z Treon Lfee
<< q(z,§)+zq;(z’$), zel,tel, (2.1)
q(z,§)

then

(L7 (2, £)), - Lf (2,€)

z

<<q(z,§), zel,tel,

and q(z, &) is the best dominant.
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Proof We let

p(z§) = =il (z’é)];'L;nf @) . usel. (2.2)

Using (1.2) in (2.2), we have

m

1 )"
2+ Y02 Ema&)2 ) [z + 1020 Ligman(§)2]

z

p(z!‘i:) =

=1+A,&)7Z"+---,

and since p(0, &) = 1, we obtain that p(z,&) € £[1, n].
Differentiating (2.2), and after a short calculus, we obtain

w58 @O L) Ao AL (&8,

: - -1 (23
PEE ) z Yo T fee) 23)
Using (2.3) in (2.1), the strong differential subordination (2.1) becomes
p(z,€) + ALY < q(z,&) + zq/z(z,é)’ zel,eel. (2.4)
pz§) q(z,§)

In order to prove the theorem, we shall use Lemma 1.1. For that, we show that the necessary
conditions are satisfied. Let the functions ® : C — C and ¢ : C — C, with

Ow) =w (2.5)
and
1
p(w) = —, p(w) #0. (2.6)
1)

We check the conditions from the hypothesis of Lemma 1.1. Using (2.6), we have

zq,(z,§)
] = . 2.7
Q(z,€) 1@ 8) (2.7)
Differentiating (2.7), and after a short calculus, we obtain
zQ,(z,£) 2q5(2,8)  zq.(z,€)
=1 - . 2.8
Qe ' geh 260 9
Using (jj) in (2.8), we have
Rew>0, zel,tel, (2.9)

Q(z,%)

hence the function Q(z, &) is starlike in U/ for all £ € U. Using (2.5) we have

h(z,€) = 0(q(z,€)) + Qz,£) = q(z,§) + Qz,§). (2.10)

Page 5 of 10
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Differentiating (2.10) and using (2.7), after a short calculus, we obtain

Re zh,(z,€) Re[ (@) + ZQ/(z,S)}

QAz8) D) 2.1)

Using (j) and (2.9) in (2.11), we have Re S 0,z€ U, £ € U. Using (2.5) and (2.6), we

get
1
0(p(z,£)) = p(z,£), <p(p(z,§))=p(z,§),
1
Q9= 8) =qz8),  ¢(qz¥)) = ey

and the strong differential subordination (2.1) becomes

Q(p(z.8)) +20'(2,6) - 0(p(2,£)) << 0(q(2.§)) + 24 (2,€) - ¢(q(2, £)).
Using Lemma 1.1, we obtain

p(z,&) <<q(z,§), ie [LYf(zyg)];Lyf(z,S) <<q(z,§), zelUtel,

and ¢g(z, &) is the best dominant. O

Theorem 2.2 Let q(z,&) be univalent in U forall ¢ € U, withq(0,€) = p—1and q(z,&) # -1,
ze U, forall & € U, and suppose that

() Req(z,§) > -1,

(Il) Re[1+ 2258 _ zutet) >0,zeU, £ €.

12(2:£) L+q(z.&)
LetpeN, f(z,§) € A(p)§ and

2H"f(z8),  (H"f(z,8)]

. zq,(z,£)
(H"f(z,& ))z 71

1) T zel,Ee€l, (212)

E_p+l1<=<q(z,8)+1+

then M 1<<¢q(z,&), and q(z,&) is the best dominant.
Proof We let
Hm g / .
1+p(z,é)=(£;—i$))z, zel,tel. (2.13)

From (1.4), we have

(@ + Y L an ()2

zpl Z (p+1) S)k

k_p+1

P(Z,§)+1=

Since p(0,&) = p— 1, we obtain that p(z, ) € H&[p —1,1]. Differentiating (2.13), and after a
short calculus, we obtain

ZH"f(Z8), (H"f(z8)],

s zp),(z,€)
(H™f(2,%)), 71

PoE)+1 (2.14)

-p+l=p(z,&)+1+
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Using (2.14) in (2.12), the strong differential subordination becomes

zp(z,§) o) +14 zq,(z,£)

p(z§)+1 dzE) 1 zel,t el (2.15)

p(z,E)+1+

In order to prove the theorem, we shall use Lemma 1.1. For that, we show that the necessary
conditions are satisfied. Let the functions ® : C — C and ¢ : C — C, with

Ow)=w+1 (2.16)
and
p(w) = ! , p(w) #0. (2.17)
w+1

We check the conditions from the hypothesis of Lemma 1.1. Using (2.17), we have

’ ) 1
Q(z,§) = 24(2,§) - ¢(q(2,§)) = 24,(2,§) - PSR (218)

Differentiating (2.18), and after a short calculus, we obtain

zQ,(z,€) 1. 2q5(z,€)  zq.(z,&)

- . 2.19
Q(z,§) 2.(2,8)  q.(z,&)+1 (2.19)
Using (11) in (2.19), we have
z2Q(z,€) 29, (2,€)  zq.(z,&) _
Q8 - Re<1 P hed) g+ 1) >0, zelsel, (2:20)
hence the function Q(z, &) is starlike in U for all £ € U. Using (2.16) we have
h(z,§) =6(q(z,§)) + Qz,§) = q(2,6) + 1+ Q(z,&). (2.21)

Differentiating (2.21) and using (2.18), (2.20) and (1), after a short calculus, we obtain

. zh(z,§)
Q(z,§)

(2.22)

= Re[q(z,é) +1+ ZQ;(Z’E)] > 0.

Q(z,¢)

Using (2.16) and (2.17), we get

1
OP@E) =pEd) +l op@s) =

1
0(a@8) = 4@+ p(aad) = -,

and the strong differential subordination (2.12) becomes

0(p(z,8)) +20.(2.€) - 0(p(2,6)) << 0(q(2.§)) + 2q,(2,€) - ¢(q(z,£)).

[H"f(z)];
w1

Using Lemma 1.1, we have p(z,§) << g(z,&), i.e., -1<=<¢(z,&) and ¢(z,€) is the

best dominant. O
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Next we give results related to strong differential superordinations.

Theorem 2.3 Let h(z,£) be convex in U for all & € U, with h(0,£) = a. Suppose that the

differential equation

2q,(z,&) _
q(z,&)

q(z,§) + h(z,€), zel,tel, (2.23)

has a univalent solution q(z, &) that satisfies q(0,&) = a and q(z,&) << h(z,&).
Ifp(z,§) € Hla,1] N Qs and p(z,§) + P8 o ynivalent in Uforall € € U, f(z,£) € AE,

p(z£)
then
LVf(z,§) z(L}f(z,6)),
h(z,€) << L + —L -1 (2.24)
: P T
implies q(z,&) << Vf ze U, & e U. The function q(z,&) is the best subordinant.
Proof We let
L”f(z, —
p(z,§) = # zel,tel. (2.25)

From (1.2), we have

1)"
Z+ Y pon ﬁk mak(é)z

z

P8 = 1Y e (226)
k=2

and since p(0,£) = 1, we obtain that p(z,£) € H[1,1] N Q.
Differentiating (2.26), and after a short calculus, we obtain

(2§  ALVf(28)), Lyf(z§)

(z,&) + = + (2.27)
PeO e T en | -
Using (2.27) in (2.24), the strong differential superordination becomes
q(z,&) + ALY << p(z,&) + zpz(z,é)’ zel,eel. (2.28)
q(z§) p(z,§)

Using Lemma 1.2, we obtain g(z,§) << p(z,§), i.e.,, q(z,§) << w, zel,eel. O

;/2 (2§)

Example 2.1 Let i(z,€) = 1+Z$, ze U, &€ € U, with Re(1 + WAeTiR ) =Re ng >0,ze U,
£ € U. From Theorem 2.3 we have thatif m =1, n =1,y = -1+, f(z,&) =z + EZ , and
Lei _
mz + 1“11.2; is univalent in U for & € U, then
+t7 3%

1-z¢ 1+i 1+§Hz

<< z+7
1+2z& 2 1+1+‘§
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implies

E1+i ,

<z+>—2%, zel,tel.
2 2

<
1+z&

Theorem 2.4 Let h(z,&) be convex in U for all & € U, with h(0,£) = p. Suppose that the
differential equation

2q,(z,§)

18 =h(z,&), zel,&el,

q(z,&) +

has a univalent solution q(z, &) that sattsﬁes q(0,8) =p and q(z,&) << h(z,§).
Ifp(z,&) € HIp, 11N Qs and p(z,£) + ZPZZZS is univalentin U for all& € U, f(z,&) € A(p)E,
then

2 m "
h(z,§)<<l+%, zel,tel, (2.29)

implies q(z,&) << % The function q(z,§) is the best subordinant.

Proof Using (1.5) in (2.29), the strong differential superordination becomes

2(H"f(2,6))
hiz,€) <<1+ ——=, (2.30)
(H™f(z,§)),
We let
z(H"f(2,§)),
€)= ——7F7-—7—. 2.31

Pad) = T 231

From (1.4), we have
o6 dp2 ™+ Y00 GOk pa Y, Gipman(€)2
p\z,5)=
2+ Y B aE)r 1+ Yy, S @)
Since p(0,&) = p, we obtain that p(z,&) € Hlp,1]1 N Q.
Differentiating (2.31), and after a short calculus, we obtain
(2, Z2(H"f(2,§))”.
p(z,6) + @) S 2 (2.32)
p(z,§) (H"f(2,§)),
Using (2.32) in (2.30), the strong differential superordination becomes
zp,(z,§) -
h(z,&) << p(z,§) + , zeltel. (2.33)
p(z§)
. . . Z(H"f(z,£)),,

Using Lemma 1.2, we obtain q(z,§) << p(z,§), i.e., q(z,§) << ™ O

H"f(z§) *

Remark 2.1 Using another integral operator, the author finds interesting results in strong
differential subordinations and superordinations in [14].
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