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Abstract

The aim of this paper is to prove multiplication formulas of the normalized
polynomials by using the umbral algebra and umbral calculus methods. Our
polynomials are related to the Hermite-type polynomials.
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1 Introduction
In this paper, we use the following notations:

N:={1,2,3,...} and Np:=NU{0},

0 ifn#k,
1 ifn=k,

Sn,k:
Mr=nn-1)---(n-k+1).

Here, we first give some remarks on the normalized polynomials.

Firstly, we introduce some notations which are related to the earlier works by (among
others) Carlitz [1, 2], Bodin [3], Roman [4, pp.1-125]. We recall from the work of Bodin
[3]: Let p be a prime number and # > 1. For g = p”, we denote by F, the finite field having
q elements. I, denotes the multiplicative group of non-zero elements of IF,.

Let f(x,y) € F;[x, y] be a polynomial of degree exactly d

F(x,9) = aox? + 012y + ax® 2y + - - - + agy” + terms of lower degree.

f is said to be normalized if the first non-zero term in the sequence (o, 1,3, ...,¢4) is

equal to 1. Any polynomial g can be written

glx,y) = cf(x,),

where f is a normalized polynomial and ¢ € F (cf. [3]).
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We recall the work of Carlitz [2, p.60]: Let k be a fixed integer > 1 and let oy,,..., o,
denote (complex) numbers such that

Olk1+~~-+0lkk=1.

Let [Ax] #1 or O and let Bx,..., By, be distinct numbers. Then consider the functional

equation
k
Dkl + Br) = A" (i), M
r=1

where f,,,(x) denotes a normalized polynomial of degree m (that is, a polynomial with the
highest coefficient 1). Here f,,(x) is completely determined by (1); moreover, f,,(x) form an
Appell set of polynomials (cf. [2]).

Theorem 1.1 Let k be a fixed integer > 1 and let oy, ..., o, be complex numbers such that
Qg

Lty =1

Let |i¢| #1 or 0 and let By, ..., Bx, be distinct numbers. Then equation (1) is satisfied by a
unique set of normalized polynomials {f,,(x)} which form an Appell set (cf. [2]).

Every Appell set satisfies an equation of the form (1) (¢f [2]).
If f,(x) is a normalized polynomial, then it satisfies the following formula:

y-1 .
i) =y Zf(x . ;) )
j=0

If y is an even positive integer, some normalized polynomials satisfy the following equa-
tion (f. [1])

n—l y-1
Gral) = === > (-V/f, (x + —) (3)

j=0

where g, ;1(x) and f,(x) denote the normalized polynomials of degree n — 1 and #, respec-
tively.

We give some Hermite base polynomials of higher order, which are defined as follows
(cf [5] and [6]):

¢ “ V2 i @ "
(et_l) e = ZBH,n(x,V); (|t| <27T),
n=0 .

where B}f’)n(x, v) denotes Hermite base Bernoulli polynomials of higher order,

2 \% .2 .,
(25) e - etomts (nen)

n=0
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where £ 1(; )n (%, v) denotes Hermite base Euler polynomials of higher order and

el +1

2t \* 2 — t"
( )extz :Zg](j;(x,v); (It < ),
n=0 :

where g,(;‘)n (¢, v) denotes Hermite base Genocchi polynomials of higher order.

The proof of polynomials which satisfied (2) was given in various ways. In this paper, we
study normalized polynomials which are defined above by using the umbral algebra and
umbral calculus methods. We also recall from the work of Roman [4] the following.

Let P be the algebra of polynomials in the single variable x over the field complex num-
bers. Let P* be the vector space of all linear functionals on P. Let

(L1p&)

be the action of a linear functional L on a polynomial p(x). Let § denote the algebra of

formal power series in the variable ¢ over C. The formal power series

o]

f(t):Z%t"

k=0

defines a linear functional on P by setting
(f(©)12") = ay

for all # > 0. In a special case,
(tk | x”) = n!d, k.

This kind of algebra is called an umbral algebra (cf. [4]). Any power series

is a linear operator on P defined by

f@)x" = Z (:) apx" k.

k=0

Here, each f(t) € § plays three roles in the umbral calculus: a formal power series, a
linear functional and a linear operator. For example, let p(x) € P and

flt)y=2e".

As alinear functional, ¢’ satisfies the following property:

(e 1 p@)) = pBy). (4)
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As alinear operator, € satisfies the following property:
¢"px) = p(x +). ©)

Let f(¢), g(¢) be in §, then

{fOg@) | p() = {f®) | gO)p(x))

for all polynomials p(x). The order o(f(£)) of a power series f(t) is the smallest integer k
for which the coefficient of t* does not vanish. If f(£) = 0, o(f(£)) = +00. A series f(t) for
which

o(f(t)) =1

is called a delta series. A series f(t) for which

o(f(t)) =0

is called an invertible series (for detalils, see [4]).

Theorem 1.2 [4, p.20, Theorem 2.3.6] Let f(t) be a delta series and let g(t) be an invertible
series. Then there exists a unique sequence s, (x) of polynomials satisfying the orthogonality
conditions

(g@f OF | 54(x)) = 1, i (6)
foralln, k> 0.

The sequence s,(x) in (6) is the Sheffer polynomials for a pair (g(¢),f(£)). The Sheffer
polynomials for a pair (g(z), t) are the Appell polynomials or Appell sequences for g(¢) (cf.

(4]).
The Appell polynomials are defined by means of the following generating function (cf.

[4]):

"= ——e". 7)

k=0
The Appell polynomials satisfy the following relations:
sn(x) = g(t) ", ®)
the derivative formula
tsy(x) = s,,(x) = 15,1 (x) )

and

1 1
ESn(x) = msnu(x), (10)
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the multiplication formula

» 8(2)
g(k)

$n(%)s (11)

sylax) =«

where a # 0.

In the next section, we need the following generalized multinomial identity.

Lemma 1.3 (Generalized multinomial identity [7, p.41, Equation (12m)]) If x1,%3,..., %
are commuting elements of a ring (& xix; = xx;, 1 < i <j < m), then we have for all real or
complex variables o:

o
(1 + %0+ -+ xp)% = E ( )xflx?---x‘,’nm,

VI, VayeeosV,
VLYV 20 N 17 V22 00 Vm
the last summation takes places over all positive or zero integers v; > 0, where
( o ) L (a)v1+v2+~~+vm
VI,V ey Vin nivgl--v,,!

are called generalized multinomial coefficients defined by [7, p.27, Equation (10c”)], where
beNand (x)o =1.

2 Some identities of normalized polynomials
In this section, we derive some identities and properties related to Hermite base normal-
ized polynomials.

If we set

a(t) = (e ;1) ot 12)

in (8), we obtain the following lemma.

Lemma 2.1 Let n € Ny. The following relationship holds true:

t\* w2
B;_‘,’?n(x,v) = (ef—1> e T A (13)
If we set
LN AN
2(t) - (e; ) T (14)

in (8), we obtain the following lemma.

Lemma 2.2 Let n € Ny. The following relationship holds true:

4 vt2
) e 2 x". (15)

dgmw=<

el +1
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If we set

e +1\% 2
g<t>=< . )e (16)

in (8), we obtain the following lemma.

Lemma 2.3 Let n € Ny. The following relationship holds true:

2t \% w2
Qﬁ?,’n(x, V)=( ) T A (17)

el +1

3 Multiplication formulas for normalized polynomials
In this section, we study the Hermite base normalized polynomials. The Hermite base
Bernoulli-type polynomials satisfy equation (2), which is given by the following theorem.

Theorem 3.1 Let m € N. The following multiplication formula of the B}f})n (x, v) polynomi-
als holds true:

~ a rov
CHCXIAND VI BRI L G|

ey Uy
Ul yelhp—1>0 » m=1
where
r=uy+ 2y + -+ (m =1y,

Proof By using (12) in (11), we get

t
n-a (€ 1" w2

_ v
B (mx,v) = m L B, (x,v).

Using (13), we have

2 a
(a) _ _ n-a (6 B 1) (a) v
BH,n(mxx V) =m (ei B l)a BH,n X, 2 .

After some calculations, we obtain

m-1 . a v
@ . i\ @
By, (mx,v) = m" “( e'") By, (x ﬁ)

k=0

By using Lemma 1.3 in the above equation, we get

where
r=uy+2Uy + -+ (m =1y,

From (5), we arrive at the desired result. O
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The Hermite base Euler-type polynomials and the Hermite base Genocchi-type polyno-
mials satisfy equation (2) for all m € N. But for m being odd, these polynomials in studies

normalize condition in (2). For even m, these polynomials satisfy (3).

Theorem 3.2 Let m € N. The following multiplication formula of the £ 1({“ )n (%, v) polynomi-
als holds true:

a a rola rov
o= 2, Jewren(xe o)

R s |
’ rm
Ul,eshm-1>0

when m is odd,

(@) _m a 3@ rov
& (max, v) = T > . (D Byfa( 2+ ——

ey U1

when m is even, where
r=uy+2uy+ -+ (m—1Du,_q.

Proof Let m be odd.
From (11), (14) and (15), we obtain

e +1\”* v
ED (mx,v) = m" ED (5, ).
H,n( ) e% +1 H,n Wl2

After some calculations, we get

Rlky

m-1 a
a n L a 4
E;L)n(mx, V) =m ( E (-Dfe ) 51(_,)” (x, e )

k=0
By using Lemma 1.3, we obtain
a rt 14
ED mx,v) = m" “1)en & (%, — ),
i ) " ;1 o Bt =1) Hn\ ™ g2

where
r=uy+2Uuy+ -+ (m—1u,_.

From (5), we arrive at the desired result.
Let m be even.
From (11), (14) and (15), we obtain

e

t a 2 a
+1\" w2 s (2 v
Eg)n(mx,v) = m”( ; ) ez e w? ( e 7"

em +1

From (13), we get

t a
(@ gan( €LY L@ (Y
Erpn(mx,v) =2%m <e$ +1) t_aBan %)
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After some calculations, we have

m-1

. a n kt ﬂl “ v
EL’L(mx,V):Z m (Z( 1kem ) B;I)n(x W)

k=0

By using Lemma 1.3, we obtain

(@) _ a n 1 @ v
Epy p(mx,v) = 2"m" Z (Ml- )(—1)’6 t_aBHJ‘(x’ﬁ)’

ity \HL e Ui
where

r=up+ 2y + -+ (m— 1)ty
From (5) and (10), we arrive at the desired result. O

Theorem 3.3 Let m € N. The following multiplication formula of the Q,(_‘;)n (%, v) polynomi-
als holds true:

a h—a a r(a r 14
G (mx,v) =m" Y (ul. )(—1) g&,L(mz,ﬁ)

yeeesUm-1

when m is odd,

(@) a (@) rv
o =mr 5 (, 0, Jews (e )

7
Uiy shm-1>0 »Hm-1
when m is even, where
r=up+2uy + -+ (m -1ty

Proof Let m be odd.
From (11), (16) and (17), we obtain

e +1\* v
G9 (mx,v) = m"“ @ (v ).
H,n( ) e% 1 H,n le

After some calculations, we get

m-1 a
G (mx,v) = m" <Z (-1)e kt) 1-?),1<x %)

k=0

By using Lemma 1.3, we obtain

a n-a a r L aa v
Q,(L,Y)n(mx,v)zm Z (Ml . )( 1) en )<x,ﬁ>,

yeer Um-1
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where
r=uy+2Uy + -+ (m =1y,

From (5), we arrive at the desired result.
Let m be even.
From (11), (16) and (17), we obtain

t a 2 a
e+1 w2 vt 2t 2
g,(_fy)n(mx,v) =m’“’( - ) eZe 2m2( e 2"

em +1

Using (13), we get

e -1\ %
G ) =2+ ( L) B, (5 1)
em +1 m

After some calculations, we have

m-1 a
ki 14
G\ (mx,v) = 29w Y (~Dken | B, (x W)
k=0

By using Lemma 1.3, we obtain

_ a rt 14
G =2 (L f L Yearers (v )

sl 150 yeees U1
where
r=up+2Uy+ -+ (m—1u,_.
From (5), we arrive at the desired result. O

Remark 3.4 By substituting a = 1 and v = 0 into Theorem 3.1, Theorem 3.2 and The-
orem 3.3, one can obtain multiplication formulas for the Bernoulli, Euler and Genocchi
polynomials (cf. [1, 2, 4-16]).

Remark 3.5 The proofs of Theorem 3.1, Theorem 3.2 and Theorem 3.3 are also given by

the generating functions method and may be other.
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