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1 Introduction
Let Z denote the set of integers, and for a,b ∈ Z with a < b, define Z[a,b] = {a,a+, . . . ,b}.
For a given positive integer N ≥ , consider the following discrete boundary value prob-
lem:

(BP)

{
–�x(k – ) = f (k,x(k)), k ∈ Z[,N],
x() = x(N + ) = ,

where � is the forward difference operator defined by�x(k) = x(k +)–x(k) and�x(k) =
�(�x(k)) for k ∈ Z. Throughout this paper, we always assume that f : Z[,N] × R → R
is C-differentiable with respect to the second variable and satisfies f (k, ) ≡  for k ∈
Z[,N], which implies that (BP) has a trivial solution x(k) = , k = , , . . . ,N + .We inves-
tigate the existence of nontrivial solutions of (BP).
In different fields of research, such as computer science, mechanical engineering, con-

trol systems, population biology, economics andmany others, themathematical modeling
of important questions leads naturally to the consideration of nonlinear difference equa-
tions. The dynamic behaviors of nonlinear difference equations have been studied exten-
sively in [, ]. Recently, many authors considered the solvability of nonlinear difference
equations via variationalmethods. For example, on the second-order difference equations,
the boundary value problems are studied in [–] and the existence of periodic solutions
is investigated in [–].
As a natural phenomenon, resonance exists in the real world from macrocosm to mi-

crocosm. In a system described by a mathematical model, the feature of resonance lies in
the interaction between the linear spectrum and the nonlinearity. It is known from [] that
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the eigenvalue problem

{
–�x(k – ) = λx(k), k ∈ Z[,N],
x() = x(N + ) = ,

possessesN distinct eigenvalues λl =  sin(lπ/(N +)), l = , , . . . ,N . Many authors con-
sidered the complete resonance situation in the sense that for some h ∈ Z[,N],

lim|t|→∞
f (k, t)
t

= λh, k ∈ Z[,N]

via different methods in critical point theory such as Morse theory [], index theory []
and minimax methods []. The assumption that

(f∗∞) there exists some h ∈ Z[,N – ] such that

λh ≤ lim inf|t|→∞
f (k, t)
t

≤ lim sup
|t|→∞

f (k, t)
t

≤ λh+ for k ∈ Z[,N]

characterizes problem (BP) as double resonance between two consecutive eigenvalues at
infinity. In the case of resonance, one needs to impose various conditions on the nonlinear-
ity of f near infinity to ensure the global compactness. In fact, many results on differential
equations with double resonance have been obtained (see [–]). As to discrete bound-
ary value problems with double resonance, however, there are few results published. In
[], the existence of periodic solutions to a second-order difference equation with double
resonance, as is described in (f∗∞), is investigated.
Motivated by the study in [], we consider problem (BP) with double resonance indi-

cated in (f∗∞). To control the double resonance, a selectable restriction on the nonlinearity
of f is that

(f†∞) there exists some h ∈ Z[,N – ] such that

(i) rh(f ) := lim inf|t|→∞ |t|
(
f (k, t)
t

– λh

)
> 

(ii) rh(f ) := lim sup
|t|→∞

|t|
(
f (k, t)
t

– λh+

)
< 

for k ∈ Z[,N],

which has completely the same form as its counterpart in []. However, instead of (f†∞),
in this paper we assume that

(f∞) there exists some h ∈ Z[,N – ] such that

(i) Rh(f ) := lim inf|t|→∞ t
(
f (k, t)
t

– λh

)
> 

(ii) Rh(f ) := lim sup
|t|→∞

t
(
f (k, t)
t

– λh+

)
< 

for k ∈ Z[,N].

Remark . It is easy to see that, as a restriction on the nonlinearity of f , (f∞) is more
relaxed than (f†∞) (see Examples .-. and Remark .). In addition, (f∞), as well as (f†∞),
implies (f∗∞).
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A sequence {x(),x(), . . . ,x(N + )} is said to be a positive (negative) solution of (BP) if
it satisfies (BP) and x(k) >  (< ) for k ∈ Z[,N].

Theorem . Assume that (f∞) holds. Then (BP) has at least four nontrivial solutions in
which one is positive and one is negative in each of the following two cases:

(i) h ∈ Z[,N – ] and f ′(k, ) < λ for k ∈ Z[,N];
(ii) h ∈ Z[,N – ] and f ′(k, ) > λN for k ∈ Z[,N].

To state the following theorems, we further assume that

(f) there exists t 
=  such that f (k, t) =  for k ∈ Z[,N].

Theorem . Assume that (f) and (f∞) hold with h ∈ Z[,N – ]. If there exists m ∈
Z[,N – ] with m 
= h such that λm < f ′(k, ) < λm+ for k ∈ Z[,N], then (BP) has at least
four nontrivial solutions.

Let f ′(k, t) denote the derivative of f (k, t) with respect to the second variable. In the
case where (BP) is also resonant at the origin, that is, there exists m ∈ Z[,N] such that
f ′(k, )≡ λm for k ∈ Z[,N], we assume that

(F±
 ) ±

∫ t



(
f (k, s) – λms

)
ds≥  for |t| >  small and k ∈ Z[,N].

Theorem . Assume that (f) and (f∞) hold with h ∈ Z[,N – ]. If there exists m ∈
Z[,N] such that f ′(k, ) ≡ λm for k ∈ Z[,N], then (BP) has at least four nontrivial so-
lutions in each of the following two cases:

(i) (F+) with m ≥  andm 
= h;
(ii) (F– ) with m ≥  andm 
= h + .

Remark . In view of the proofs in Section , we see that if t >  (< ) in (f), two of the
solutions derived in Theorems ., . are positive (negative).

Set h ∈ Z[,N – ] and define g : R �→ R by

g(t) = λht + (λh+ – λh)t
(
 + t

)–(
sin t + t cos t

)
.

By calculation, we get Rh(g) = –Rh(g) = λh+ – λh >  and g ′() = λh. Define g(t) = g(t) +
αt(+t)–, g(t) = g(t)+(αt+βt)(+t)– and g(t) = g(t)+(αt+βt)(+t)–, t ∈ R, where
α and β are constants. Obviously, Rh(gi) = Rh(g) > , Rh(gi) = Rh(g) <  and g ′

i() = λh + α,
i = , , . The following examples are presented to illustrate the applications of the above
results.

Example . Consider (BP) with f (k, t) ≡ g(t), (k, t) ∈ Z[,N] × R. We have f ′(k, ) =
λh + α for k ∈ Z[,N]. If h ∈ Z[,N – ] and α < λ – λh or h ∈ Z[,N – ] and α > λN – λh,
then by Theorem ., (BP) has at least four nontrivial solutions in which one is positive
and one is negative.

Example . Set h,m ∈ Z[,N –] withm 
= h. Let α ∈ (λm –λh,λm+ –λh) and β < –(λh +
λh+ +α). Consider (BP) with f (k, t)≡ g(t), (k, t) ∈ Z[,N]×R. We have f ′(k, ) = λh +α >

http://www.advancesindifferenceequations.com/content/2013/1/309
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λm >  and f (k, ) = (λh +λh+ +α +β)/ <  for k ∈ Z[,N], which implies that there exists
t ∈ (, ) such that f (k, t) =  for k ∈ Z[,N]. By Theorem . and Remark ., (BP) has
at least four nontrivial solutions in which two are positive.

Example . Set h ∈ Z[,N – ], α = λm – λh and β < –max{(λm + λh+), (λh+ – λh)} for
somem ∈ Z[,N] \ {h+ }. Consider (BP) with f (k, t)≡ g(t), (k, t) ∈ Z[,N]×R. We have
f ′(k, ) = λh + α = λm >  and f (k, ) = (λm + λh+ + β)/ <  for k ∈ Z[,N], which implies
that there exists t ∈ (, ) such that f (k, t) =  for k ∈ Z[,N]. Moreover,

∫ t



(
f (k, s) – λms

)
ds =

(
β


+

λh+


–

λh



)
t + o

(
t
)

(t → ).

By Theorem .(ii) and Remark ., (BP) has at least four nontrivial solutions in which two
are positive.

Remark . It is easy to see that rh(gi) = rh(gi) = , i = , , , that is, the restriction im-
posed here is more relaxed than that in [].

The paper is organized as follows. In Section  we give a simple revisit to Morse theory,
and in Section  we give some lemmas. The main results will be proved in Section .

2 Preliminary results on critical groups
Let H be a Hilbert space and � ∈ C(H ,R) be a functional satisfying the Palais-Smale
condition ((PS) in short), that is, every sequence {xn} ⊂ H such that {�(xn)} is bounded
and �′(xn) →  as n → ∞ has a convergent subsequence. Denote by Hq(X,Y ) the qth
singular relative homology group of the topological pair (X,Y ) with integer coefficients.
Let u be an isolated critical point of � with �(u) = c, c ∈ R, and U be a neighborhood
of u. For q ∈N∪ {}, the group

Cq(�,u) :=Hq
(
�c ∩U ,�c ∩U \ {u}

)

is called the qth critical group of � at u, where �c = {u ∈H :�(u)≤ c}.
If the set of the critical points of �, denoted by K := {u ∈ H : �′(u) = }, is finite and

a < inf�(K), the critical groups of � at infinity are defined by (see [])

Cq(�,∞) :=Hq
(
H ,�a), q ∈N∪ {}.

For q ∈N∪ {}, we call βq := dimCq(�,∞) the Betti numbers of � and define the Morse-
type numbers of the pair (H ,�a) by

Mq :=Mq
(
H ,�a) =∑

u∈K
dimCq(�,u).

With the above notations, we have the following facts (.a)-(.f ) [, Chapter ].
(.a) If Cμ(�,∞)�  for some μ ∈N∪ {}, then there exists x ∈K such that

Cμ(�,x)� ;

http://www.advancesindifferenceequations.com/content/2013/1/309
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(.b) If K = {x}, then Cq(�,∞)∼= Cq(�,x);
(.c)

∑∞
j=(–)jMj =

∑∞
j=(–)jβj.

If x ∈ K and �′′(x) is a Fredholm operator and the Morse index μ and nullity v of x
are finite, then we have
(.d) Cq(�,x) ∼=  for q /∈ Z[μ,μ + ν];
(.e) If Cμ (�,x)� , then Cq(�,x)∼= δq,μZ, and if Cμ+ν (�,x)� , then

Cq(�,x) ∼= δq,μ+νZ;
(.f ) If m := dimH < +∞, then Cq(�,x) ∼= δq,Z when x is local minimizer of �, while

Cq(�,x) ∼= δq,mZ when x is the local maximizer of �.
We say that � has a local linking at x ∈ K if there exists the direct sum decomposition:
H =H+ ⊕H– and ε >  such that

�(x) > �(x) if x – x ∈H+,  < ‖x – x‖ ≤ ε,

�(x)≤ �(x) if x – x ∈H–,‖x – x‖ ≤ ε.

The following results are due to Su [].
(.g) Assume that � has a local linking at x ∈K with respect to H =H+ ⊕H– and

k = dimH– < +∞. Then

Cq(�,x) ∼= δq,μZ if k = μ,

Cq(�,x) ∼= δq,μ+vZ if k = μ + v.

We say that � satisfies the Cerami condition ((C) in short) if every sequence {xn} ⊂
H such that {�(xn)} is bounded and ( + ‖xn‖)�′(xn) →  as n → ∞ has a convergent
subsequence. The following lemma derives from [, Proposition .].

Lemma . [] Let H be a Hilbert space, and {�s ∈ C(H ,R)|s ∈ [, ]} are a family of
functionals such that �′

s and ∂s�s are locally Lipschitz continuous. Assume that � and
� satisfy (C). If there exists M >  such that

inf
s∈[,],‖x‖>M

(
 + ‖x‖)∥∥�′

s(x)
∥∥ >  and inf

s∈[,],‖x‖≤M
�s(x) > –∞,

then

Cq(�,∞) = Cq(�,∞).

Remark . The deformation lemma can be proved with the weaker condition (C) re-
placing the usual (PS) condition []. Therefore, if the (PS) condition is replaced by the
(C) condition, (.a)-(.g) stated above still hold.

3 Compactness and critical group at infinity
In this section, we are going to prove the compactness of the associated energy functionals
and to calculate the critical groups at infinity. First of all, let us introduce the variational
structure for problem (BP).

http://www.advancesindifferenceequations.com/content/2013/1/309
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3.1 Variational structure
The class E of functions x : Z[,N + ] �→ R such that x() = x(N + ) = , equipped with
the inner product 〈·, ·〉 and norm ‖ · ‖ as follows:

〈x, y〉 =
N∑
k=

x(k)y(k), ‖x‖ =
( N∑

k=

∣∣x(k)∣∣
)/

for x, y ∈ E,

is linearly homeomorphic to RN . Denote θ = (, , . . . , )T ∈ RN . Throughout this paper,
we always identify x ∈ E with x = (x(),x(), . . . ,x(N))T ∈ RN .
Set f(x) = (f (,x()), . . . , f (N ,x(N)))T , x ∈ E and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

 –  · · ·   
–  – · · ·   

· · · · · · · · · · · ·
   · · · –  –
   · · ·  – 

⎞
⎟⎟⎟⎟⎟⎟⎠

N×N

.

Then we can equivalently rewrite (BP) as a nonlinear algebraic system

Ax = f(x), x ∈ E. (.)

Denote El = ker(A – λlI), l = , . . . ,N , where I is the identity operator. Thus dimEl = ,
l = , , . . . ,N . Set

E– =
h–⊕
l=

El, E+ =

( h+⊕
l=

El

)⊥
, Ev = E– ⊕ E+,

then E has the decomposition E = Eh ⊕ Eh+ ⊕ Ev. In the rest of this paper, the expression
x = xh + xh+ + xv for x ∈ E always means x† ∈ E†, † = h,h + , v.
Define a functional J : E → R by

J(x) =


〈Ax,x〉 –

N∑
k=

F
(
k,x(k)

)
for x ∈ E,

where F(k, t) =
∫ t
 f (k, s)ds, (k, t) ∈ Z[,N] × R. Then the Fréchet derivative of J at x ∈ E,

denoted by J ′(x), can be described by (see [])

〈
J ′(x), y

〉
= 〈Ax, y〉 –

N∑
k=

f
(
k,x(k)

)
y(k) for y ∈ E. (.)

Remark . From (.) we see that x ∈ E is a critical point of J if and only if x is a solution
of (.) (or equivalently (BP)). In addition, J is C-differentiable with

〈
J ′′(x)y, z

〉
= 〈Ay, z〉 –

N∑
k=

f ′(k,x(k))y(k)z(k) for y, z ∈ E. (.)

http://www.advancesindifferenceequations.com/content/2013/1/309
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3.2 Compactness of related functionals
Define a family of functionals Js : E → R, s ∈ [, ] by

Js(x) =


〈Ax,x〉 –  – s


(λh + λh+)‖x‖ – s

N∑
k=

F
(
k,x(k)

)
for x ∈ E,

then the Fréchet derivative of Js at x ∈ E, denoted by J ′s(x), can be described by (see [])

〈
J ′s(x), y

〉
= 〈Ax, y〉 –

N∑
k=

fs
(
k,x(k)

)
y(k) for y ∈ E, (.)

where s ∈ [, ] and

fs(k, t) = sf (k, t) +
 – s


(λh + λh+)t for (k, t) ∈ Z[,N]×R.

Lemma . Assume that (f∞) holds. For any sequences {xn} ⊂ E and {sn} ⊂ [, ], {xn} is
bounded provided that

(
 + ‖xn‖

)
J ′sn (xn) →  as n→ ∞. (.)

Moreover, for every ŝ ∈ [, ], Jŝ satisfies (C).

Proof Assume, for a contradiction, that {xn} is unbounded. Then there exists a subse-
quence, which we still call {xn}, with K ⊂ Z[,N] being nonempty such that

lim
n→∞xn(k) =∞ for k ∈ K

and eitherK = Z[,N] or, for any fixed k ∈ Kc ≡ Z[,N]\K , {xn(k)} is a bounded sequence.
Noticing that [, Lemma .], with its proof being modified slightly, is applicable here,

we know that

either
‖xhn‖
‖xn‖ →  or

‖xh+n ‖
‖xn‖ →  as n→ ∞.

Set

 := lim sup
n→∞

N∑
k=

{
fsn
(
k,xn(k)

)
– λhxn(k)

}
xhn(k),

 := lim inf
n→∞

N∑
k=

{
fsn
(
k,xn(k)

)
– λh+xn(k)

}
xh+n (k).

Thus we have two cases to be considered.
Case . ‖xhn‖/‖xn‖ →  as n→ ∞. We have ‖xhn‖ → ∞ as n→ ∞ and

lim
n→∞

‖xh+n ‖
‖xn‖ = , lim

n→∞
‖xvn‖
‖xn‖ = . (.)

http://www.advancesindifferenceequations.com/content/2013/1/309
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By (f∞)(i), there existM >  and ξ >  such that t(f (k, t)/t –λh) > ξ and t(λh+ –λh) > ξ

for |t| >M and k ∈ Z[,N]. Then, for |t| >M, k ∈ Z[,N] and s ∈ [, ],
(
fs(k, t)

t
– λh

)
t = s

(
f (k, t)
t

– λh

)
t +

 – s


(λh+ – λh)t

≥ sξ +
 – s


ξ ≥ ξ


.

Choose N >  such that |xn(k)| >M for k ∈ K and n >N. It follows that

{
fsn
(
k,xn(k)

)
– λhxn(k)

}
xhn(k)

=
{
fsn (k,xn(k))

xn(k)
– λh

}(
xn(k)

)( (xn(k) – zn(k))
xn(k)

)

≥
{
fsn (k,xn(k))

xn(k)
– λh

}(
xn(k)

)( (|xn(k)| – |zn(k)|)
‖xn‖

)

≥ ξ (|xn(k)| – |zn(k)|)
‖xn‖ for k ∈ K and n >N, (.)

where zn = xh+n + xvn. Since E possesses an equivalent norm defined by ‖x‖ ≡∑N
k= |x(k)|

for x ∈ E, there exists a positive constant C >  such that ‖x‖ ≥ C‖x‖, x ∈ E. Thus, by
(.) and (.),

 ≥ lim sup
n→∞

ξ

‖xn‖
{∑
k∈K

∣∣xn(k)∣∣ –∑
k∈K

∣∣zn(k)∣∣
}

= lim sup
n→∞

ξ

‖xn‖

{ N∑
k=

∣∣xn(k)∣∣ – N∑
k=

∣∣zn(k)∣∣
}

≥ lim sup
n→∞

ξ

‖xn‖
(
C‖xn‖ –√

p‖zn‖
)
=
Cξ


,

where the equality holds because |xn(k)|/‖xn‖ →  as n → ∞ for k ∈ Kc in case Kc 
=∅.
Case . ‖xh+n ‖/‖xn‖ →  as n → ∞. In this case, by using (f∞)(ii), we can show that

 <  in the same way.
On the other hand, it follows from (.) that

〈
‖xn‖ · J ′sn (xn),

x†n
‖x†n‖

〉
→  as n→ ∞,† = h,h + ,

which implies that

〈
J ′sn (xn),x

†
n
〉→  as n → ∞,† = h,h + ,

that is,

〈
Axn,x†n

〉
–

N∑
k=

fsn
(
k,xn(k)

)
x†n(k)→  as n→ ∞,† = h,h + .

Note that 〈Axn,x†n〉 = 〈λ†xn,x†n〉, † = h,h + , it follows that  =  = . This contradiction
proves the first conclusion.

http://www.advancesindifferenceequations.com/content/2013/1/309
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By setting sn ≡ ŝ ∈ [, ] in the proven conclusion, we see that Jŝ satisfies (C). The proof
is complete. �

For x ∈ E, set x+(k) =max{,x(k)}, k ∈ Z[,N] and x+ = (x+(), . . . ,x+(N))T . The following
lemma is derived from [, Lemma .].

Lemma . [] If x is a solution of

Ax = f
(
x+
)
, x ∈ E,

then x ≥ θ and hence it is also a solution of (.).Moreover, either x > θ or x = θ .

For x, y ∈ E, we say that x ≥ y (x > y) if x(k)≥ y(k) (x(k) > y(k)) for k ∈ Z[,N].

Lemma . Let ςj be the eigenvector corresponding to λj, j ∈ Z[,N], then ς can be chosen
to satisfy ς > .Moreover, for j ≥ , neither ςj ≥ θ nor ςj ≤ θ .

Proof First we claim that ς ≥ θ or ς ≤ θ . Otherwise, by setting ς̄ = (|ς()|, . . . , |ς(N)|)T ,
we have

N∑
k=

∣∣�ς̄(k)
∣∣ < N∑

k=

∣∣�ς(k)
∣∣. (.)

Since λ = inf‖x‖=〈Ax,x〉 = 〈Aς,ς〉/‖ς‖, it follows from (.) that

λ ≤ 〈Aς̄, ς̄〉
‖ς̄‖ =

∑N
k= |�ς̄(k)|

‖ς‖

<
∑N

k= |�ς(k)|
‖ς‖ = λ.

This contradiction proves the above claim. Thus ς can be assumed to satisfy ς ≥ θ and
thenAς = λς

+
 . It follows by Lemma. that ς > θ and the first conclusion holds. Further,

for k ≥ , ςk and ς are orthogonal to each other, which implies that neither ςj ≥ θ nor
ςj ≤ θ . The proof is complete. �

Lemma . Let the function g ∈ C(Z[,N]×R,R) be such that g(k, t) =  for t < .Assume
that there exists h ∈ Z[,N] such that

λh ≤ lim inf
t→+∞

g(k, t)
t

≤ lim sup
t→+∞

g(k, t)
t

≤ λh+. (.)

Then the functional

I(x) =


〈Ax,x〉 –

N∑
k=

G
(
k,x(k)

)

satisfies the (PS) condition, where G(k, t) =
∫ t
 g(k, s)ds.

http://www.advancesindifferenceequations.com/content/2013/1/309
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Proof Let {xn} ⊂ E be such that

I ′(xn) →  as n→ ∞. (.)

We only need to prove that {xn} is bounded. In fact, if {xn} is unbounded, there exists a
subsequence, still called {xn}, such that ‖xn‖ → ∞ as n→ ∞.
Let wn = xn/‖xn‖, then ‖wn‖ = . There is a convergent subsequence of {wn}, call it {wn}

again, such that wn → w ∈ E as n → ∞. For every y ∈ E, we have 〈I ′(xn), y〉/‖xn‖ →  as
n→ ∞, that is,

〈Awn, y〉 –
N∑
k=

g(k,xn(k))
‖xn‖ y(k) →  as n → ∞. (.)

Set

K+ =
{
k ∈ Z[,N]|xn(k)→ +∞ as n→ ∞}.

We claim that K+ 
= ∅, since otherwise (.) leads to 〈Awn, y〉 →  (n → ∞) for y ∈ E,
which leads to w = , a contradiction. Thus we have by (.) that

λh ≤ lim inf
n→∞

g(k,xn(k))
xn(k)

≤ lim sup
n→∞

g(k,xn(k))
xn(k)

≤ λh+ for k ∈ K+,

which implies that there exists a subsequence of {xn}, still called {xn}, and αk ∈ [λh,λh+],
k ∈ K+, such that

lim
n→∞

g(k,xn(k))
xn(k)

= αk for k ∈ K+. (.)

If k ∈ Z[,N] \K+, then g(k,xn(k))/‖xn‖ →  as n→ ∞. Thus we can rewrite (.) as

〈Awn, y〉 –
∑
k∈K+

g(k,xn(k))
xn(k)

xn(k)
‖xn‖ y(k) →  as n→ ∞. (.)

Letting n → ∞ in (.) and using (.), we get

〈Aw, y〉 =
∑
k∈K+

αkw(k)y(k) for y ∈ E. (.)

Since w(k) ≥  for k ∈ K+, it follows from (.) that

Aw =
∑
k∈k+

αkw+(k), (.)

which, by Lemma ., implies that w >  and hence K+ = Z[,N]. Thus, (.) can be
rewritten as

〈Aw, y〉 =
N∑
k=

αkw(k)y(k) for y ∈ E.
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Noticing that [, Lemma .], with its proof being modified slightly, is applicable here,
we know that w is an eigenvector corresponding to λh or λh+. Since h≥ , it follows from
Lemma . that w≯ θ . This contradiction completes the proof. �

3.3 Critical group at infinity
Lemma . Let f satisfy (f∞). Then

Cq(J ,∞)∼= δq,hZ, Cq(–J ,∞) ∼= δq,N–hZ. (.)

Proof We claim that there existsM >  such that

inf
{(
 + ‖x‖)∥∥J ′s(x)∥∥ : ‖x‖ >M, s ∈ [, ]

}
> , (.)

otherwise there exist {xn} ⊂ E and {sn} ⊂ [, ] such that ‖xn‖ → ∞ and ( + ‖xn‖)J(xn) →
 as n → ∞, which contradict Lemma .. Moreover, it is easy to see that inf{Js(x) : s ∈
[, ],‖x‖ ≤ M} > –∞. Thus, by Lemma ., we have

Cq(J ,∞)∼= Cq(J,∞).

On the other hand,

J(x) =


〈Ax,x〉 – 


(λh + λh+)‖x‖.

Note that x = θ is the unique critical point of J with theMorse indexμ := dim(E–⊕Eh) = h
and nullity ν = . Then, by (.b) and (.e),

Cq(J,∞) ∼= Cq(J, )∼= δq,hZ.

Similarly, we have Cq(–J ,∞) ∼= Cq(–J, ) ∼= δq,N–hZ. The proof is complete. �

4 Proofs of main results
Now we prove the main results of this paper. First, by applying (.) and (.a), we know
that J has a critical point x∗ satisfying

Ch
(
J ,x∗) 
= .

Define αk = f ′(k,x∗(k)), k ∈ Z[,N]. Then from (.) we know by calculation that
ker J ′′ (x∗) is the solution space of the system Bx = , x ∈ E, where

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

 – α –  · · ·   
–  – α – · · ·   

· · · · · · · · · · · ·
   · · · –  – αN– –
   · · ·  –  – αN

⎞
⎟⎟⎟⎟⎟⎟⎠

N×N

.

http://www.advancesindifferenceequations.com/content/2013/1/309
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Thus ν = dimker J ′′ (x∗) ≤  since B possesses non-degenerate (N – ) order submatrixes.
By (.d)-(.e), we further have

Cq
(
J ,x∗)∼= δq,hZ. (.)

Proof of Theorem . First we give the proof for the case (i). By f ′(k, ) < λ for k ∈ Z[,N],
we know that x = θ is a strict local minimizer of J . Thus, by (.f ), we have correspondingly

Cq(J , θ )∼= δq,Z. (.)

Noticing that h≥ , by comparing (.) with (.), we have x∗ 
= θ .
For k ∈ Z[,N], set f +(k, t) = f (k, t) for t ≥ , f +(k, t) =  for t < . Let F+(k, t) =∫ t

 f
+(k, s)ds. Then the critical points of

J+(x) =


〈Ax,x〉 –

N∑
k=

F+(k,x(k))

are exactly solutions of the problem

Ax = f+
(
x+
)
, (.)

where f+(x) = (f +(,x()), . . . , f +(N ,x(N)))T , x ∈ E. By Lemma ., we see that J+ ∈
C–(E,R) satisfies the (PS) condition. From the definition of f +(k, ·) and the assump-
tion f ′(k, ) < λ, k ∈ Z[,N], we know that there exists η >  such that (λt – f +(k, t))t > 
for t ∈ (–η,η) \ {}. For any fixed x ∈ E with  < ‖x‖ < η, define a function φ(s) = J+(sx),
s ∈ [, ]. By the Lagrange mean value theorem, there exists ξ ∈ (, ) such that

J+(x) = φ() – φ() = φ′(ξ )

=
〈
A(ξx),x

〉
–

N∑
k=

f +
(
k, ξx(k)

)
x(k)

≥
N∑
k=

{
λξx(k) – f +

(
k, ξx(k)

)}
x(k) > ,

which implies that there exist ρ >  and τ >  such that

J+(x)≥ τ , x ∈ E with ‖x‖ = ρ.

In addition, let ς be the eigenvector of A corresponding to λ with ς > , then (f∞), with
h ∈ Z[,N – ], implies that

J+(tς) → –∞ as t → +∞.

By Mountain Pass Theorem [, ], J+ has a critical point x 
= θ with the critical group
property for a mountain pass point [], that is, C(J+,x) � . Noticing that x satisfies
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(.), we get by Lemma . that x > θ and hence x is also a mountain pass point of J , that
is, C(J ,x)� .
The same argument shows that J has a nontrivial critical point x < θ with C(J ,x)� .

Noticing that h ≥ , by comparing the critical groups, we see that x, x and x∗ are three
nontrivial critical points of J .
By the same argument as that for (.), we get Cq(J ,xi) ∼= δq,Z, i = , . If x, x and x∗

are all the nontrivial critical points of J , then K = {θ ,x,x,x∗} and then (.c) reads

(–) ×  + (–) ×  + (–)h ×  = (–)h × ,

a contradiction. Thus we claim that there exist at least four nontrivial critical points of J .
In the case (ii), we consider the functional –J . By applying (.) and (.a), we know that

–J possesses a critical point x∗
 satisfying

CN–h
(
–J ,x∗


) 
= . (.)

Since f ′(k, ) > λN for k ∈ Z[,N], x = θ is a strict local minimizer of –J and

Cq(–J , θ )∼= δq,Z. (.)

Noticing that h ≤ N – , we know by comparing (.) with (.) that x∗
 
= θ . The rest of

the arguments are similar to that in case (i) and will be omitted. The proof is complete.
�

Proof of Theorem . In view of (.) and the assumption λm < f ′(k, ) < λm+, k ∈ Z[,N],
we see that x = θ is a non-degenerate critical point of J with theMorse index μ =m. Thus

Cq(J , )∼= δq,mZ. (.)

Noticing that h 
=m, we know by comparing (.) with (.) that x∗ 
= θ .
We may assume that t >  in (f). For k ∈ Z[,N], set

f̃ (k, t) =

⎧⎪⎨
⎪⎩
, t < ,
f (k, t), t ∈ [, t],
, t > t.

Define

J̃(x) =


〈Ax,x〉 –

N∑
k=

F̃
(
k,x(k)

)
, x ∈ E,

where F̃(k, t) =
∫ t
 f̃ (k, s)ds. Since J̃(x) → +∞ as ‖x‖ → ∞, there is a minimizer x of J̃ .

Thus

Ax = f̃(x),

http://www.advancesindifferenceequations.com/content/2013/1/309
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where f̃(x) = (f̃ (,x()), f̃ (,x()), . . . , f̃ (N ,x(N)))T for x ∈ E. By the definition of f̃ , the above
equality can be rewritten as

Ax = f̃
(
x+
)
.

From Lemma ., we know that x = θ or x > θ . By assumption f ′(k, ) ∈ (λm,λm+) and
m ≥ , we know that θ is not aminimizer. Thuswe have x > θ . In the sameway as the proof
of Lemma ., we can prove that x(k) < t for k ∈ Z[,N]. Thus x is a local minimizer
of J , therefore

Cq(J ,x) ∼= δq,Z. (.)

Define f̂ (k, t) = f (k, t+x(k))– f (k,x(k)), (k, t) ∈ Z[,N]×R and consider the functional

Ĵ(z) =


〈Az, z〉 –

N∑
k=

F̂
(
k, z(k)

)
, z ∈ E,

where F̂(k, t) =
∫ t
 f̂ (k, s)ds. A simple calculation shows that if z is a positive critical point

of Ĵ , then x + z is a critical point of J , and, moreover, Cq(Ĵ , z) = Cq(J ,x + z).
Furthermore, define

f̂ +(k, t) =

{
f̂ (k, t), t ≥ ,
, t < ,

k ∈ Z[,N]

and its energy functional

Ĵ+(z) =


〈Az, z〉 –

N∑
k=

F̂+(k, z(k)), z ∈ E,

where F̂+(k, t) =
∫ t
 f̂

+(k, s)ds. By (f∞), we see that f̂ + satisfies

λh ≤ lim inf
t→+∞

f̂ +(k, t)
t

≤ lim inf
t→+∞

f̂ +(k, t)
t

≤ λh+, k ∈ Z[,N].

It follows from Lemma . that Ĵ+ satisfies the (PS) condition. If x is not a strict local
minimizer of J , then there exists infinitely many critical points near x and the conclusion
holds. Now we assume that x is a strict local minimizer of J , then z = θ is a strict local
minimizer of Ĵ+. In the same way as the proof of Theorem ., we know that Ĵ+ has a
critical point z, which is a mountain pass point of Ĵ+ with C(Ĵ+, z)�  and z > θ . Thus
z is also a critical point of Ĵ with C(Ĵ , z) � . Hence x = x + z is a critical point of J
with C(J ,x)� .
In a similar way, we know that J has a critical point x < x with C(J ,x)� . Finally, by

comparing the critical groups and by using the conditionm,h≥  withm 
= k, we see that
x∗, x, x and x are four nontrivial critical points of J in which x and x are positive. The
proof is complete. �

The proof of the following lemma is similar to that of [, Theorem .] and is omitted.
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Lemma . [] Let f satisfy (F+) (or (F–)). Then J has a local linking at x = θ with respect
to the decomposition E =H– ⊕ E+, where E– :=

⊕
l≤m El (or E– :=

⊕
l<m El respectively).

Proof of Theorem . In view of (.) and the assumption f ′(k, ) = λm, k ∈ Z[,N], we see
that x = θ is a degenerate critical point of J with the Morse index μ =m –  and nullity
ν = . By Lemma . and (.g), we have, corresponding to (F–) or (F+) respectively,

Cq(J , )∼= δq,m–Z or Cq(J , ) ∼= δq,mZ. (.)

which, compared with (.), implies that x∗ 
=  in both of cases (i) and (ii). The rest of the
proof is similar to that of Theorem . and will be omitted. The proof is complete. �
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