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Abstract

In this paper, we study the existence of nontrivial solutions for discrete Kirchhoff-type
problems with resonance at both zero and infinity by using variational methods and
the computations of critical groups.
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1 Introduction and main results
Let R, Z, N be the sets of all real numbers, integers and natural numbers, respectively.
In this paper, we consider the existence of nontrivial solutions for the following discrete

Kirchhoff-type nonlocal problem with Dirichlet boundary condition:

—~(a+bY 2 Aultk—=1)?)Aulk -1) = f(k,u(k)), ke Z[1,N], L)
u(0)=u(N +1) =0,
where N > 3 is a fixed positive integer, 4, b > 0 are real constants, Z[1, N] denotes the dis-
crete interval {1,2,...,N}. As usual, A denotes the forward difference operator defined
by Au(k) = u(k + 1) — u(k), A?u(k) = A(Au(k)), and for all k € Z[1,N], f(k,-) € C'(R,R)
satisfies f(k,0) = 0. Obviously, problem (1.1) has the trivial solution u = 0. Hence, we are
interested in finding nontrivial solutions of problem (1.1). The existence of nontrivial so-
lutions for problem (1.1) depends on the local properties of f near zero and near infinity.

In this work, we consider the cases where f satisfies the asymptotic conditions

. flk1)

1 = 1.2

It\ano at fo 1.2)
and

. [k 1)

1 =fv 1.3

|twl—r>noo b3 f (13)
for all k € Z[1,N].
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Let %, i € Z[1,N] be the eigenvalues of the linear eigenvalue problem

—A%u(k—=1) = au(k), keZ[1,N],
u(0) = u(N +1) =0,

and let & = (&(1),&(2),...,&(N))T be an eigenvector corresponding to the eigenvalue A;,
then {&,&,...,&x} is an orthogonal basis of RN, where A; = 4 sin? ﬁ, &(j) = sin %,
i,j € Z[1,N].

Denote by pi1, po the minimum eigenvalue and the maximum eigenvalue of the nonlin-

ear eigenvalue problem, respectively,

(X  Aulk - 1)) A%ulk 1) = pd(k), k€ Z[1,N],

(1.4)
u(0)=u(N+1)=0

(see Theorem 2.1).

Remark 1.1 By referring to the notion of resonance of elliptic equations of Kirchhoff-
type [1, 2], we call problem (1.1) resonant at zero if there exists some m € Z[1, N] such that
fo = Am and resonant at infinity if there exists some eigenvalue u of problem (1.4) such that

foo::Uw

To state our main results, we define

F(k,t)z/.tf(k,s)ds, keZ[1,N],t eR,
0

1o = 8{AilA; < fo,i € Z[1, N1}

and make the following assumptions:

(Fo) There exists 8; > 0 such that F(k,£) > §4,,¢* + gmkfnt‘*, ke Z[1,N], |t| < 6.

(EL) Timp oo (8 (K, ) — 4F (K, ) = +00, k € Z[L, N].

(F3,) There exist 8, > 0 and ¢ € (41, +00) such that F(k,t) > ct* + f'ifoot‘*, k € Z[1,N],
2] = 8>.

Firstly, we consider the case that problem (1.1) is only resonant at zero.

Theorem 1.1 Iffy = A, and (Fy) hold, then problem (1.1) has at least one nontrivial solu-
tion in each of the following cases:

(i) foo < 13

(ii) foo > o and m # N.

Next, we investigate the case that problem (1.1) is resonant at both zero and infinity.

Theorem 1.2 Iffy = A,, and (Fo) hold, then problem (1.1) has at least one nontrivial solu-
tion in each of the following cases:

(i) (FL,) and foo = pu1;

(it) (F%), foo = o and m #N.
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Thirdly, we study the case that problem (1.1) is only resonant at infinity.

Theorem 1.3 If fo # A;, i € Z[1,N] hold, then problem (1.1) has at least one nontrivial
solution in each of the following cases:

(1) (Féo):foo = U1 and Mo #01

(il) (FA), foo = o and puo # N.

Finally, we deal with the case that problem (1.1) is non-resonant.

Theorem 1.4 If fo # A;, i € Z[1,N] hold, then problem (1.1) has at least one nontrivial
solution in each of the following cases:

(i) foo < 1 and po #0;

(ii) foo > t2 and po #N.

Now, we give some examples to illustrate our main results.
Example 1.1 If

ait+b)\t3, |t <1,
Sk, 2) = { £i(2), 1< |t <10,
shint’, l£] > 10,

where f; is a smooth connection such that f € C}(Z[1,N] x R,RR), it is easy to know that
fo=Afo = %ul < 1 and the condition (F) holds, so problem (1.1) has at least a nontrivial
solution by (i) of Theorem 1.1.

Example 1.2 If

arit+b)\t3, |t <1,
Sk, 2) =1 f(8), 1< |t <10,
2bjust?, |t > 10,

where f; is a smooth connection such that f € CY(Z[1,N] x R, R), it is easy to know that
fo =21, foo = 22 > 1, N #1 and the condition (Fy) holds, so problem (1.1) has at least a
nontrivial solution by (ii) of Theorem 1.1.

It is well known that in different fields of research, such as computer science, mechan-
ical engineering, control systems, artificial or biological neural networks, economics and
many others, the mathematical modeling of important questions leads naturally to the
consideration of nonlinear difference equations. For this reason, in recent years, resonant
difference problems via variational methods have been widely studied by various authors
(see [3—12] and the references therein). For example, in [4-7, 10, 12], the authors consid-
ered the following second-order difference boundary value problem:

!—Azu(k -1) =f(k,u(k)), keZ[1,N], (1.5)

u(0) =u(N +1) =0,
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where f satisfies the resonance condition

lim f—(k’ 2 = A
tl—-0 ¢
or
k,t
tim L&D 5,
[tl>o0 £

for all k € Z[1, N]. They investigated the existence and multiplicity of nontrivial solutions
for problem (1.6) by using various methods and techniques, such as minimax methods,
bifurcation theory, critical groups, Morse theory and so on. However, to our knowledge,
there are few results on the existence of nontrivial solutions of a discrete Kirchhoff-type
resonance problem which is an extension of problem (1.6).

In addition, as is well known, the equation

I
—<a+b/ uidx)uxx:f(x,u), O<x<l, (1.6)
0

was the stationary case of the equation

!
u”—<a+b/ uﬁdx)uxxzf(x,u), O<x<[t>0, 1.7)
0

proposed by Kirchhoff [13] as an extension of the classical D’Alembert wave equation for
free vibrations of elastic stings. After the famous article by Lions [14], this type of problems
has been the subject of numerous studies. Due to the importance of equation (1.6), in
recent years, many authors have studied the existence of solutions of equation (1.6) and
the corresponding general elliptic equations with Dirichlet boundary value condition (see,
e.g,, [1,2,15-18] and the references therein). Obviously, problem (1.1) is the discrete form
of equation (1.6). However, there are significant differences between (1.1) and (1.6) in some
aspects such as properties of eigenvalues (see Theorem 2.1 and Proposition 3.2 in [1]),
which justifies the necessity of research on problem (1.1).

In the current paper, we conclude the existence of eigenvalues for nonlinear eigenvalue
problem (1.4) via the Lagrange multiplier rule. This appears to be first such result for
eigenvalue problem (1.4). Furthermore, the existence of nontrivial solutions of discrete
Kirchhoff-type problem (1.1) with resonance at both zero and infinity is also studied by
employing the critical point theory, especially the local linking, Morse theory and the
computations of critical groups.

The rest of this paper is organized as follows. In Section 2, we give the energy functional
of problem (1.1) and study the eigenvalue of problem (1.4). In order to prove our main
results, some facts about the critical groups are also recalled in this section. In Section 3,

the proofs of main results are provided.
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2 Preliminaries

Let
2 -1 0 0 0
-1 2 -1 0 0
0o -1 2 0 0
A= . s
0O 0 O 2 -1
0O 0 O -1 2

U= (u(l), u2),..., u(N)) T,

F@) = (F(Lu),f(2,u2),....f (N, u(N))) ",
/() = diag(f, (1, u(@)), £/ (2,u(2)),....f (N, u(N))),

and let H = RN be an N-dimensional real Hilbert space with the inner product {u,v) =
1

uTAv and the norm |u| = «/{u, u). For 1 < p < +00, we denote lull, = (22[:1 lu(k)|?)r.
Then, for all u € H, we have

Malluly < lul® < Anlully 1)
and

el < Nlaelly < VNl (2:2)
Obviously, problem (1.1) can be expressed as the following matrix form:

(a+ bllul*) Au = £ (),

which motivates us to consider
a b N
J) = SNl + el * > F(ku(k)), wueH.
k=1

Noting that f(k, -) € CH(R,R), ] is a functional with Fréchet derivatives given by

J () = (a+ b||u||2)u -AY(w), ueH,

J'(u) = (a + b||u||2)IN +2bu(Au)” —A7Yf'(u), ueH.

Hence the solutions of problem (1.1) are exactly the critical points of / in H and J €
C*(H,R).
Now we consider nonlinear eigenvalue problem (1.4). Firstly, we introduce the Lagrange

multiplier rule.

Lemma 2.1 [19] Let X, Y be real Banach spaces, B,(xo) C X, ¢ : B,(xo) —> R and F :
B,(x0) = Y continuously differentiable, F(xo) = 0 and R(F'(xo)) closed. Suppose also that
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@(xo) = min{p(x) : x € B,(x9) and F(x) = 0}. Then there exist Lagrange multipliers . € R
and y* € Y*, not all zero, such that h(xo) + (F'(x0))*y* = 0. If R(F'(x0)) = Y, then 1 #0.

Theorem 2.1 Problem (1.4) only has finitely many eigenvalues which are in [}, NA%,], and

moreover,
4 4 4
mallully < lull® < pallully, w=eH.

Proof Firstly, we prove the existence of 1; and p,.
Indeed, for any u = (u(1), u(2),...,u(N))T € RY, denote

= (31,6 (2),..., 1 *(N))",
then problem (1.4) can be written as the following matrix form:
(uTAu)Au = pu’,

and the energy functional corresponding to problem (1.4) can be expressed as

N
Lo r 2 M 4 1 4 M 4

= - A - — = — _— .

o (u) 4(u u) 1 kgzl u” (k) 4||Lt|| ) 2]l s

By a simple computation, we obtain
¢'(u) = |ullu— pA™u’,

If u is a nonzero solution of problem (1.4) corresponding to some eigenvalue u, then
(¢/),u) = Nlull® = el = 0.

Therefore we can get u = el 1t follows from (2.1) and (2.2) that

el
we [ALNAL]. (2.3)
Consider the following extreme value problem:
)= ull®,  weS={ueH:p@)=uli=1}.

Noting that I(x) is continuous on ||«||; = 1, which is a bounded closed set in R, there
exist u; # 0 and u, # 0 on the sphere |||} = 1 such that

I(u1) = min I(u)

lul3=1

and

I(uy) = max I(u).
lleelG=1

Page 6 of 14
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By Lemma 2.1, there exist i1, w2 € [A3, NA3,] such that

I'(m) = ' (m1), I'(u3) = oy’ (u2),

¢' (i) = il *ui — A"l =0, i=1,2.

Therefore, for any N > 3, we can find at least two eigenvalues (; and p; of problem (1.4)
such that

floaa |1*

) el
el

= llenll* = 1) < L(ua) = lua || * = i=
ll2e2 ]l

231 K-

If 41 is also an eigenvalue of problem (1.4), then there exists u # 0 on the sphere [|u||} =1
such that

=l = 1) <I(w) = ull* = w < I(uz) = llua)l* = po.

To sum up, (1 is the minimum eigenvalue and p, is the maximum eigenvalue of problem

(1.4). Meanwhile, for any u € H and u # 0, setting v = —*—, we have

U
luella?
mlluly < Nl < pollul. (2.4)

Now, we claim that the number of eigenvalues of problem (1.4) is finite.
Clearly, for any ¢ € R and ¢ # 0, if u is a solution of the equation |u|?Au = uu® for
some [, so is cu. Thus we can suppose that ||z||? = 1. Hence, we only need to consider the

following equations:

Au = pu?,
> = 1.

By Au = uu?, we can obtain

2u(1) - u(2) = pu’(1),
2u(2) - u(l) - u(3) = nu’(2),
2u(3) - u(2) - u(4) = uu?(3),

2u(N —2) —u(N -3)—u(N —-1) = pu®(N - 2),
2u(N —1) — u(N = 2) — u(N) = pu® (N - 1),
2u(N) — u(N - 1) = uu®(N).

Page 7 of 14
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Obviously, #(1) #0 and u # 0. Thus

2u(2)-u(1)-u(3) _ (u(2) )3
2u(1)-u(2) ~\u)’ ?
2u(3)-u(2)-u(4) _ (M(3))3
2u(l)-u(2) ~ Nu)’

2u(N-2)-u(N-3)-u(N-1) _ (u(N—Z))?,
2u(1)-u(2) Thou@® M
2u(N-1)-u(N-2)-u(N) _ (u(N—l) )3
2u(1)-u(2) w7
2u(N)-u(N-1) _ (u(N))?,.

2u(l)-u(2) u(d)

Furthermore, let

I/l(2) = Czu(l)y u(g) = Cgl/t(l), cees ( )
2.5
u(N -1) = cyu(1), u(N) = cyu(l),

then we easily get

2c3—cy—c4 _ .3
2—cy

2eN_2—CN-3—CN-1 _ 3
2-c) =CN-2
26N-1-CN-2=CN _ 3
2-cy - *N-I
2eN—CN-1 _ 3
2—cy ~ "N’

Consequently,

c3=20—1-(2-02)c3 = f3(c2),
€1 =203 -0 — (2 - 2)c3 = falca),
5 (2.6)
CN-1 = 2en-2 — eN-3 — (2 — ca)ex_y 1= fr-1(c2),
en =2en-1 = en—a — (2 = e2)ea_y = fu(ca)

2fn(c2) — fa-1(c2) = (2 = c2)(fw(c2))?.

Apparently, the last equation in (2.6) is an algebraic equation of finite degree with un-
known c¢;,. By the fundamental theorem of algebra, this equation only has finitely many
solutions in the field of complex numbers. Thus, c3,c4,...,cn can be obtained by the first
equation, the second equation, - - - , the (N — 2)th equation in (2.6), respectively, after c; is

determined. Noting that

L4Co+ - +Chy—Cy—CaC3 —C3C4 — -+ — CN_I1CN

1
=3 [1+ (1 -c2)® +(c2—c3)* + -+ (enoa — ena1)” + (eno1 —en)* + 63 ] > 0,
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substituting (2.5) into ||#||?> = 1 and by 2u(1) — u(2) = nu3(1), u(2) = cu(1), we can infer
that

,u:Z(Z—cz)(1+c§+---+cjzv—cz—cz03—C3c4—---—cN_1cN)

and

[T

u(l) = i\/i(1+c§ +~~~+c]2\,—cz — CyC3 — C3C4 —~~~—cN,1cN)_ Z0.

Hence the number of eigenvalues of problem (1.4) is finite due to the finiteness of

€2,¢3,...,CN- Besides, we can obtain u(2),u(3),...,u(N) by (2.5). This proof is completed.
O

In the following we recall some facts about the critical groups and Morse theory; see
[20-22] for more details.

Definition 2.1 [20] Let H be a Hilbert space and J € C'(H,R), let u be an isolated critical
point of ] with J(u0) = ¢, and let U be a neighbourhood of u, containing the unique critical
point, the group

CoU o) = Hy(J* N U, J\Nuo} N U), qe€Z,

is called the gth critical group of J at uy, where J° = {u € H|J(u) < ¢}, H,(A, B) denotes the
qth singular relative homology group of the topological pair (A4, B) with coefficients in a
field F.

Definition 2.2 [20] Let H be a Hilbert space and J € C2(H,R), /(i) = 0. Assume that
H~ is the supremum of the vector subspaces of H on which J”(uo) is negative definite. The
Morse index of ] at u is defined as the dimension of H~. The nullity of J at i is defined
as the dimension of kerJ” (u). uo is called a non-degenerate critical point of J if J” (1) has
a bounded inverse.

Lemma 2.2 [21,22] Let 0 be an isolated critical point of ] € C*(H, R) with the Morse index
o and the nullity vy. Assume that ] has a local linking at O with respect to H = H- @ H*,
l=dimH™ < o0, ie., there exists p > 0 such that

J(u) <0, forueH,|u| <p;

Jw) >0, forueH?,|ull <p.
Then C,4(J,0) = 8,,F, if I = o or I = o + vo.

Lemma 2.3 [20] Let uo be an isolated critical point of ] € C*(H,R), then the following
statements are true:
(i) If uo is a minimum point of ], then C,(J, uo) = §4,0F;
(i) If uo is a maximum point of ] and dim H = [ < oo, then C,(J, ug) = 84,F;
(iii) If uo is a non-degenerate critical point of ] with the Morse index (o, then
CqU, o) = 84,1, F.
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3 Proofs of main results
Now we give the proofs of Theorems 1.1-1.4.

Proof of Theorem 1.1 Since (1.2), fo = A, and (F) hold, for any ¢ > 0, there exists p > 0

such that f =48, <8 and

a b a
E)”’”tz + kafnt‘* < F(k,t) < E(Am +e)2, |t <8. (3.1)

Let H = Hy @ H, Hy = span{&,&,...,&,}, Hi = (Hy)*, then dimHy = m < +00. There-
fore, by (2.1) and (2.2), it is easy to know that

2 2 2 2 -
Mlully < llull” < Amllully < vVmAylully, ueHy,
and
2 2 2 2
Ameallully < Amaallully < llull® < Anllully, weHj.

For any u € Hj, ||u|| < p implies that |u(k)| < 8. Then we can deduce from (3.1) that
a b N
Jat) = Sl + el = F (ks e(R)
k=1

a
> ~lul? —ZP (K, u(k))

\}

= Sl = G +e)2u2(k)

a Am+€
Z—(l— - )IIMIIZ.
2 )"m+1

Noting that A, < 1,41, we can choose ¢ small enough such that J(x) > 0 for ||u|| < p and
u e Hj.
For any u € Hy, ||u|| < p implies that |u(k)| < §. Thus we see from (3.1) that

a b N
J) = SNl + - el* EF(k'u(k))

N

a 2 b 4 a 2 b 5 4
< —|lull® + =||u||* - — At (k) + —mA? u™ (k
< Il + 2l ;(ZM()4 o (k)

a b

§||M|| +— ||M||4 || [ Wl?»2 ||M||4

b b

< g lully = Zmil ul =o.

So, J has alocal linking at 0 with respect to H = Hy @ H. Using Lemma 2.2, we can obtain

C,(J,0) = 8 mF. (3.2)
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(i) By (1.3), foo < w1 and the continuity of F, we know that for any ¢ > 0, there exists
M, > 0 such that F(k,t) < ib(,u,l —&)t* + M, for all £ € R and k € Z[1, N]. Together with
(2.4), we have

N
a b
Jat) = Sl + el = F (koK)
k=1
N
a b 1
= Sllull” + llull® - ;(1“’“ - e)u' (k) +Mg)
a 1
= o Il + Nl = 2 bl =€) ull3 - NM
> Z)jull? - NM,
2

It follows that
J(w) — oo, as |lul| — oo,

which implies that J is coercive in H. By the continuity of /, ] must have a minimum
point ;. According to Lemma 2.3(i), we conclude that

Cq(]; uy) = Sq,OF: (3.3)

which, together with (3.2) and m # 0, shows that u; # 0. So, J has at least a nontrivial
critical point.

(i) It follows from (1.3), fo > 12 and the continuity of F that we can find ¢ > 0, M, >0
such that F(k, ) > %(Mz +&)t* — M, for all ¢ € R and k € Z[1,N]. By (2.1), (2.2) and (2.4),
we can see that

a b N
J) = SNl + - el* EF(k’u(k))

4
k=1

a b N/b
2 4 4
= o lul®+ L llu —Z(—(m+s)u (k)—Ms)

a, o, be

= 5 lull™ = - llully + NM,
a be

< Sllull? = ——llull* + NM,
2 4N2%,

and thus
J(u) - —o0, as |lul]| - oo,

which means that J is inverse coercive in H. Because J is continuous, / must have a maxi-
mum point #;. By Lemma 2.3(ii), we can conclude that

Cq(], Ltz) = (Sq,N]F' (34)
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By (3.2), (3.4) and m # N, it is easy to see that u; # 0. Therefore J has at least a nontrivial
critical point, which completes the proof. g

Proof of Theorem 1.2 We have (3.2) from (1.2), fo = A and (Fop).

(i) Let G(k,t) = F(k,t) — 2j1¢*, then 1m0 & |t|4 =0 by (1.3) and f5 = i41. Mean-
while, combining (F ), we can get limy o G(k,t) = —oo [9, 18]. This means that
1My 00 Yony Gk, u(k)) = —00. Then

a b N
J) = SNl + el * EF(k’u(k))

b N
> S+ ||u||4 = grallly = 3 Gk u(k)

2 k=1

a 2
= %;Gkuk

obviously,
J(u) - oo as ||ul| — oo.
Hence ] is coercive. Since J is continuous, J must have a minimum point ;. Thus we obtain
C,(J,u1) = 84,0F. (3.5)
From (3.2), (3.5) and m # 0, we can see that #; # 0. So, / has at least a nontrivial critical
point.

(i) One concludes that there exists M > 0 such that F(k, £) > ct? + 2ji,t* - M forall t € R
by (1.3), foo = 12, (Fgo) and the continuity of F. Hence, we infer from (2.1) and (2.4) that

J(u) = |u|| - |u|| —ZFku(k)

k=1
a b Yoo, )
< Sl + -l —;(Zuzu (k) + cu (k)—M)

a o b ., b 4 )
= —lull” + = llull” — —pa2llull — cllull; + NM
S lul 4" I* = g mallul} - clull}

a 2
<[ =-—)llul*+NM.
2 Ax

Note that ¢ € (§Ax, +00), which gives J(u) — —o0 as [|u|| — +0c. This means that ] is in-
verse coercive in H. Due to the continuity of /, /] must have a maximum point u,. Therefore
we have

CyU ) = 4 F. (3.6)

From (3.2), (3.6) and m # N, we get u; # 0. So, ] has at least a nontrivial critical point. The
proof is completed. d
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Proof of Theorem 1.3 It follows from (1.2), fo # A;, i € Z[1,N],and J"(0) = aly — A™f](k, 0),
k € Z[1,N] that u = 0 is a non-degenerate critical point of J with the Morse index . By

Lemma 2.3(iii), we know that
C,(J,0) =8, F. (3.7)

(i) Equation (1.3), foo = i1 and (Floo) mean that (3.5) holds. Thus, by (3.5), (3.7) and po # 0,
it is easily seen that #; # 0, which implies that / has at least a nontrivial critical point.

(ii) It follows from (1.3), foo = 12 and (Fgo) that (3.6) holds. Therefore by (3.6), (3.7) and
o # N, we have uy # 0. This shows that / admits at least a nontrivial critical point. Then
the conclusion holds. O

Proof of Theorem 1.4 1t is easy to verify from (1.2) and fy # A;, i € Z[1, N] that (3.7) holds.
(i) Equation (1.3) and fo < p1 show that (3.3) holds. Hence, by (3.3), (3.7) and 1o # 0, we
have u; # 0. This implies that J has at least a nontrivial critical point.
(if) We can deduce (3.4) from (1.3) and f,, > py. Therefore we can obtain u#; # 0 from
(3.4), (3.7) and po # N. This implies that J has at least a nontrivial critical point. This proof
is completed. d
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