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1 Introduction
Fractional differential equations have recently gainedmuch importance and attention due
to the fact that they have been proved to be valuable tools in themodeling ofmany physical
phenomena [–]. For some recent developments on the existence results of fractional
differential equations, we can refer, for instance, to [–] and the references therein.
Differential inclusions arise in the mathematical modeling of certain problems in eco-

nomics, optimal control, etc. and are widely studied by many authors, see [, ] and the
references therein. For some recent works on differential inclusions of fractional order, we
refer the reader to the references [, , –].
Motivated by the above papers, in this article, we study a new class of fractional bound-

ary value problems, i.e., the following fractional differential inclusions with three-point
fractional integral boundary conditions:

{
cDαx(t) ∈ F(t,x(t), cDβx(t)), t ∈ [, ],  < α ≤ ,  < β < ,
x() = , aIγ x(η) + bx() = c,  < η < ,

()

where cDp denotes the Caputo fractional derivative of order p, Iq the Riemann-Liouville
fractional integral of order q, F : [, ] × R → R is a multifunction and a, b, c are real
constants with aη+γ �= –b�(γ + ).
We remark that when b = –, c =  and third variable of the function F in () vanishes,

problem () reduces to a three-point fractional integral boundary value problem (see []
with F = f a given continuous function).
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The rest of this paper is organized as follows. In Section  we present the notations,
definitions and give some preliminary results that we need in the sequel, Section  is dedi-
cated to the existence results of problem (), in the final Section , two examples are given
to illustrate the main results.

2 Preliminaries
In this section, we introduce notations, definitions and preliminary facts that will be used
in the remainder of this paper.
Let (X,‖ · ‖) be a normed space. We use the notations: P(X) = {Y ⊆ X : Y �= ∅}, Pcl(X) =

{Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈ P(X) : Y compact},
Pcp,c(X) = {Y ∈ P(X) : Y compact, convex} and so on.
Let A,B ∈ Pcl(X), the Pompeiu-Hausdorff distance of A, B is defined as

h(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
.

A multivalued map F : X → P(X) is convex (closed) valued if F(x) is convex (closed)
for all x ∈ X. F is said to be completely continuous if F(B) is relatively compact for every
B ∈ Pb(X). F is called upper semicontinuous on X if, for every x ∈ X, the set F(x) is a
nonempty closed subset ofX, and for every open setO ofX containing F(x), there exists an
open neighborhoodU of x such that F(U)⊆O. Equivalently, F is upper semicontinuous if
the set {x ∈ X : F(x)⊆O} is open for any open setO of X. F is called lower semicontinuous
if the set {x ∈ X : F(x)∩O �= ∅} is open for each open set O in X. If a multivalued map F is
completely continuous with nonempty compact values, then F is upper semicontinuous
if and only if F has a closed graph, i.e., if xn → x∗ and yn → y∗, then yn ∈ F(xn) implies
y∗ ∈ F(x∗) [].
A multivalued map F : [, ] → Pcl(X) is said to be measurable if, for every x ∈ X, the

function t → d(x,F(t)) = inf{d(x, y) : y ∈ F(t)} is a measurable function.

Definition . A multivalued map F : X → Pcl(X) is called
() γ -Lipschitz if there exists γ >  such that

h
(
F(x),F(y)

) ≤ γd(x, y) for each x, y ∈ X.

() a contraction if it is γ -Lipschitz with γ < .

Definition . A multivalued map F : [, ] × R × R → P(R) is said to be Carathéodory
if:
() t → F(t,x, y) is measurable for each x, y ∈R;
() x→ F(t,x, y) is upper semicontinuous for a.e. t ∈ [, ].

Further, a Carathéodory function F is said to be L-Carathéodory if
() for each k > , there exists ϕk ∈ Lk([, ],R+) such that

∥∥F(t,x, y)∥∥ = sup
{|v| : v ∈ F(t,x, y)

} ≤ ϕk(t)

for all |x| ≤ k, |y| ≤ k and a.e. t ∈ [, ].

The following lemmas will be used in the sequel.
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Lemma . (see []) Let X be a Banach space. Let G : [, ] × X → Pcp,c(X) be an L-
Carathéodory multivalued map and P be a linear continuous map from L([, ],X) to
C([, ],X), then the operator

P ◦ SG : C
(
[, ],X

) → Pcp,c
(
C

(
[, ],X

))
, y �→ (P ◦ SG)(y) = P(SG,y)

is a closed graph operator in C([, ],X)×C([, ],X).

Here the set of selections

SF ,x =
{
v ∈ L

(
[, ],R

)
: v(t) ∈ F

(
t,x(t)

)
for a.e. t ∈ [, ]

}
.

Definition . ([]) The Riemann-Liouville fractional integral of order q for a function
f is defined as

Iqf (t) =


�(q)

∫ t



f (s)
(t – s)–q

ds, q > ,

provided the integral exists.

Definition . ([]) For at least n-times differentiable function f , the Caputo derivative
of order q is defined as

cDqf (t) =


�(n – q)

∫ t


(t – s)n–q–f (n)(s)ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q.

Lemma . ([]) Let α > , then the differential equation

cDαh(t) = 

has solutions h(t) = c + ct + ct + · · · + cn–tn– and

IαcDαh(t) = h(t) + c + ct + ct + · · · + cn–tn–,

here ci ∈R, i = , , , . . . ,n – , n = [α] + .

Lemma . For any y ∈ C([, ],R), the unique solution of the three-point boundary value
problem

{
cDαx(t) = y(t), t ∈ [, ],  < α ≤ ,
x() = , aIγ x(η) + bx() = c,  < η < ,

()

is given by

x(t) =
∫ t



(t – s)α–

�(α)
y(s)ds +

t(c – b
∫ 


(–s)α–
�(α) y(s)ds)

aη+γ

�(γ+) + b
–
ta

∫ η


(η–s)α+γ–

�(α+γ ) y(s)ds
aη+γ

�(γ+) + b
.
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Proof For  < α ≤  and some constants c, c ∈ R, the general solution of the equation
cDαx(t) = y(t) can be written as

x(t) = Iαy(t) + c + ct. ()

From x() = , it follows that c = . Using the integral boundary conditions of (), we
obtain

(
aη+γ

�(γ + )
+ b

)
c + aIα+γ y(η) + b

∫ 



( – s)α–

�(α)
y(s)ds = c.

Therefore, we have

c =
c – b

∫ 


(–s)α–
�(α) y(s)ds – a

∫ η


(η–s)α+γ–

�(α+γ ) y(s)ds
aη+γ

�(γ+) + b
.

Substituting the values of c, c, we obtain the result. This completes the proof. �

Let us define what we mean by a solution of problem ().

Definition . A function x ∈ AC([, ],R) is a solution of problem () if it satisfies the
boundary conditions in () and there exists a function f ∈ L([, ],R) such that f (t) ∈
F(t,x(t), cDβx(t)) a.e. on t ∈ [, ] and

x(t) =
∫ t



(t – s)α–

�(α)
f (s)ds +

t(c – b
∫ 


(–s)α–
�(α) f (s)ds)

aη+γ

�(γ+) + b
–
ta

∫ η


(η–s)α+γ–

�(α+γ ) f (s)ds
aη+γ

�(γ+) + b
.

Let C([, ],R) be the space of all continuous functions defined on [, ]. Define
the space X = {x : x and cDβx ∈ C([, ],R),  < β < } endowed with the norm ‖x‖ =
maxt∈[,] |x(t)| +maxt∈[,] |cDβx(t)|. Obviously, (X ,‖ · ‖) is a Banach space.

Theorem . (Nonlinear alternative of Leray-Schauder type) Let X be a Banach space, C
be a closed convex subset of X , U be an open subset of C with  ∈U . Suppose that F :U →
Pcp,c(C) is an upper semicontinuous compact map. Then either () F has a fixed point in U ,
or () there are x ∈ ∂U and λ ∈ (, ) such that x ∈ λF(x).

Theorem . (Covitz and Nadler) Let (X,d) be a complete metric space. If F : X → Pcl(X)
is a contraction, then F has a fixed point.

3 Existence results
In this section, three existence results of problem () are presented. The first one concerns
the convex valued case, and the others are related to the nonconvex valued case.
Now let us begin with the convex valued case.

Theorem . Suppose that the following (H), (H) and (H) are satisfied.
(H) F : [, ]×R×R → Pcp,c(R) is a Carathéodory multivalued map.

http://www.advancesindifferenceequations.com/content/2013/1/304
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(H) There existm ∈ L∞([, ],R+) and ϕ : [,∞)→ (,∞) continuous, nondecreasing
such that

∥∥F(t,x, y)∥∥ = sup
{|v| : v ∈ F(t,x, y)

} ≤m(t)
(
ϕ
(|x|) + ϕ

(|y|))

for x, y ∈ R, t ∈ [, ].
(H) There exists a constantM >  such that

M
O + ‖m‖(ϕ(M) +ψ(M))Q

> , ()

where

‖m‖ = sup
t∈[,]

∣∣m(t)
∣∣, O =

|c|
| aη+γ

�(γ+) + b|

(
 +


�( – β)

)
,

Q =
(


�(α + )

+


�(α – β + )
+
(�( – β) + )( |a|ηα+γ

�(α+γ+) +
|b|

�(α+) )

�( – β)| aη+γ

�(γ+) + b|

)
.

Then boundary value problem () has at least one solution on [, ].

Proof Consider the multivalued operator N :X → P(X ) defined as

N(x) = {h ∈X : h = Sv, v ∈ SF ,x} ()

with

SF ,x =
{
v ∈ L

(
[, ],R

)
: v(t) ∈ F

(
t,x(t), cDβx(t)

)
for a.e. t ∈ [, ]

}
,

(Sv)(t) =
∫ t



(t – s)α–

�(α)
v(s)ds +

t(c – b
∫ 


(–s)α–
�(α) v(s)ds)

aη+γ

�(γ+) + b
–
ta

∫ η


(η–s)α+γ–

�(α+γ ) v(s)ds
aη+γ

�(γ+) + b
.

Clearly, by Lemma ., we know that the fixed points of N are solutions of problem ().
From (H) and (H), we have, for each x ∈ X , that the set SF ,x is nonempty []. Next we
will show that N satisfies the assumptions of the nonlinear alternative of Leray-Schauder
type. The proof is given in the following five steps.
Step : N(x) is convex valued. Since F is convex valued, we know that SF ,x is convex and

therefore it is obvious that for each x ∈X , N(x) is convex.
Step : N maps bounded sets into bounded sets in X . Let

Br =
{
x ∈X : ‖x‖ ≤ r

}

be a bounded subset of X . We need to prove that there exists a constant k >  such that
for each x ∈ Br , one has ‖h‖ ≤ k for each h ∈ N(x). Let x ∈ Br and h ∈ N(x), then there
exists v ∈ SF ,x such that

h(t) = (Sv)(t) for t ∈ [, ].

http://www.advancesindifferenceequations.com/content/2013/1/304
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By simple calculations, we have

∣∣h(t)∣∣ ≤
∫ t



(t – s)α–

�(α)
∣∣v(s)∣∣ds + (|c| + |b| ∫ 


(–s)α–

�(α) |v(s)|ds)
| aη+γ

�(γ+) + b|

+
|a| ∫ η


(η–s)α+γ–

�(α+γ ) |v(s)|ds
| aη+γ

�(γ+) + b|

≤ ‖m‖(ϕ(r) +ψ(r))
�(α + )

+
|c|

| aη+γ

�(γ+) + b|

+
‖m‖(ϕ(r) +ψ(r))( |a|ηα+γ

�(α+γ+) +
|b|

�(α+) )

| aη+γ

�(γ+) + b|
.

Similarly, we can obtain

∣∣cDβh(t)
∣∣

≤
∫ t



(t – s)α–β–

�(α – β)
∣∣v(s)∣∣ds + |c|

�( – β)

≤ ‖m‖(ϕ(r) +ψ(r))
�(α – β + )

+
|c|

�( – β)| aη+γ

�(γ+) + b|

+
‖m‖(ϕ(r) +ψ(r))( |a|ηα+γ

�(α+γ+) +
|b|

�(α+) )

�( – β)| aη+γ

�(γ+) + b|
.

Therefore, we have

∣∣h(t)∣∣ ≤ |c|
| aη+γ

�(γ+) + b|

(
 +


�( – β)

)
+ ‖m‖(ϕ(r) +ψ(r)

)

×
(


�(α + )

+


�(α – β + )
+
(�( – β) + )( |a|ηα+γ

�(α+γ+) +
|b|

�(α+) )

�( – β)| aη+γ

�(γ+) + b|

)
.

Hence, we obtain

‖h‖ ≤O + ‖m‖(ϕ(r) +ψ(r)
)
Q = k.

Step : N maps bounded sets into equicontinuous sets in X . Let Br be as in Step  and
 ≤ t < t ≤ . Then, for each x ∈ Br and h ∈ N(x), there exists v ∈ SF ,x such that h(t) =
(Sv)(t) for t ∈ [, ]. Since

∣∣h(t) – h(t)
∣∣

≤
∣∣∣∣
∫ t

t

(t – s)α–

�(α)
v(s)ds

∣∣∣∣ +
∣∣∣∣
∫ t



(t – s)α– – (t – s)α–

�(α)
v(s)ds

∣∣∣∣
+

|(t – t)(c – b
∫ 


(–s)α–
�(α) v(s)ds)|

| aη+γ

�(γ+) + b|
+

|(t – t)a
∫ η


(η–s)α+γ–

�(α+γ ) v(s)ds|
| aη+γ

�(γ+) + b|
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≤ ‖m‖(ϕ(r) +ψ(r))(t – t)α

�(α + )
+

‖m‖(ϕ(r) +ψ(r))|tα – (t – t)α – tα |
�(α + )

+
|c|(t – t)
| aη+γ

�(γ+) + b|
+

‖m‖(ϕ(r) +ψ(r))(t – t)( |a|ηα+γ

�(α+γ+) +
|b|

�(α+) )

| aη+γ

�(γ+) + b|

and

∣∣cDβh(t) – cDβh(t)
∣∣

≤
∣∣∣∣Iα–βv(t) – Iα–βv(t) +

ct–β


�( – β)
–

ct–β


�( – β)

∣∣∣∣
≤ ‖m‖(ϕ(r) +ψ(r))(tα–β

 – tα–β
 )

�(α – β + )
+

|c|(t–β
 – t–β

 )
�( – β)| aη+γ

�(γ+) + b|

+
‖m‖(ϕ(r) +ψ(r))(t–β

 – t–β
 )( |a|ηα+γ

�(α+γ+) +
|b|

�(α+) )

�( – β)| aη+γ

�(γ+) + b|
,

we deduce that

∥∥h(t) – h(t)
∥∥ →  as t → t

independently of x ∈ Br and h ∈N(x).
Step :N has a closed graph. Let xn → x∗, hn ∈N(xn) and hn → h∗, we need to show that

h∗ ∈ N(x∗). Since hn ∈ N(xn), there exists vn ∈ SF ,xn such that hn(t) = (Svn)(t) for t ∈ [, ].
We must prove that there exists v∗ ∈ SF ,x∗ such that h∗(t) = (Sv∗)(t) for t ∈ [, ].
Now, let us consider the continuous linear operator P : L([, ],R)→X

v → P(v)(t) =
∫ t



(t – s)α–

�(α)
v(s)ds –

bt
∫ 


(–s)α–
�(α) v(s)ds

aη+γ

�(γ+) + b
–
at

∫ η


(η–s)α+γ–

�(α+γ ) v(s)ds
aη+γ

�(γ+) + b
,

and denote

w(t) =
ct

aη+γ

�(γ+) + b
.

Clearly, we have Sv = Pv +w and

P(vn)(t) = hn(t) –w(t) → h∗(t) –w(t) in X .

By the definition of P, we have

hn –w ∈ P ◦ SF (xn).

It follows from Lemma . that P ◦ SF is a closed graph operator. Since xn → x∗, we have

h∗(t) –w(t) = P(v∗)(t)

for some v∗ ∈ SF ,x∗ . This implies that h∗ ∈N(x∗).

http://www.advancesindifferenceequations.com/content/2013/1/304
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Step : A priori bounds for solutions. Let x ∈ λN(x) for some λ ∈ (, ). Then there exists
v ∈ SF ,x such that x(t) = λ(Sv)(t) for t ∈ [, ]. By a similar discussion as in Step , we have

∣∣x(t)∣∣ + ∣∣cDβx(t)
∣∣ ≤O + ‖m‖(ϕ(‖x‖) +ψ

(‖x‖))Q for t ∈ [, ].

Thus

‖x‖ ≤O + ‖m‖(ϕ(‖x‖) +ψ
(‖x‖))Q for t ∈ [, ].

By the assumption of (H), there existsM such that ‖x‖ �=M. Let us set

U =
{
x ∈X : ‖x‖ <M

}
.

As a consequence of Steps -, together with the Arzela-Ascoli theorem, we can obtain
that N :U → Pcp,c(X ) is an upper semicontinuous and completely continuous map. From
the choice of U , there is no x ∈ ∂U such that x ∈ λN(x) for some λ ∈ (, ). Hence, by
Theorem ., we deduce that N has a fixed point x ∈ U which is a solution of problem ().
This is the end of the proof. �

Next we study the case when F is not necessarily convex valued.
Let A be a subset of [, ] × R. A is � ⊗ BR measurable if A belongs to the σ -algebra

generated by all sets of the form J × D, where J is Lebesgue measurable in [, ] and D
is a Borel set of R. A subset A of L([, ],R) is decomposable if for all u, v ∈ A and J ⊆
[, ] Lebesgue measurable, then uχJ + vχ[,]–J ∈ A, where χ stands for the characteristic
function.

Theorem . Let (H) and (H) hold and assume:
(H) F : [, ]×R×R → Pcp(R) is such that: () (t,x, y) → F(t,x, y) is � ⊗BR ⊗BR

measurable; () the map (x, y)→ F(t,x, y) is lower semicontinuous for a.e. t ∈ [, ].
Then problem () has at least one solution on [, ].

Proof From (H), (H) and Lemma . of [], the map

F :X → P
(
L

(
[, ],R

))
, x→F (x) = SF ,x ()

is lower semicontinuous and has nonempty closed and decomposable values. Then, from
a selection theorem due to Bressan and Colombo [], there exists a continuous function
f : X → L([, ],R) such that for all x ∈ X , f (x)(t) ∈ F(t,x(t), cDβx(t)) a.e. t ∈ [, ]. Now
consider the problem

cDαx(t) = f (x)(t), t ∈ [, ] ()

with the boundary conditions in (). Note that if x ∈ X is a solution of problem (), then
x is a solution to problem ().
Problem () is then reformulated as a fixed point problem for the operator N̄ : X → X

defined by

N̄(x)(t) =
(
Sf (x)

)
(t).

http://www.advancesindifferenceequations.com/content/2013/1/304
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It can easily be shown that N̄ is continuous and completely continuous and satisfies all
conditions of the Leray-Schauder nonlinear alternative for single-valued maps []. By a
discussion similar to the one in Theorem ., Theorem . follows. �

Theorem . We assume that:
(H) F : [, ]×R×R → Pcp(R) is such that: () the map t → F(t,x, y) is measurable for

all x, y ∈R; () there exists m ∈ L∞([, ],R+) such that for a.e. t ∈ [, ] and all
x,x, y, y ∈R,

h
(
F(t,x, y),F(t,x, y)

) ≤m(t)
(|x – x| + |y – y|

)
,

and

‖m‖
�(α + )

+
‖m‖

�(α – β + )
+
( ‖m‖|b|
�(α+) +

‖m‖|a|
�(α+γ+) )( + �( – β))

�( – β)| aη+γ

�(γ+) + b|
< , ()

then problem () has at least one solution on [, ].

Proof From (H), for each x ∈X , themultivaluedmap t → F(t,x(t), cDβx(t)) ismeasurable
and closed valued. Hence it has measurable selection (Theorem .. []) and the set SF ,x
is nonempty. Let N be defined in (). We will show that N satisfies the requirements of
Theorem ..
Step : For each x ∈ X , N(x) ∈ Pcl(X ). Let hn ∈ N(x) be such that hn → h in X . Then

h ∈X and there exists vn ∈ SF ,x such that

hn(t) = (Svn)(t), t ∈ [, ].

By (H), the sequence vn is integrable bounded. Since F has compact values, we may pass
to a subsequence if necessary to get that vn converges to v in L([, ],R). Thus v ∈ SF ,x and
for each t ∈ [, ],

hn(t) → h(t) = (Sv)(t).

This implies that h ∈ N(x) and N(x) is closed.
Step : There exists  < λ <  such that

h
(
N(x),N(y)

) ≤ λ‖x – y‖ for all x, y ∈X .

Let x, y ∈X and h ∈N(y), then there exists v ∈ SF ,y such that

h(t) = (Sv)(t), t ∈ [, ].

From (H), we know that

h
(
F
(
t,x(t), cDβx(t)

)
,F

(
t, y(t), cDβy(t)

)) ≤m(t)
(∣∣x(t) – y(t)

∣∣ + ∣∣cDβx(t) – cDβy(t)
∣∣).

http://www.advancesindifferenceequations.com/content/2013/1/304
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Hence, for a.e. t ∈ [, ], there exists u ∈ F(t,x(t), cDβx(t)) such that

∣∣v(t) – u
∣∣ ≤m(t)

(∣∣x(t) – y(t)
∣∣ + ∣∣cDβx(t) – cDβy(t)

∣∣). ()

Consider the multivalued map V : [, ] → P(R) given by

V (t) =
{
u ∈R :

∣∣v(t) – u
∣∣ ≤m(t)

(∣∣x(t) – y(t)
∣∣ + ∣∣cDβx(t) – cDβy(t)

∣∣)}.
Since v(t), α(t) =m(t)(|x(t) – y(t)| + |cDβx(t) – cDβy(t)|) are measurable, Theorem III.
in [] implies that V is measurable. It follows from (H) that the map t → F(t,x(t))
is measurable. Hence, by () and Proposition .. in [], the multivalued map t →
V (t) ∩ F(t,x(t), cDβx(t)) with nonempty closed values is measurable. Therefore, we can
find v(t) ∈ F(t,x(t), cDβx(t)) and

∣∣v(t) – v(t)
∣∣ ≤m(t)

(∣∣x(t) – y(t)
∣∣ + ∣∣cDβx(t) – cDβy(t)

∣∣) for a.e. t ∈ [, ].

Let h(t) = (Sv)(t), i.e., h ∈N(x). Since
∣∣h(t) – h(t)

∣∣
≤

∫ t



(t – s)α–

�(α)
∣∣v(s) – v(s)

∣∣ds + (|b| ∫ 


(–s)α–
�(α) |v(s) – v(s)|ds)
| aη+γ

�(γ+) + b|

+
(|a| ∫ η


(η–s)α+γ–

�(α+γ ) |v(s) – v(s)|ds)
| aη+γ

�(γ+) + b|

≤
( ‖m‖

�(α + )
+

‖m‖|b|
�(α + )| aη+γ

�(γ+) + b|
+

‖m‖|a|
�(α + γ + )| aη+γ

�(γ+) + b|

)
‖x – y‖

and
∣∣cDβh(t) – cDβh(t)

∣∣
≤

∫ t



(t – s)α–β–

�(α – β)
∣∣v(s) – v(s)

∣∣ds + (|b| ∫ 


(–s)α–
�(α) |v(s) – v(s)|ds)

�( – β)| aη+γ

�(γ+) + b|

+
(|a| ∫ η


(η–s)α+γ–

�(α+γ ) |v(s) – v(s)|ds)
�( – β)| aη+γ

�(γ+) + b|

≤
( ‖m‖

�(α – β + )
+

‖m‖|b|
�(α+) +

‖m‖|a|
�(α+γ+)

�( – β)| aη+γ

�(γ+) + b|

)
‖x – y‖,

we obtain that
∥∥h(t) – h(t)

∥∥
≤

( ‖m‖
�(α + )

+
‖m‖

�(α – β + )
+

‖m‖|b|
�(α+) ( + �( – β))

�( – β)| aη+γ

�(γ+) + b|

+
‖m‖|a|

�(α+γ+) ( + �( – β))

�( – β)| aη+γ

�(γ+) + b|

)
‖x – y‖.

http://www.advancesindifferenceequations.com/content/2013/1/304
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Define

λ =
‖m‖

�(α + )
+

‖m‖
�(α – β + )

+
( ‖m‖|b|
�(α+) +

‖m‖|a|
�(α+γ+) )( + �( – β))

�( – β)| aη+γ

�(γ+) + b|
.

By using an analogous relation obtained by interchanging the roles of x and y, we get

h
(
N(x),N(y)

) ≤ λ‖x – y‖.

Therefore from condition (), Theorem . implies that N has a fixed point which is a
solution of problem (). This completes the proof. �

4 Examples
In this section, we give two examples to illustrate the results.

Example  Consider the following three-point fractional integral boundary value prob-
lem: {

cD 
 x(t) ∈ F(t,x(t), cD 

 x(t)), t ∈ [, ],
x() = , I 

 x(  ) +

x() = –,

()

where α = 
 , β = 

 , γ = 
 , η = 

 , a = , b = 
 , c = – and F : [, ] × R × R → P(R) is a

multivalued map given by

F(t,x, y) =
{
v ∈R : e–|x| –

|y|
 + y

+ sin t + t ≤ v ≤  +
|x|

 + x
+ sin y + t

}
.

In the context of this problem, we have

∥∥F(t,x, y)∥∥ = sup
{|v| : v ∈ F(t,x, y)

} ≤  + t ≤  for t ∈ [, ],x, y ∈R.

It is clear that F is convex compact valued and is of Carathéodory type. Let m(t) ≡  and
ϕ(|x|)≡ , ψ(|y|)≡ , we get that for t ∈ [, ], x, y ∈R,

∥∥F(t,x, y)∥∥ = sup
{|v| : v ∈ F(t,x, y)

} ≤m(t)
(
ϕ
(|x|) + ϕ

(|y|)).
As for condition (), since O + ‖m‖(ϕ(|x|) + ψ(|y|))Q = O + Q (see O, Q in (H)) is a

constant, we can chooseM large enough so that

M
O + ‖m‖(ϕ(|M|) +ψ(|M|))Q > .

Thus, by the conclusion of Theorem ., boundary value problem () has at least one
solution on [, ].

Example  Consider the following three-point fractional integral boundary value prob-
lem: {

cD 
 x(t) ∈ F(t,x(t), cD 

 x(t)), t ∈ [, ],
x() = , I 

 x(  ) +

x() = – 

 ,
()

http://www.advancesindifferenceequations.com/content/2013/1/304
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where α = 
 , β = 

 , γ = 
 , η = 

 , a = , b = 
 , c = – 

 ,

F(t,x, y) =
[
–l(t) –

sinx
( + t)

– ,–



]
∪

[
,

|y|
( + |y|) + l(t)

]
,

and l, l ∈ L([, ],R+).
From the data given above, we have

sup
{|v| : v ∈ F(t,x, y)

} ≤  +


( + t)
+ l(t) + l(t), t ∈ [, ],x, y ∈R,

h
(
F(t,x, y),F(t,x, y)

) ≤ 


(|x – x| + |y – y|
)
.

Let m = 
 , we can get




(


�(  )
+


�(  )

+




�(  )
( + �(  ))

�(  )|





�(  )
+ 

 |
+


�(  )

( + �(  ))

�(  )|





�(  )
+ 

 |

)
≈ . < .

Hence it follows from Theorem . that problem () has at least one solution on [, ].
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1. Băleanu, D, Machado, JAT, Luo, ACJ: Fractional Dynamics and Control. Springer, Berlin (2012)
2. Sabatier, J, Agrawal, OP, Machado, JAT (eds.): Advances in Fractional Calculus: Theoretical Developments and

Applications in Physics and Engineering. Springer, Dordrecht (2007)
3. Lakshmikantham, V, Leela, S, Vasundhara Devi, J: Theory of Fractional Dynamic Systems. Cambridge Scientific

Publishers, Cambridge (2009)
4. Agarwal, RP, Belmekki, M, Benchohra, M: A survey on semilinear differential equations and inclusions involving

Riemann-Liouville fractional derivative. Adv. Differ. Equ. 2009, Article ID 981728 (2009)
5. Agarwal, RP, Benchohra, M, Hamani, S: A survey on existence results for boundary value problems of nonlinear

fractional differential equations and inclusions. Acta Appl. Math. 109, 973-1033 (2010)
6. Bai, Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72(2), 916-924 (2010)
7. Chang, Y, Nieto, JJ: Some new existence results for fractional differential inclusions with boundary conditions. Math.

Comput. Model. 49, 605-609 (2009)
8. Chen, A, Tian, Y: Existence of three positive solutions to three-point boundary value problem of nonlinear fractional

differential equation. Differ. Equ. Dyn. Syst. 18(3), 327-339 (2010)
9. Chen, Y, Tang, X: Positive solutions of fractional differential equations at resonance on the half-line. Bound. Value

Probl. 2012, Article ID 64 (2012)
10. Li, CF, Luo, XN, Zhou, Y: Existence of positive solutions of the boundary value problem for nonlinear fractional

differential equations. Comput. Math. Appl. 59, 1363-1375 (2010)
11. Ahmad, B, Nieto, JJ: Anti-periodic fractional boundary value problems. Comput. Math. Appl. 62, 1150-1156 (2011)
12. Wang, G, Ahmad, B, Zhang, L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of

fractional order. Nonlinear Anal. 74(3), 792-804 (2011)
13. Wang, JR, Zhou, Y: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal.,

Real World Appl. 12(6), 3642-3653 (2011)
14. Wang, JR, Lv, L, Zhou, Y: Boundary value problems for fractional differential equations involving Caputo derivative in

Banach spaces. J. Appl. Math. Comput. 38, 209-224 (2012)
15. Zhou, Y, Jiao, F: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. 11, 4465-4475 (2010)

http://www.advancesindifferenceequations.com/content/2013/1/304


Fu Advances in Difference Equations 2013, 2013:304 Page 13 of 13
http://www.advancesindifferenceequations.com/content/2013/1/304

16. Zhang, S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron.
J. Differ. Equ. 36, 1-12 (2006)

17. Sudsutad, W, Tariboon, J: Boundary value problems for fractional differential equations with three-point fractional
integral boundary conditions. Adv. Differ. Equ. 2012, Article ID 93 (2012)

18. Smirnov, GV: Introduction to the Theory of Differential Inclusions. Am. Math. Soc., Providence (2002)
19. Tolstonogov, AA: Differential Inclusions in a Banach Space. Kluwer Academic, Dordrecht (2000)
20. Cernea, A: A note on the existence of solutions for some boundary value problems of fractional differential

inclusions. Fract. Calc. Appl. Anal. 15(2), 183-194 (2012)
21. Cernea, A: On the existence of solutions for fractional differential inclusions with anti-periodic boundary conditions.

J. Appl. Math. Comput. 38, 133-143 (2012)
22. Ahmad, B: Existence results for fractional differential inclusions with separated boundary conditions. Bull. Korean

Math. Soc. 47(4), 805-813 (2010)
23. Ahmad, B, Ntouyas, SK: Fractional differential inclusions with fractional separated boundary conditions. Fract. Calc.

Appl. Anal. 15(3), 362-382 (2012)
24. Hamani, S, Benchohra, M, Graef, JR: Existence results for boundary-value problems with nonlinear fractional

differential inclusions and integral conditions. Electron. J. Differ. Equ. 2010(20), 1-16 (2010)
25. Ahmad, B, Ntouyas, SK: Some existence results for boundary value problems of fractional differential inclusions with

non-separated boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2010(71), 1-17 (2010)
26. Cernea, A: Some remarks on a fractional differential inclusion with non-separated boundary conditions. Electron.

J. Qual. Theory Differ. Equ. 2011(45), 1-14 (2011)
27. Ouahab, A: Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal. 69,

3877-3896 (2008)
28. Nyamoradi, N, Javidi, M: Existence of multiple positive solutions for fractional differential inclusions withm-point

boundary conditions and two fractional orders. Electron. J. Differ. Equ. 2012(187), 1-26 (2012)
29. Nyamoradi, N, Baleanu, D, Agarwal, RP: On a multipoint boundary value problem for a fractional order differential

inclusion on an infinite interval. Adv. Math. Phys. 2013, Article ID 823961 (2013)
30. Hu, SC, Papageorgiou, NS: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer Academic, Dordrecht (1997)
31. Lasota, A, Opial, Z: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations.

Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13, 781-786 (1965)
32. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
33. Bressan, A, Colombo, G: Extensions and selections of maps with decomposable values. Stud. Math. 90, 69-86 (1988)
34. Granas, A, Dugundji, J: Fixed Point Theory. Springer, New York (2003)
35. Castaing, C, Valadier, M: Convex Analysis and Measurable Multifunctions. Springer, New York (1997)

10.1186/1687-1847-2013-304
Cite this article as: Fu: Existence results for fractional differential inclusions with three-point fractional integral
boundary conditions. Advances in Difference Equations 2013, 2013:304

http://www.advancesindifferenceequations.com/content/2013/1/304

	Existence results for fractional differential inclusions with three-point fractional integral boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence results
	Examples
	Competing interests
	Author's contributions
	Acknowledgements
	References


