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Abstract
In this work, a nonlinear deterministic model for schistosomiasis transmission
including delays with two general incidence functions is considered. Rigourous
mathematical analysis is done. We show that the stability of the disease-free
equilibrium and the existence of an endemic equilibrium for the model are stated in
terms of key thresholds parameters known as basic reproduction number R0. This
study of the dynamic of the model is globally asymptotically stable if R0 ≤ 1, and the
unique endemic equilibrium is globally asymptotically stable when R0 > 1. Some
numerical simulations are provided to support the theoretical result with respect to
R0 in this paper.
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1 Introduction
Schistosomiasis is a serious health problem in developing countries. Indeed, despite the
remarkable achievements in schistosomiasis control over the past five decades, there are
about  million people infected worldwide, and more than  million people live in
endemic areas []. There are two patterns of schistosomiasis.We note the urinary schisto-
somiasis and the intestinal schistosomiasis. The first one is caused by Schistosoma haema-
tobium, when the second is caused by any of the organisms Schistosoma intercalatum,
Schistosoma mansoni, Schistosoma japonicum and Schistosoma mekongi. Mathematical
modeling of schistosomiasis transmission can help in the development of the strategies
for control. Thus, several mathematicalmodels for this disease have been done (see [–]
and the references therein). In [], a discrete delay model for the transmission is studied.
The delay appears in the incidence term including masse action SI (S: susceptible, I : in-
fectious). It appears that the incidence function form is determinative in the study of the
model system. Then, changing the form of the incidence can potentially change the be-
haviour of the system. In this paper, amathematical model is derived with a bounded delay
distributed and two general incidence functions term f and g . The model described here
considers two population hosts, humans and snails, and is structured as follows: Suscep-
tible (uninfected) and infectious humans and susceptible (uninfected) and infected snails.
The paper is organized as follows. In Section , we present the mathematical model, and
we study the mathematical properties of the model system. In Section , we derive some
results about the basic reproduction number, the disease-free equilibrium and the en-
demic equilibrium. Section  is devoted to the global stability of the disease-free equilib-
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rium. In Section , we study the global stability of the endemic equilibrium. Section  is
devoted to numerical simulation. Finally, in Section , we end by a conclusion.

2 Themathematical model
In this section, we derive amathematicalmodel for the spread of schistosomiasis. Here, we
consider human and snail populations. We assume that all newborns are susceptible, and
that the infection does not result in death of human and snail populations. Further, it is
assumed that a susceptible host became infected only by contact withwater, inwhich there
exist cercariae from infected snails, and a susceptible snail became infected by contact
with miracidia coming from parasite eggs released in feces and urine of infected hosts
(see Figure  below).
We denote by
Hs the susceptible (uninfected) human population size;
Hi the infected human population size (infectious humans);
Ss the susceptible (uninfected) snail population size;
Si the infected and shedding snail population size (shedding snail population size).

We also denote by
�h the recruitment rate of susceptible humans;
�s the recruitment rate of susceptible snails;
dh the per capita natural death rate of humans;
ds the per capita natural death rate of snails;
τ the transit time from cercaria in water to schistosomule in a human host;
τ the transit time from parasite eggs to miracidia to infect a snail;
k and k the Lebesgue integrable functions, which give the relative infectivity of snails
and humans (respectively) of different infection ages.

Note that the support of k and k has a positive measure in any open interval having
supremum h, so that the interval of integration is not artificially extended by concluding
with an interval, for which the integral is automatically zero. On the other hand, we choose
in the model two real numbers α and γ , so that

∫ h
 k(τ)dτ =  and

∫ h
 k(τ)dτ = .

As general as possible, the incidence functions f and g must satisfy technical conditions.
Thus, we assume that
H f and g are non-negative C functions on the non-negative quadrant,
H for all (HS,Hi,Ss,Si) ∈ R

+, f (Hs, ) = f (,Si) =  and g(Ss, ) = g(,Hi) = .

Figure 1 Transfer diagram for the mathematical model.
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Remark . f and g are two incidence functions, which explain the contact between two
species. Therefore, f and g are non-negative. Note also that when there is no one infected
in the human and snail populations, then the incidence functions are equal to zero. The
incidence functions are also equal to zero, when there is no one susceptible in the human
and snail populations.

Let us denote by f and f the partial derivatives of f with respect to the first and to the
second variable and g and g those of g with respect to the first and to the second variable.
For mathematical simplicity, we shall make now a simplification that will allow us to carry
out an analysis, namely we assume that the disease-induced death rate is neglected. Using
the notations Hi

τ =Hi(t – τ) and Siτ = Si(t – τ), the model equations are given as follows

dHs

dt
=�h – dhHs – α

∫ h


k(τ)f

(
Hs,Siτ

)
dτ,

dHi

dt
= α

∫ h


k(τ)f

(
Hs,Siτ

)
dτ – dhHi,

dSs
dt

=�s – dsSs – γ

∫ h


k(τ)g

(
Ss,Hi

τ

)
dτ,

dSi
dt

= γ

∫ h


k(τ)g

(
Ss,Hi

τ

)
dτ – dsSi.

(.)

We assume that system (.) holds with given initial conditions

(
Hs(),Ss()

) ∈ R
+ and

(
Hi(θ ),Si(θ )

)
=

(
ν(θ ),ν(θ )

)
for θ ∈ [–h, ],

where ν,ν ∈ C([–h, ],R+). We also define the sup norm on C([–h, ],R+) as ‖νi‖ =
supθ∈[–h,] νi(θ ), i = , . Standard theory of functional differential equations (see []) can
be used to show that solutions of system (.) exist and are differentiable for all t > .
The delay is inspired by the life history of the schistosomiasis. Indeed, it is possible that

some hosts or intermediate hosts (snails) die due to natural death during the incubation
period, respectively (see []).

Theorem . The positive orthant

{
(Hs,Hi,Ss,Si) ∈ R :Hs ≥ ,Hi ≥ ,Ss ≥ ,Si ≥ 

}
is positively invariant for system (.).

To prove Theorem ., we need the following result.

Theorem . [] Let L : Rn −→ R be a differentiable function, and let a ∈ R. Let X(x) be
the vector field, and let G be the closed set G = {x ∈ Rn : L(x) ≤ a} such that ∇L(x) �=  for
all x ∈ L–(a) = {x ∈ Rn : L(x) = a}. If 〈X(x)|∇L(x)〉 ≤  for all x ∈ L–(a), then the set G is
positively invariant.

Proof of Theorem . Let

x = (Hs,Hi,Ss,Si). (.)
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We will prove that {Hs ≥ } is positively invariant. Then let

L(x) = –Hs.

L is differentiable, and ∇L(x) = (–, , , , ) �=  for all x ∈ L(x)–() = {x ∈ R/L(x) = }.
The vector field on {Hs = } is

X(x) =

⎛
⎜⎜⎜⎝

�h

–dhHi

�s – dsSs – γ
∫ h
 k(τ)g(Ss,Hi

τ )dτ

γ
∫ h
 k(τ)g(Ss,Hi

τ )dτ – dsSi

⎞
⎟⎟⎟⎠ . (.)

Then 〈X(x)|∇L(x)〉 = –�h < . This proves that {Hs ≥ } is positively invariant. Similarly,
we prove that {Hi ≥ }, {Ss ≥ }, {Si ≥ } are positively invariant. Then {(Hs,Hi,Ss,Si) ∈
R :Hs ≥ ,Hi ≥ ,Ss ≥ ,Si ≥ } is positively invariant for system (.). �

Therefore, the model is mathematically well posed and epidemiologically reasonable
since all the variables remain non-negatives for all t > .

Theorem . Assume that H(t) =Hs(t) +Hi(t) and S(t) = Ss(t) + Si(t).
There exists ε ≥  such as all feasible solutions of model system (.) enter the set

	ε =

{
(Hs,Hi) ∈ R

+ :H ≤ �h
dh

+ ε
dh
,

(Ss,Si) ∈ R
+ : S ≤ �s

ds +
ε
ds .

Proof Let ε ≥ . Adding the first two equations of (.), we get

dH
dt

= �h – dhH

≤ �h + ε – dhH . (.)

According to [], it follows that

H(t) ≤ �h

dh
+

ε

dh
+

(
H() –

�h

dh
–

ε

dh

)
e–dht , (.)

where H() =Hs() +Hi(). Thus, as t → ∞, H(t) ≤ �h
dh

+ ε
dh
.

Similarly, we prove that S(t)≤ �s
ds +

ε
ds . �

3 Basic reproduction number, disease-free equilibrium and endemic
equilibrium

The disease-free equilibrium is given by

E =
(
H

s ,H

i ,S


s ,S


i
)
=

(
�h

dh
, ,

�s

ds
, 

)
. (.)

Proposition . The basic reproduction number for model system (.) is defined by

R =

√
αγ f(H

s , )g(Ss , )
dsdh

.
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Proof Rewriting the system (.) as

ẏ =ψ(y), (.)

where

y = (y, y, y, y)T = (Hs,Hi,Ss,Si)T . (.)

Now, making the assessment in each compartment j

ẏj =Fj(y) +V+
j (y) –V–

j (y), (.)

where
Fj(y) denote the rate of appearance of new infections in each class j,
V+

j (y) denote the rate of transfer into each class j by all other means,
V–

j (y) denote the rate of transfer out of each class j.
Let Vj(y) = V+

j (y) – V–
j (y), and let Y = (Hs,Ss) be the healthy population and Y =

(Hl,Hi,Sl,Si) the infected population,

F (Y,Y) =

(
αf (Hs,Si)
γ g(Ss,Hi)

)
and V(Y,Y) =

(
–dhHi

–dsSi

)
. (.)

Then,

DYF (Y,Y) = F(Y,Y) =

(
 αf(Hs,Si)

γ g(Ss,Hi) 

)
(.)

and

DYV(Y,Y) = V (Y,Y) =

(
–dh 
 –ds

)
. (.)

On (Y, ), we get

F(Y, ) =

(
 αf(H

s , )
γ g(Ss , ) 

)
(.)

and

V (Y, ) =

(
–dh 
 –ds

)
. (.)

Thus, we obtain

–FV–(Y, ) =

(
 αf(H

s ,)
ds

γ g(Ss ,)
dh



)
. (.)

According to [], we conclude the proof. �
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The basic reproduction number R represents the average number of new case gener-
ated by a single infected individual in a completely susceptible population (see []).

Theorem . If R < , then E is locally asymptotically stable.

Proof Suppose that R < . Since H holds then, f(H
s , ) =  and g(Ss , ) =  for all Hs

and Ss. It follows that the linearization of system (.) at E is

dhs
dt

= –dhhs – α

∫ h


k(τ)f

(
H

s , 
)
si(t – τ)dτ,

dhi
dt

= α

∫ h


k(τ)f

(
H

s , 
)
si(t – τ)dτ – dhhi,

dss
dt

= –dsss – γ

∫ h


k(τ)g

(
Ss , 

)
hi(t – τ)dτ,

dsi
dt

= γ

∫ h


k(τ)g

(
Ss , 

)
hi(t – τ)dτ – dssi.

(.)

Now, we replace (hs(t),hi(t), ss(t), si(t)) by eλt(hs ,hi , ss , si ) into (.) to get

hs λe
λt = –dhhs e

λt – α

∫ h


k(τ)f

(
H

s , 
)
si e

λ(t–τ) dτ,

hi λe
λt = α

∫ h


k(τ)f

(
H

s , 
)
si e

λ(t–τ) – dhhi e
λt ,

ss λe
λt = –dsss e

λt – γ

∫ h


k(τ)g

(
Ss , 

)
hi e

λ(t–τ) dτ,

si λe
λt = γ

∫ h


k(τ)g

(
Ss , 

)
hi e

λ(t–τ) dτ – dssi e
λt .

(.)

After that, we rearrange before cancelling eλt from each term, and we obtain

⎛
⎜⎜⎜⎝
–(λ + dh)   –αA(λ)

 –(λ + dh)  αA(λ)
 –γB(λ) –(λ + ds) 
 γB(λ)  –(λ + ds)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
hs
hi
ss
si

⎞
⎟⎟⎟⎠ = , (.)

where

A(λ) =
∫ h


k(τ)f

(
H

s , 
)
e–λτ dτ,

B(λ) =
∫ h


k(τ)g

(
Ss , 

)
e–λτ dτ.

(.)

Denote by

M =

⎛
⎜⎜⎜⎝
–(λ + dh)   –αA(λ)

 –(λ + dh)  αA(λ)
 –γB(λ) –(λ + ds) 
 γB(λ)  –(λ + ds)

⎞
⎟⎟⎟⎠ , (.)
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then there exist non-zero solutions if and only if det(M) = . It follows that the character-
istic equation is given by

(λ + dh)(λ + ds)
[
(λ + dh)(λ + ds) – αγ

∫ h


k(τ)f

(
H

s , 
)
e–λτ dτ

×
∫ h


k(τ)g

(
Ss , 

)
e–λτ dτ

]
= . (.)

Now, we will show that all solutions λ of this equation have a negative real part. By contra-
diction, suppose that λ has non-negative real part. With this in mind, we have λ + dh �= 
and λ + ds �= . Also

∣∣∣∣αγ

∫ h


k(τ)f

(
H

s , 
)
e–λτ dτ ×

∫ h


k(τ)g

(
Ss , 

)
e–λτ dτ

∣∣∣∣ ≤ αγ f
(
H

s , 
)
g

(
Ss , 

)
= R

dhds

< dhds

≤ ∣∣(λ + dh)(λ + ds)
∣∣.

This implies that λ cannot be a solution of the characteristic equation. Hence, all eigen-
values have negative real part, and then E is locally asymptotically stable. �

Now, we will study the behaviour of system (.) when R > .

Theorem . If R > , then there exists an endemic equilibrium.

Proof Let E∗ = (H∗
s ,H∗

i ,S∗
s ,S∗

i ). Setting the right-hand side of system (.) equal to zero, we
know that E∗ is a positive equilibrium if and only if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�h – dhH∗
s – αf (H∗

s ,S∗
i ) = ,

αf (H∗
s ,S∗

i ) – dhH∗
i = ,

�s – dsS∗
s – γ g(S∗

s ,H∗
i ) = ,

γ g(S∗
s ,H∗

i ) – dsS∗
i = .

(.)

Combining the two first equations and the two last equations of (.) gives

H∗
s =

�h – dhH∗
i

dh
and S∗

s =
�s – dsS∗

i
ds

. (.)

Let

φ
(
H∗

i ,S
∗
i
)
= αf

(
�h – dhH∗

i
dh

,S∗
i

)
– dhH∗

i (.)

and

φ
(
H∗

i ,S
∗
i
)
= γ g

(
�s – dsS∗

i
ds

,H∗
i

)
– dsS∗

i . (.)

http://www.advancesindifferenceequations.com/content/2013/1/303
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Now, we define the continuous function φ by

φ
(
H∗

i ,S
∗
i
)
=

(
φ

(
H∗

i ,S
∗
i
)
,φ

(
H∗

i ,S
∗
i
))
. (.)

Hence, it follows that any solution of equation φ =  in the set (, �h
dh
) × (, �s

ds ) corre-
sponds to an equilibrium, with H∗

s ,H∗
i ,S∗

s ,S∗
i > , that is an equilibrium. Since H holds,

then φ(, ) =  and φ(�h
dh
, �s
ds ) ≤ . Then the sufficient condition for equation φ =  to

have a solution in (, �h
dh
)× (, �s

ds ) is that φ increasing at . This implies that an endemic
equilibrium exists if

∇φ(, ) > , (.)

where

∇φ(, ) =
(∇φ(, ),∇φ(, )

)
=

(
–αf

(
H

s , 
)
– dh + αf

(
H

s , 
)
, –γ g

(
Ss , 

)
– ds + γ g

(
Ss , 

))
. (.)

Note that f(H
s , ) = g(Ss , ) = . Then, inequality (.) becomes

{
αf(H

s , ) > dh and
γ g(Ss , ) > ds.

(.)

Hence,

αγ f
(
H

s , 
)
g

(
Ss , 

)
> dhds, (.)

equivalently, we have

αγ f(H
s , )g(Ss , )
dhds

> . (.)

Thus, R > . �

4 Global stability of the disease-free equilibrium
In this section, we study the global behaviour of the disease-free equilibrium. For that, we
assume that
H for all (HS,Hi,Ss,Si) ∈ R

+, f (Hs,Si) ≤ f(H
s , )Si and g(Ss,Hi) ≤ g(Ss , )Hi,

H ≤ αf(H
s , ) and ≤ γ g(Ss , ).

We have the following result.

Theorem . Let δ = max(ds,dh). Assume that H and H hold, and δ ≤ , then the
disease-free equilibrium is globally asymptotically stable if R ≤ .

Proof We consider the Lyapunov function

V = dsHi + dhSi. (.)

http://www.advancesindifferenceequations.com/content/2013/1/303
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Differentiating V with respect to time, we obtain

dV
dt

= αds
∫ h


k(τ)f

(
Hs,Siτ

)
dτ

+ γdh
∫ h


k(τ)g

(
Ss,Hi

τ

)
dτ – dsdh(Si +Hi). (.)

Since H holds and δ ≤ , we get

dV
dt

≤ αf
(
H

s , 
)
Si + γ g

(
Ss , 

)
Hi – dsdh(Si +Hi). (.)

Adding and subtracting the quantity αγ f(H
s , )g(Ss , )(Si +Hi), we have

dV
dt

≤ αγ f
(
H

s , 
)
g

(
Ss , 

)
(Si +Hi) – αγ f

(
H

s , 
)
g

(
Ss , 

)
(Si +Hi)

+ αf
(
H

s , 
)
Si + γ g

(
Ss , 

)
Hi – dsdh(Si +Hi)

≤ αγ f
(
H

s , 
)
g

(
Ss , 

)
(Si +Hi) + αf

(
H

s , 
)
Si

(
 – γ g

(
Ss , 

))
+ γ g

(
Ss , 

)
Hi

(
 – αf

(
H

s , 
))
– dsdh(Si +Hi). (.)

Using hypothesis H, we obtain

dV
dt

≤ αγ f
(
H

s , 
)
g

(
Ss , 

)
(Si +Hi) – dsdh(Si +Hi)

≤ dsdh(Si +Hi)
(

αγ f(H
s , )g(Ss , )
dsdh

– 
)

≤ dsdh(Si +Hi)
(
R

 – 
)
. (.)

For R ≤ , we get

dV
dt

≤ , (.)

with equality only if Si =  and Hi = . According to LaSalle’s extension to Lyapunov’s
method [], the limit set of each solution is contained in the largest invariant set, for
which Si =  and Hi = , which is the singleton {E}. This means that the disease-free
equilibrium E is globally asymptotically stable on 	ε . �

5 Global stability of the endemic equilibrium
In this section, we assume that f and g satisfies the conditions
H for all (Hs,Hi,Ss,Si) ∈ R

+, ≤ f (Hs ,Siτ )
f (Hs ,S∗

i )
≤ Si

S∗
i
and ≤ g(Ss ,Hi

τ )
g(Ss ,H∗

i )
≤ Hi

H∗
i
,

H for all Hs,Ss > , sign(f (Hs,S∗
i ) – f (H∗

s ,S∗
i )) = sign(Hs –H∗

s ) and
sign(g(Ss,H∗

i ) – g(S∗
s ,H∗

i )) = sign(Ss – S∗
s ).

Theorem . Assume that H and H hold, then if R >  the endemic equilibrium E∗ is
globally asymptotically stable.

http://www.advancesindifferenceequations.com/content/2013/1/303
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Proof Consider system (.) at E∗, we get

�h = dhHs + α

∫ h


k(τ)f

(
H∗

s ,S
∗
i
)
dτ,

�s = dsSs + γ

∫ h


k(τ)g

(
S∗
s ,H

∗
i
)
dτ,

dhH∗
i = α

∫ h


k(τ)f

(
H∗

s ,S
∗
i
)
dτ,

dsS∗
i = γ

∫ h


k(τ)g

(
S∗
s ,H

∗
i
)
dτ.

(.)

Let

μ(y) = y –  – ln y. (.)

We can see that the function μ ≥  for all y > , and it has the strict global minimum
μ() = . Now, define the functions

Uhs =Hs(t) –H∗
s –

∫ Hs(t)

H∗
s

f (H∗
s ,S∗

i )
f (ξ,S∗

i )
dξ,

Uhi =H∗
i μ

(
Hi(t)
H∗

i

)
,

Uss = Ss(t) – S∗
s –

∫ Ss(t)

S∗
s

g(S∗
s ,H∗

i )
g(ξ,H∗

i )
dξ,

Usi = S∗
i μ

(
Si(t)
S∗
i

)
.

(.)

Note that Uhs ≥ , Uhi ≥ , Uss ≥  and Usi ≥  with equality only if Hs = H∗
s , Hi = H∗

i ,
Ss = S∗

s and Si = S∗
i . Now, we consider the Lyapunov function

U(t) = g
(
S∗
s ,H

∗
i
)
Uh(t) + f

(
H∗

s ,S
∗
i
)
Us(t), (.)

where Uh = Uhs +Uhi and Us = Uss +Usi. To evaluate dU
dt , we will calculate separately the

different derivatives dUhs
dt , dUhi

dt , dUss
dt and dUsi

dt ,

dUhs

dt
=

(
 –

f (H∗
s ,S∗

i )
f (Hs,S∗

i )

)
dHs

dt

=
(
 –

f (H∗
s ,S∗

i )
f (Hs,S∗

i )

)(
�h – dhHs – α

∫ h


k(τ)f

(
Hs,Siτ

)
dτ

)
. (.)

Then we use the first equation of (.) to get

dUhs

dt
=

(
 –

f (H∗
s ,S∗

i )
f (Hs,S∗

i )

)(
dh

(
H∗

s –Hs
)
+ α

∫ h


k(τ)

(
f
(
H∗

s ,S
∗
i
)
– f

(
Hs,Siτ

))
dτ

)

= –dh
(
H∗

s –Hs
)(

 –
f (H∗

s ,S∗
i )

f (Hs,S∗
i )

)
+ α

∫ h


k(τ)f

(
H∗

s ,S
∗
i
)(

 –
f (H∗

s ,S∗
i )

f (Hs,S∗
i )

)
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×
(
 –

f (Hs,Siτ )
f (H∗

s ,S∗
i )

)
dτ

= –dh
(
H∗

s –Hs
)(

 –
f (H∗

s ,S∗
i )

f (Hs,S∗
i )

)
+ α

∫ h


k(τ)f

(
H∗

s ,S
∗
i
)( f (Hs,Siτ )

f (Hs,S∗
i )

–
f (H∗

s ,S∗
i )

f (Hs,S∗
i )

–
f (Hs,Siτ )
f (H∗

s ,S∗
i )

+ 
)
dτ. (.)

After that, we evaluate dUhi
dt ,

dUhi

dt
=

(
 –

H∗
i

Hi

)
dHi

dt
=

(
 –

H∗
i

Hi

)(
α

∫ h


k(τ)f

(
Hs,Siτ

)
dτ – dhHi

)

=
(
 –

H∗
i

Hi

)(
α

∫ h


k(τ)f

(
H∗

s ,S
∗
i
) f (Hs,Siτ )
f (H∗

s ,S∗
i )

dτ – dhH∗
i
Hi

H∗
i

)
. (.)

Then, using the third equation of (.), we obtain

dUhi

dt
= α

(
 –

H∗
i

Hi

)∫ h


k(τ)f

(
H∗

s ,S
∗
i
)( f (Hs,Siτ )

f (H∗
s ,S∗

i )
–

Hi

H∗
i

)
dτ

= α

∫ h


k(τ)f

(
H∗

s ,S
∗
i
)( f (Hs,Siτ )

f (H∗
s ,S∗

i )
–

Hi

H∗
i
–
H∗

i
Hi

f (Hs,Siτ )
f (H∗

s ,S∗
i )

+ 
)
dτ. (.)

Then, combining (.) and (.), we get

dUh

dt
= –dh

(
H∗

s –Hs
)(

 –
f (H∗

s ,S∗
i )

f (Hs,S∗
i )

)
g
(
S∗
s ,H

∗
i
)

+ αg
(
S∗
s ,H

∗
i
)∫ h


k(τ)f

(
H∗

s ,S
∗
i
)
A(τ)dτ, (.)

where A(τ) =  – f (H∗
s ,S∗

i )
f (Hs ,S∗

i )
+

f (Hs ,Siτ )
f (Hs ,S∗

i )
– H∗

i
Hi

f (Hs ,Siτ )
f (H∗

s ,S∗
i )
– Hi

H∗
i
.

Adding and subtracting the quantity  + ln
f (Hs ,Siτ )
f (Hs ,S∗

i )
+ ln

f (H∗
s ,S∗

i )
f (Hs ,S∗

i )
+ ln Hi

H∗
i
, we obtain

A(τ) =
(
–
f (H∗

s ,S∗
i )

f (Hs,S∗
i )

+  + ln
f (H∗

s ,S∗
i )

f (Hs,S∗
i )

)
+

(
–
H∗

i
Hi

f (Hs,Siτ )
f (H∗

s ,S∗
i )

+  + ln
H∗

i
Hi

f (Hs,Siτ )
f (H∗

s ,S∗
i )

)

+
(
–
Hi

H∗
i
+  + ln

Hi

H∗
i

)
+

( f (Hs,Siτ )
f (Hs,S∗

i )
–  – ln

f (Hs,Siτ )
f (Hs,S∗

i )

)

= –μ

(
f (H∗

s ,S∗
i )

f (Hs,S∗
i )

)
–μ

(
H∗

i
Hi

f (Hs,Siτ )
f (H∗

s ,S∗
i )

)
–μ

(
Hi

H∗
i

)
+μ

( f (Hs,Siτ )
f (Hs,S∗

i )

)
. (.)

Next, we calculate dUss
dt ,

dUss

dt
=

(
 –

g(S∗
s ,H∗

i )
g(Ss,H∗

i )

)
dSs
dt

=
(
 –

g(S∗
s ,H∗

i )
g(Ss,H∗

i )

)(
�s – dsSs – γ

∫ h


k(τ)g

(
Ss,Hi

τ

)
dτ

)
. (.)
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Then, we use the second equation of (.) to get

dUss

dt
=

(
 –

g(S∗
s ,H∗

i )
g(Ss,H∗

i )

)(
ds

(
S∗
s – Ss

)
+ γ

∫ h


k(τ)

(
g
(
S∗
s ,H

∗
i
)
– g

(
Ss,Hi

τ

))
dτ

)

= –ds
(
S∗
s – Ss

)(
 –

g(S∗
s ,H∗

i )
g(Ss,H∗

i )

)
+ γ

∫ h


k(τ)g

(
S∗
s ,H

∗
i
)(

 –
g(S∗

s ,H∗
i )

g(Ss,H∗
i )

)

×
(
 –

g(Ss,Hi
τ )

g(S∗
s ,H∗

i )

)
dτ

= –ds
(
S∗
s – Ss

)(
 –

g(S∗
s ,H∗

i )
g(Ss,H∗

i )

)
+ γ

∫ h


k(τ)g

(
S∗
s ,H

∗
i
)(g(Ss,Hi

τ )
g(Ss,H∗

i )
–
g(S∗

s ,H∗
i )

g(Ss,H∗
i )

–
g(Ss,Hi

τ )
g(S∗

s ,H∗
i )

+ 
)
dτ. (.)

Now, we evaluate dUsi
dt ,

dUsi

dt
=

(
 –

S∗
i
Si

)
dSi
dt

=
(
 –

S∗
i
Si

)(
γ

∫ h


k(τ)g

(
Ss,Hi

τ

)
dτ – dsSi

)

=
(
 –

S∗
i
Si

)(
γ

∫ h


k(τ)g

(
S∗
s ,H

∗
i
)g(Ss,Hi

τ )
g(S∗

s ,H∗
i )

dτ – dsS∗
i
Si
S∗
i

)
. (.)

Then, using the fourth equation of (.), we obtain

dUsi

dt
= γ

(
 –

S∗
i
Si

)∫ h


k(τ)g

(
S∗
s ,H

∗
i
)(g(Ss,Hi

τ )
g(S∗

s ,H∗
i )

–
Si
S∗
i

)
dτ

= γ

∫ h


k(τ)g

(
S∗
s ,H

∗
i
)(g(Ss,Hi

τ )
g(S∗

s ,H∗
i )

–
Si
S∗
i
–
S∗
i
Si

g(Ss,Hi
τ )

g(S∗
s ,H∗

i )
+ 

)
dτ. (.)

Then, combining (.) and (.), we get

dUs

dt
= –ds

(
S∗
s – Ss

)(
 –

f (S∗
s ,S∗

i )
g(Ss,H∗

i )

)
f
(
H∗

s ,S
∗
i
)

+ γ f
(
H∗

s ,S
∗
i
)∫ h


k(τ)g

(
S∗
s ,H

∗
i
)
B(τ)dτ, (.)

where B(τ) =  – g(S∗
s ,H∗

i )
g(Ss ,H∗

i )
+

g(Ss ,Hi
τ )

g(Ss ,H∗
i )

– S∗
i
Si

g(Ss ,Hi
τ )

g(S∗
s ,H∗

i )
– Si

S∗
i
.

Adding and subtracting the quantity  + ln
g(Ss ,Hi

τ )
g(Ss ,H∗

i )
+ ln

g(S∗
s ,H∗

i )
g(Ss ,H∗

i )
+ ln Si

S∗
i
, we obtain

B(τ) =
(
–
g(S∗

s ,H∗
i )

g(Ss,H∗
i )

+  + ln
g(S∗

s ,H∗
i )

g(Ss,H∗
i )

)
+

(
–
S∗
i
Si

g(Ss,Hi
τ )

g(S∗
s ,H∗

i )
+  + ln

S∗
i
Si

g(Ss,Hi
τ )

g(S∗
s ,H∗

i )

)

+
(
–
Si
S∗
i
+  + ln

Si
S∗
i

)
+

(g(Ss,Hi
τ )

g(Ss,H∗
i )

–  – ln
g(Ss,Hi

τ )
g(Ss,H∗

i )

)

= –μ

(
g(S∗

s ,H∗
i )

g(Ss,H∗
i )

)
–μ

(
S∗
i
Si

g(Ss,Hi
τ )

g(S∗
s ,H∗

i )

)
–μ

(
Si
S∗
i

)
+μ

(g(Ss,Hi
τ )

g(Ss,H∗
i )

)
. (.)
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Since H holds, then μ(
f (Hs ,Siτ )
f (Hs ,S∗

i )
)≤ μ( SiS∗

i
) and μ(

g(Ss ,Hi
τ )

g(Ss ,H∗
i )
)≤ μ( Hi

H∗
i
). It follows that

dU
dt

≤ –dh
(
H∗

s –Hs
)(

 –
f (H∗

s ,S∗
i )

f (Hs,S∗
i )

)
g
(
S∗
s ,H

∗
i
)
– ds

(
S∗
s – Ss

)(
 –

f (S∗
s ,S∗

i )
g(Ss,H∗

i )

)
f
(
H∗

s ,S
∗
i
)

+ αf
(
H∗

s ,S
∗
i
)
g
(
S∗
s ,H

∗
i
)∫ h


k(τ)

[
–μ

(
f (H∗

s ,S∗
i )

f (Hs,S∗
i )

)
–μ

(
H∗

i
Hi

f (Hs,Siτ )
f (H∗

s ,S∗
i )

)]
dτ

+ γ f
(
H∗

s ,S
∗
i
)
g
(
S∗
s ,H

∗
i
)∫ h


k(τ)

×
[
–μ

(
g(S∗

s ,H∗
i )

g(Ss,H∗
i )

)
–μ

(
S∗
i
Si

g(Ss,Hi
τ )

g(S∗
s ,H∗

i )

)]
dτ. (.)

Since H holds, it follows that

dU
dt

≤  (.)

for all (Hs,Hi,Ss,Si) ∈ 	ε with equality only for Hs = H∗
s , Hi = H∗

i , Ss = S∗
s and Si = S∗

i .
Hence, the endemic equilibrium E∗ is the only positively invariant set of system (.) con-
tained in {(Hs,Hi,Ss,Si) ∈ R

+;Hs = H∗
s ,Hi = H∗

i ,Ss = S∗
s ,Si = S∗

i }. Then it follows that E∗ is
globally asymptotically stable on 	ε (see []). �

6 Numerical simulation
In this section, we derive the computation work that supports our study. In this computa-
tion, the functions f and g are chosen as follows: f (Hs,Si) =HsSi and g(Ss,Hi) = SsHi (mass
action). Two different cases of computational simulations are studied: in the first case (see
Figure ), R ≤ , while in the second case (see Figure ), R > . The parameters values

Figure 2 Case, where R0 < 1.
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Figure 3 Case, where R0 > 1.

used are the following (see []): �h = , �s = , dh = ., ds = .. We also use the de-
lays parameters τ = τ = . For the first case, we use α = . and γ = .,
which give R < . In the second case, we use α = . and γ = . to get R > .

7 Conclusion
In this paper, a deterministic model of transmission of schistosomiasis with two general
nonlinear incidence functions including distributed delay is derived. The global behaviour
of the model system was studied. We proved that, if R ≤  holds, then the disease-free
equilibrium is globally asymptotically stable, which implies that the disease fades out from
the population. IfR > , then there exists a unique endemic equilibriumwhich is globally
asymptotically stable, and this implies that the disease will persist in the population. This
result suggests that the latent period in infection affects the prevalence of schistosomiasis,
and it is an effective strategy on schistosomiasis control to lengthen in prepatent period
on infected definitive hosts by drug treatment, for example.
Threshold analysis of the basic reproduction number shows that the use of public health

education campaign could have positive, more determinant impact on the control of the
schistosomiasis. Overall, an effective education campaign which focuses on drug treat-
ment with reasonable coverage level could be helpful for countries concerned with the
disease.
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