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Abstract
In this paper we establish an existence result for the multi-term fractional differential
equation

(
Dαm –

m–1∑
i=1

aiD
αi

)
u(t) = f (t,u(t)) for t ∈ [0, 1], u(0) = 0, ()

where Dαm
p y(·) and Dαi

p y(·) are fractional pseudo-derivatives of a weakly absolutely
continuous and pseudo-differentiable function u(·) : T → E of order αm and αi ,
i = 1, 2, . . . ,m – 1, respectively, the function f (t, ·) : T × E → E is weakly-weakly
sequentially continuous for every t ∈ T and f (·, y(·)) is Pettis integrable for every
weakly absolutely continuous function y(·) : T → E, T is a bounded interval of real
numbers and E is a nonreflexive Banach space, 0 < α1 < α2 < · · · < αm < 1 and
a1,a2, . . . ,am–1 are real numbers such that a :=

∑m–1
i=1

|ai|
�(αm–αi+1)

< 1.
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1 Introduction
The mathematical field that deals with derivatives of any real order is called fractional
calculus. Fractional calculus has been successfully applied in various applied areas like
computational biology, computational fluid dynamics and economics etc. [].
In certain situations, we need to solve fractional differential equations containing more

than one differential operator, and this type of fractional differential equation is called
a multi-term fractional differential equation. Multi-term fractional differential equations
have numerous applications in physical sciences and other branches of science []. The
existence of solutions of multi-term fractional differential equations was studied by many
authors [–]. The main tool used in [–] is the Krasnoselskii’s fixed point theorem on
a cone, while the main tool used in [] is the technique associated with the measure of
noncompactness and fixed point theorem. In [], the author established the existence of
a monotonic solution for a multi-term fractional differential equation in Banach spaces,
using the Riemann-Liouville fractional derivative and in that paper no compactness con-
dition is assumed on the nonlinearity of the function f .
When αm =  and a = a · · ·am– = , the existence of weak solutions to multi-term

fractional differential equation () was discussed in [–]. In [], the author studied the
existence of a weak solution of Cauchy problem () in reflexive Banach spaces equipped
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with the weak topology, and the author assumed a weak-weak continuity assumption on f .
In [], the author established the existence of a global monotonic solution for Cauchy
problem (), and the author assumed f is Carathéodory with linear growth.
In this present article, we prove the existence of a solution of Cauchy problem () in non-

reflexive Banach spaces equipped with the weak topology. In comparison to other results
in the literature, we use more general assumptions so that the function f is assumed to
be weakly-weakly sequentially continuous and f (·,u(·)) is Pettis integrable for each weakly
absolutely continuous function u(·) : T → E.

2 Preliminaries
For convenience here we present some notations and the main properties for Pettis inte-
grable, weakly-weakly continuous functions, and we state some properties of the measure
of noncompactness. Also, we present definitions and preliminary facts of fractional calcu-
lus in abstract spaces. Let E be a Banach space with the norm ‖ · ‖, and let E∗ be the topo-
logical dual of E. If x∗ ∈ E∗, then its value on an element x ∈ E will be denoted by 〈x∗,x〉.
The space E endowed with the weak topology σ (E,E∗) will be denoted by Ew. Consider an
intervalT = [,b] ofR endowedwith the Lebesgue σ -algebraL(T) and the Lebesguemea-
sure λ. We will denote by L(T) the space of all measurable and Lebesgue integrable real
functions defined on T , and by L∞(T) the space of all measurable and essentially bounded
real functions defined on T .

Definition . (a) A function x(·) : T → E is said to be strongly measurable on T if there
exists a sequence of simple functions xn(·) : T → E such that limn→∞ xn(t) = x(t) for a.e.
t ∈ T .
(b) A function x(·) : T → E is said to beweaklymeasurable (or scalarlymeasurable) onT

if for every x∗ ∈ E∗, the real-valued function t 	→ 〈x∗,x(t)〉 is Lebesgue measurable on T . It
is well known that a weakly measurable and almost separable valued function x(·) : T → E
is strongly measurable [, Theorem .].

Definition . (a) A function x(·) : T → E is said to be absolutely continuous on T (AC,
for short) if for every ε > , there exists δ >  such that

∥∥∥∥∥
m∑
k=

[
x(bk) – x(ak)

]∥∥∥∥∥ < ε

for every finite disjoint family {(ak ,bk);  ≤ k ≤m} of subintervals of T such that
∑m

k=(bk –
ak) < δ. If the last inequality is replaced by

∑m
k= ‖x(bk) – x(ak)‖ < ε, then we say that x(·) is

a strongly absolutely continuous (sAC) function.
(b) A function x(·) : T → E is said to be weakly absolutely continuous (wAC) on T if for

every x∗ ∈ E∗, the real-valued function t 	→ 〈x∗,x(t)〉 is AC on T .

Remark . Each sAC function is an AC function, and each AC function is a wAC func-
tion. If E is a weakly sequentially complete space, then every wAC function is an AC func-
tion [].
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Definition . (a) A function x(·) : T → E is said to be strongly differentiable at t ∈ T if
there exists an element x′

s(t) ∈ E such that

lim
h→

∥∥∥∥x(t + h) – x(t)
h

– x′
s(t)

∥∥∥∥ = .

The element x′
s(t) will also be denoted by ds

dt x(t) and it is called the strong derivative of
x(·) at t ∈ T .
(b) A function x(·) : T → E is said to be weakly differentiable at t ∈ T if there exists an

element x′
w(t) ∈ E such that

lim
h→

〈
x∗,

x(t + h) – x(t)
h

〉
=

〈
x∗,x′

w(t)
〉

for every x∗ ∈ E∗. The element x′
w(t) will be also denoted by dw

dt x(t) and it is called the
weak derivative of x(·) at t ∈ T .

Proposition . [, Theorem ..] If E is a weakly sequentially complete space and
x(·) : T → E is a function such that for every x∗ ∈ E∗, the real function t 	→ 〈x∗,x(t)〉 is
differentiable T , then x(·) is weakly differentiable on T .

Proposition . [, Theorem .] If x(·) : T → E is an a.e. weakly differentiable on T ,
then its weak derivative x′

w(·) is strongly measurable on T .

Definition . A function x(·) : T → E is said to be pseudo-differentiable on T to a func-
tion y(·) : T → E if for every x∗ ∈ E∗, there exists a null set N(x∗) ∈L(T) such that the real
function t 	→ 〈x∗,x(t)〉 is differentiable on T \N(x∗) and

d
dt

〈
x∗,x(t)

〉
=

〈
x∗, y(t)

〉
, t ∈ T \N(

x∗). ()

The function y(·) is called a pseudo-derivative of x(·) and it will be denoted by x′
p(·) or by

dp
dt x(·).

Definition . A weakly measurable function x(·) : T → E is said to be Pettis integrable
on T if
(a) x(·) is scalarly integrable; that is, for every x∗ ∈ E∗, the real function t 	→ 〈x∗,x(t)〉 is

Lebesgue integrable on T ;
(b) for every set A ∈L(T), there exists an element xA ∈ E such that

〈
x∗,xA

〉
=

∫
A

〈
x∗,x(s)

〉
ds ()

for every x∗ ∈ E∗. The element xA ∈ E is called the Pettis integral on A and it will be
denoted by

∫
A x(s)ds.

Remark . (a) It is known that if x(·) : T → E is Bochner integrable on T , then the func-
tion y(·) : T → E, given by

y(t) = (B)
∫ t


x(s)ds, t ∈ T ,
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is AC and a.e. differentiable on T , and y′
s(t) = x(t) for a.e. t ∈ T . Also, if a function x(·) :

T → E is AC and a.e. strongly differentiable on T , then x′
s(·) is Bochner integrable on T

and

x(t) = x() + (B)
∫ t


x′
s(s)ds, t ∈ T .

(b) In the case of the Pettis integral, in [] it was shown that if x(·) : T → E is an AC and
a.e. weakly differentiable on T , then x′

w(·) is Pettis integrable on T and

x(t) = x() +
∫ t


x′
w(s)ds, t ∈ T .

In  Kadets [] proved that there exists a strongly measurable and Pettis integrable
function x(·) : T → E such that the indefinite Pettis integral

y(t) =
∫ t


x(s)ds, t ∈ T , ()

is not weakly differentiable on a set of positive Lebesgue measures (see also [, ]).

Proposition . [] Let x(·) : T → E be a weakly measurable function.
(a) If x(·) is Pettis integrable on T , then the indefinite Pettis integral () is AC on T and

x(·) is a pseudo-derivative of y(·).
(b) If y(·) : T → E is an AC function on T and it has a pseudo-derivative x(·) on T , then

x(·) is Pettis integrable on T and

y(t) = y() +
∫ t


x(s)ds, t ∈ T .

It is known that the Pettis integrals of two strongly measurable functions x(·) : T → E
and y(·) : T → E coincide over every Lebesgue measurable set in T if and only if x(·) =
y(·) a.e. on T [, Theorem .]. Since a pseudo-derivative of the pseudo-differentiable
function x(·) : T → E is not unique and two pseudo-derivatives of x(·) need not be a.e.
equal, then the concept of weak equivalence plays an important role in the following.

Definition . Two weak measurable functions x(·) : T → E and y(·) : T → E are said to
be weakly equivalent on T if for every x∗ ∈ E∗, we have that 〈x∗,x(t)〉 = 〈x∗, y(t)〉 for a.e.
t ∈ T .

Proposition . A weakly measurable function x(·) : T → E is Pettis integrable on T and
〈x∗,x(·)〉 ∈ L∞(T) for every x∗ ∈ E∗ if and only if the function t 	→ ϕ(t)x(t) is Pettis integrable
on T for every ϕ(·) ∈ L(T).

Let us denote by P∞(T ,E) the space of all weakly measurable and Pettis integrable func-
tions x(·) : T → E with the property that 〈x∗,x(·)〉 ∈ L∞(T) for every x∗ ∈ E∗. Since for each
t ∈ T the real-valued function s 	→ (t – s)α– is Lebesgue integrable on [, t] for every α > 
then, by Proposition ., the fractional Pettis integral

Iαx(t) :=
∫ t



(t – s)α–

�(α)
x(s)ds, t ∈ T ,
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exists for every function x(·) ∈ P∞(T ,E) as a function from T into E. Moreover, we have
that

〈
x∗, Iαx(t)

〉
=

∫ t



(t – s)α–

�(α)
〈
x∗,x(s)

〉
ds, t ∈ T

for every x∗ ∈ E∗, and the real function t 	→ 〈x∗, Iαx(t)〉 is continuous (in fact, bounded
and uniformly continuous on T if T =R) on T for every x∗ ∈ E∗ [, Proposition ..].

Proposition . If f (·, ·) : T × E → E is a function such that f (·, y(·)) ∈ P∞(T ,E) for every
wAC function y(·) : T → E, then the function fα(·) given by

fα(t) =
∫ t



(t – s)–α

�(α)
f
(
s, y(s)

)
ds, t ∈ T , ()

has the following properties:
(a) fα(·) is wAC on T ;
(b) f (·, y(·)) is a pseudo-derivative of fα(·);
(c) fα() = .

If E is a weakly sequentially complete space, then wAC is replaced by AC.

In the following, consider α ∈ (, ). If y(·) : T → E is a pseudo-differentiable function
with a pseudo-derivative x(·) ∈ P∞(T ,E) on T , then the following fractional Pettis integral

I–αx(t) =
∫ t



(t – s)–α

�( – α)
x(s)ds

exists on T . The fractional Pettis integral I–αx(·) is called a fractional pseudo-derivative
of y(·) on T and it will be denoted by Dα

py(·); that is,

Dα
px(t) = I–αx(t), t ∈ T . ()

If y(·) : T → E is an a.e. weakly differentiable function with the weak derivative y′
w(·) ∈

P∞(T ,E) on T , then

Dα
wy(t) := I–αy′

w(t), t ∈ T , ()

is called the fractional weak derivative of y(·) on T .
The following results will be useful (see [] and []).

Remark . [] If y(·) : T → E is a pseudo-differentiable function with a pseudo-
derivative x(·) ∈ P∞(T ,E), then (a) IαDα

py(t) = y(t) – y() on T ; (b) Dα
p Iαy(t) = y(t) on T .

Remark . [] The fractional Pettis integral is a linear operator from P∞(T ,E) into
P∞(T ,E). Moreover, if x(·) ∈ P∞(T ,E), then for α > , β > , we have

IαIβx(t) = Iα+βx(t), t ∈ T . ()

http://www.advancesindifferenceequations.com/content/2013/1/302
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3 Fractional differential equations
In this section we establish an existence result for the fractional differential equation

(
Dαm –

m–∑
i=

aiDαi

)
u(t) = f

(
t,u(t)

)
for t ∈ [, ], u() = , ()

where Dαm
p y(·) and Dαi

p y(·) are fractional pseudo-derivatives of the function u(·) : T → E
of order αm and αi, i = , , . . . ,m – , respectively and f (·, ·) : T × E → E is a given
function,  < α < α < · · · < αm <  and a,a, . . . ,am– are real numbers such that
a :=

∑m–
i=

|ai|
�(αm–αi+)

< . Along with Cauchy problem (), consider the integral equation

u(t) =
m–∑
i=

∫ t



ai(t – s)(αm–αi–)

�(αm – αi)
u(s)ds +

∫ t



(t – s)αm–

�(αm)
f
(
s,u(s)

)
ds, t ∈ T , ()

where the integral is in the sense of Pettis.

Definition . A wAC function (or an AC function, if E is a weakly sequentially complete
space) u(·) : T → E is said to be a solution of () if

(i) u(·) has pseudo-derivative of order αi, i = , , . . . ,n,
(ii) the pseudo-derivative of u(·) of order αi, i = , , . . . ,n, belongs to P∞(T ,E),
(iii) (Dαm –

∑m–
i= aiDαi )u(t) = f (t,u(t)) for all t ∈ T ,

(iv) u() = .

Lemma . Let f (·, ·) : T × E → E be a function such that f (·,u(·)) ∈ P∞(T ,E) for every
wAC function u(·) : T → E. Then a wAC function u(·) : T → E is a solution of () if and
only if it satisfies the integral equation ().

Proof Indeed, if a wAC function u(·) : T → E is a solution of (), then from Remark .(a)
and Remark . it follows that u(t) =

∑m–
i= Iαm–αiaiu(t) + Iαmf (t,u(t)) on T ; that is,

u(·) satisfies the integral equation (). Conversely, suppose that a wAC function u(·) :
T → E satisfies the integral equation (). Since f (·,u(·)) ∈ P∞(T ,E), then from Proposi-
tion . it follows that the function t 	→ Iαmf (t,u(t)) has a pseudo-derivative belonging to
P∞(T ,E).Thus, using Remark .(b), () and (), we obtain that (Dαm –

∑m–
i= aiDαi )u(t) =

f (t,u(t)) on T . �

Let us denote by Pwk(E) the set of all weakly compact subsets of E. The weak measure
of noncompactness is the set function β : Pwk(E)→R

+ defined by

β(A) = inf
{
r > ; there exist K ∈ Pwk(E) such A ⊂ K + rB

}
,

where B is the closed unit ball in E. The properties of weak noncompactness measure are
analogous to the properties of measure of noncompactness. If A,B ∈ Pwk(E),

(N) A⊆ B implies that β(A) ≤ β(B);
(N) β(A) = β(clw(A)), where clw(A) denotes the weak closure of A;
(N) β(A) =  if and only if clw(A) is weakly compact;
(N) β(A∪ B) =max{β(A),β(B)};

http://www.advancesindifferenceequations.com/content/2013/1/302
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(N) β(A) = β(conv(A));
(N) β(A + B) ≤ β(A) + β(B);
(N) β(x +A) = β(A), for all x ∈ E;
(N) β(κA) = |κ|β(A), for all κ ∈ R;
(N) β(

⋃
≤r≤r rA) = rβ(A);

(N) β(A) ≤ diam(A).

LetT = [,a] and letC(T ,E) denote the space of all strong continuous functions y(·) : T →
E, endowed with the supremum norm ‖y(·)‖c = supt∈T ‖y(t)‖. Also, C(T ,Ew) denotes the
space of all weakly continuous functions from T into Ew endowed with the topology of
weak uniform convergence. It is known that (see [, ])

C(T ,E)∗ =M
(
T ,E∗),

where M(T ,E∗) is the space of all bounded regular vector measures from B(T) into E∗

which are of bounded variation. Here, B(T) denotes the σ -algebra of Borel measurable
subsets of T .

Lemma . [] Let Y ⊂ C(T ,E) be bounded and equicontinuous. Then
(i) the function t → β(Y (t)) is continuous on T ,
(ii) βc(Y ) = supt∈T β(Y (t)) = β(Y (t)),

where βc(·) denotes the weak measure of noncompactness in C(T ,E) and Y (t) = {u(t);u ∈
Y }, t ∈ T .

By a Kamke function we mean a function g : R+ → R+ such that g(·) is continuous,
nondecreasing with g() =  and u≡  is the only solution of

u(t) ≤ 
�(α)

∫ t


(t – s)α–g

(
u(s)

)
ds, u() = . ()

We recall that a function f (·) : E → E is said to be sequentially continuous from Ew into
Ew (or weakly-weakly sequentially continuous) if for every weakly convergent sequence
{xn}n≥ ⊂ E, the sequence {f (xn)}n≥ is weakly convergent in E.

Theorem . Let r > . Let f (·, ·) : T × E → E be a function such that:
(h) f (t, ·) is weakly-weakly sequentially continuous for every t ∈ T ;
(h) f (·,u(·)) is Pettis integrable for every wAC function u(·) : T → E;
(h) ‖f (t,u)‖ ≤M for all (t,u) ∈ T × Br , where Br = {u ∈ E;‖u – u‖ ≤ r};
(h) for all A⊆ Br , we have

β
(
f (T ×A)

) ≤ g
(
β(A)

)
,

where g(·) is a Kamke function. Then () admits a solution u(·) on an interval
[,a] with

a =min

{
,

[
r( – a)�(αm + )

M

]/αm}
.

http://www.advancesindifferenceequations.com/content/2013/1/302
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Proof Let B̃r denote the set of all wAC functions u : [,a] → Br , and we consider the
nonlinear operator Q(·) defined by

(Qu)(t) =
m–∑
i=

∫ t



ai(t – s)(αm–αi–)

�(αm – αi)
u(s)ds +

∫ t



(t – s)αm–

�(αm)
f
(
s,u(s)

)
ds

for all t ∈ [,a]. Since the function f (·,u(t)) ∈ P∞(T ,E) for every u(·) ∈ B̃r , then by Propo-
sition . it follows that the real function t 	→ (Qu)(t) iswAC onT for every u(·) ∈ B̃r . Now,
since

∥∥(Qu)(t)
∥∥

=

∥∥∥∥∥
m–∑
i=

ai
�(αm – αi)

∫ t


(t – s)αm–αi–u(s)ds +


�(αm)

∫ t


(t – s)αm–f

(
s,u(s)

)
ds

∥∥∥∥∥
≤

m–∑
i=

r|ai|
�(αm – αi)

∫ t


(t – s)αm–αi– ds +

M
�(αm)

∫ t


(t – s)αm– ds

≤
m–∑
i=

r|ai|
�(αm – αi + )

+
Mtαm

�(αm + )
≤ ra + ( – a)r,

we obtain that

∥∥(Qu)(t)
∥∥ ≤ r.

Thus Qmaps B̃r into B̃r . Next, we show that Q is weakly-weakly sequentially continuous.
For this let {un(·)}n≥ be a sequence in C([,a],E) such that un(·) w→ u(·) as n → ∞ (that
is, un(·) converges weakly to u(·) in C([,a],E)). Since (C([,a],E)∗) =M([,a],E∗), it
follows that

〈
m(·),un(·) – u(·)〉 →  as n→ ∞ ()

for all m(·) ∈ M([,a],E∗). Let x∗ ∈ E∗ and t ∈ [,a]. If we take m(·) = x∗δt(·), where δt

is the Dirac measure concentrated in t, then m(·) ∈ M([,a],E∗) and from () it follows
that

〈
x∗,un(t) – u(t)

〉 →  as n→ ∞.

Therefore, for each t ∈ [,a], un(t) converges weakly to u(t) in E. Further, by (h) it
follows that f (s,un(s)) converges weakly to f (s,u(s)) in E for each t ∈ [,a]. Hence, us-
ing Lemma . from [], it follows that Iαun(·) converges weakly to Iαu(·) in E for all
t ∈ [,a], and also we have that {un} converges to u weakly. Then, by the Lebesgue dom-
inated convergence theorem for Pettis integral (see []), we obtain

lim
n→∞

〈
m(·),Qun(·) –Qu(·)〉 = lim

n→∞

∫ a



[m–∑
i=

ai
�(αm – αi)

∫ t


(t – s)αm–αi–un(s)ds

+


�(αm)

∫ t


(t – s)αm–f

(
s,un(s)

)
ds

http://www.advancesindifferenceequations.com/content/2013/1/302
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–
m–∑
i=

ai
�(αm – αi)

∫ t


(t – s)αm–αi–u(s)ds

–


�(αm)

∫ t


(t – s)αm–f

(
s,u(s)

)
ds

]
dm(s),

lim
n→∞

〈
m(·),Qun(·) –Qu(·)〉 = lim

n→∞

∫ a



{m–∑
i=

∫ t



(t – s)αm–αi–ai[un(s) – u(s)]
�(αm – αi)

ds

+


�(αm)

∫ t


(t – s)αm–[f (s,un(s)) – f

(
s,u(s)

)]
ds

}
dm(s)

= lim
n→∞

∫ a



[


�(αm)

∫ t


(t – s)αm–f

(
s,un(s)

)
ds

–


�(αm)

∫ t


(t – s)αm–f

(
s,u(s)

)
ds

]
dm(s)

= lim
n→∞

∫ a



[
Iαun(t) – Iαu(t)

]
dm(s) = 

for allm(·) ∈M([,a],E∗). Therefore,Q is weakly-weakly continuous. Next, for any n ≥ ,
we define the sequence {un(·)}n≥ as follows:

un(t) =  if  ≤ t ≤ a
n
,

un(t) =
m–∑
i=

∫ t



ai(t – s)(αm–αi–)

�(αm – αi)
un(t)ds +

∫ t



(t – s)αm–

�(αm)
f
(
s,un(t)

)
ds if

a
n

≤ t ≤ a.

Obviously, un ∈ B̃r for all n≥ . Further, for all n≥ , if t ∈ [,ao/n], then

∥∥un(t) – (
Qun(t)

)∥∥ =
∥∥(Qun)(t)

∥∥
=

∥∥∥∥∥
m–∑
i=

ai
�(αm – αi)

∫ t


(t – s)αm–αi–un(s)ds

+


�(αm)

∫ t


(t – s)αm–f

(
s,un(s)

)
ds

∥∥∥∥∥
≤

m–∑
i=

r|ai|tαm–αi

�(αm – αi)(αm – αi)
+

Mtαm

�(αm)

=
m–∑
i=

r|ai|(a/n)αm–αi

�(αm – αi + )
+
M(a/n)αm

�(αm + )
.

If t ∈ [a/n,a], then

∥∥un(t) – (Qun)(t)
∥∥ =

∥∥∥∥∥
(m–∑

i=

ai
�(αm – αi)

∫ t–a/n


(t – s)αm–αi–un(s)ds

+


�(αm)

∫ t–a/n


(t – s)αm–f

(
s,un(s)

)
ds
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–
m–∑
i=

ai
�(αm – αi)

∫ t


(t – s)αm–αi–un(s)ds

–


�(αm)

∫ t


(t – s)αm–f

(
s,un(s)

)
ds

)∥∥∥∥∥
=

∥∥∥∥∥
m–∑
i=

ai
�(αm – αi)

[∫ t


(t – s)αm–αi–un(s)ds

–
∫ t–a/n


(t – s)αm–αi–un(s)ds

]
+


�(αm)

[∫ t


(t – s)αm–f

(
s,un(s)

)
ds

–
∫ t–a/n


(t – s)αm–f

(
s,un(s)

)
ds

]∥∥∥∥∥
≤

m–∑
i=

r|ai|(a/n)αm–αi

�(αm – αi + )
+
M(a/n)αm

�(αm + )
.

Thus we obtain that for all t ∈ [,a],

lim
n→∞‖un –Qun‖c = . ()

Let V = {un(·);n≥ } andW =Q(V ) = {Qun(·);n≥ }. If s, t ∈ [,a/n] and s < t, then

∥∥Qun(s) –Qun(t)
∥∥ =

∥∥∥∥∫ t



(t – τ )αm–f (τ , )
�(αm)

dτ –
∫ s



(s – τ )αm–

�(αm)
f (τ , )dτ

∥∥∥∥
=

∥∥∥∥∫ s



(t – τ )αm–f (τ , )
�(αm)

dτ +
∫ t

s

(t – τ )αm–f (τ , )
�(αm)

dτ

–
∫ s



(s – τ )αm–

�(αm)
f (τ , )dτ

∥∥∥∥
≤ M

�(αm)

∫ s



[
(s – τ )αm– – (t – τ )αm–]dτ

+
M

�(αm)

∫ t

s
(t – τ )αm– dτ

≤ M
�(αm + )

[
(t – s)αm

]
.

If s, t ∈ [a/n,a] and s < t, then

∥∥Qun(t) –Qun(s)
∥∥ =

∥∥∥∥∥
m–∑
i=

ai
�(αm – αi)

[∫ t


(t – τ )αm–αi–un(τ )dτ

–
∫ s


(s – τ )αm–αi–un(τ )dτ

]
+


�(αm)

[∫ t


(t – τ )αm–f

(
τ ,un(τ )

)
dτ

–
∫ s


(s – τ )αm–f

(
τ ,un(τ )

)
dτ

]∥∥∥∥∥
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≤
∥∥∥∥∥
m–∑
i=

ai
�(αm – αi)

[∫ s



[
(s – τ )αm–αi– – (t – τ )αm–αi–

]
un(τ )dτ

–
∫ t

s
(t – τ )αm–αi–un(τ )dτ

]∥∥∥∥∥
+

∥∥∥∥ 
�(αm)

[∫ s



[
(s – τ )αm– – (t – τ )αm–]f (τ ,un(τ ))dτ

–
∫ t

s
(t – τ )αm–f

(
τ ,un(τ )

)
dτ

]∥∥∥∥
≤

m–∑
i=

r|ai|
�(αm – αi + )

[∫ s



[
(s – τ )αm–αi– – (t – τ )αm–αi–

]
dτ

]

+
∫ t

s
(t – τ )αm–αi– dτ

+
M

�(αm)

[∫ s



[
(s – τ )αm– – (t – τ )αm–]dτ

+
∫ t

s
(t – τ )αm– dτ

]

≤ 

[m–∑
i=

r|ai|
�(αm – αi + )

+
M

�(αm + )

]
(t – s)αm .

If s ∈ [,a/n] and t ∈ [a/n,a], then

∥∥Qun(s) –Qun(t)
∥∥ =

∥∥∥∥∥
∫ s



(s – τ )αm–

�(αm)
f (τ , )ds –

m–∑
i=

∫ t



ai(t – τ )(αm–αi–)

�(αm – αi)
un(τ )dτ

–
∫ t



(t – τ )αm–

�(αm)
f
(
τ ,un(τ )

)
ds

∥∥∥∥∥
=

∥∥∥∥∥ 
�(αm)

∫ s



[
(t – τ )αm– – (s – τ )αm–]f (τ , )dτ

+
∫ t

s

(t – τ )αm–

�(αm)
f
(
τ ,un(τ )

)
ds

+
m–∑
i=

∫ t

s

ai(t – τ )(αm–αi–)

�(αm – αi)
un(τ )dτ

∥∥∥∥∥
≤ M

�(αm)

∫ s



[
(t – τ )αm– – (s – τ )αm–]dτ

+
∫ t

s

M(t – τ )αm–

�(αm)
dτ +

m–∑
i=

∫ t

s

|ai|r(t – τ )(αm–αi–)

�(αm – αi)
dτ

≤ M
�(αm + )

[
sαm + (t – s)αm – tαm + (t – s)αm

]
+

r
∑m–

i=
�(αm – αi + )

(t – s)αm–αi

≤
[

M
�(αm + )

+
r
∑m–

i=
�(αm – αi + )

]
(t – s)αm .
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It follows from the above three cases that W is equicontinuous, and by () we obtain
that V is also equicontinuous. By virtue of Lemma . and (), we have that

βc(V –W ) = β
(
(I –Q)(V )

)
= sup

t∈[,a]
β(I –Q)

(
V (t)

)
= .

Since for all t ∈ [,a] we have that V (t) ⊆ V (t) –W (t) +W (t), it follows that

β
(
V (t)

) ≤ β
(
W (t)

)
for t ∈ [,a]. ()

On the other hand, for all t ∈ [,a], we have W (t) ⊆ W (t) – V (t) + V (t) = V (t) – (I –
Q)(V (t)), and so

β
(
W (t)

) ≤ β
(
V (t)

)
for t ∈ [,a]. ()

From () and (), we infer that

β
(
W (t)

)
= β

(
V (t)

)
for t ∈ [,a]. ()

Further, fix t ∈ T, ε >  and choose η >  such that η < ( ε�(αm+)
M+r�(αm+) )

/αm . Then

∥∥∥∥∥
m–∑
i=

ai
�(αm – αi)

∫ t

t–η

(t – s)αm–αi–u(s)ds +


�(αm)

∫ t

t–η

(t – s)αm–f
(
s,u(s)

)
ds

∥∥∥∥∥
≤

m–∑
i=

r|ai|ηαm–αi

�(αm – αi + )
+

Mηαm

�(αm + )

≤
m–∑
i=

r|ai|ηαm

�(αm – αi + )
+

Mηαm

�(αm + )

≤ rηαm +
Mηαm

�(αm + )

≤ M + r�(αm + )
�(αm + )

ηαm < ε.

Hence we conclude that∥∥∥∥∥
m–∑
i=

ai
�(αm – αi)

∫ t

t–η

(t – s)αm–αi–V (s)ds +


�(αm)

∫ t

t–η

(t – s)αm–f
(
s,u(s)

)
ds

∥∥∥∥∥ < ε.

Using the property (N) of noncompactness measure, we infer

β

(m–∑
i=

ai
�(αm – αi)

∫ t

t–η

(t – s)αm–αi–V (s)ds +


�(αm)

∫ t

t–η

(t – s)αm–f
(
s,V (s)

)
ds

)

≤ ε. ()
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Since by Lemma . the function t → v(t) := β(V (t)) is continuous on [, t – η], it follows
that s→ (t – s)αm–g(V (s)) is continuous on [, t – η]. Hence, there exists δ >  such that

∥∥(t – τ )αm–g
(
V (τ )

)
– (t – s)αm–g

(
V (s)

)∥∥ <
ε



and

∥∥g(V (ξ )
)
– g

(
V (τ )

)∥∥ <
ε

ηαm– .

If |τ – s| < δ and |τ – ξ | < δ with τ , s, ξ ∈ [, t – η], then it follows that

∣∣(t – τ )αm–g
(
V (ξ )

)
– (t – s)αm–g

(
V (s)

)∣∣ ≤ ∣∣(t – τ )αm–g
(
V (τ )

)
– (t – s)αm–g

(
V (s)

)∣∣
+ (t – τ )αm–∣∣g(V (ξ )

)
– g

(
V (τ )

)∣∣
< ε,

that is,

∣∣(t – τ )αm–g
(
V (ξ )

)
– (t – s)αm–g

(
V (s)

)∣∣ < ε ()

for all τ , s, ξ ∈ [, t – ξ ] with |τ – s| < δ and |τ – ξ | < δ. Consider the following partition
of the interval [, t – η] into n parts  = t < t < · · · < tn = t – η such that ti– – ti < δ (i =
, , . . . ,n). By Lemma ., for each i, there exists si ∈ [ti–, ti] such that β(V ([ti–, ti])) = v(si),
i = , , . . . ,n. Then we have (see [], Theorem .)

m–∑
i=

ai
�(αm – αi)

∫ t–η


(t – s)αm–αi–V (s)ds +


�(αm)

∫ t–η


(t – s)αm–f

(
s,V (s)

)
ds

⊂
m–∑
i=

ai
�(αm – αi)

∫ t

t–η

(t – s)αm–αi–V (s)ds +
n∑
j=


�(αm)

∫ ti

ti–
(t – s)αm–f

(
s,V (s)

)
ds

⊂
m–∑
i=

ai
�(αm – αi)

∫ t

t–η

(t – s)αm–αi–V (s)ds

+


�(αm)

n∑
i=

(ti – ti–)conv
{
(t – s)αm–f

(
s,u(s)

)
; s ∈ [ti–, ti],u ∈ V

}
,

and so

β

(m–∑
i=

ai
�(αm – αi)

∫ t–η


(t – s)αm–αi–V (s)ds +


�(αm)

∫ t–η


(t – s)αm–f

(
s,V (s)

)
ds

)

≤ β

(m–∑
i=

ai
�(αm – αi)

∫ t–η


(t – s)αm–αi–V (s)ds

)

+


�(αm)

n∑
i=

(ti – ti–)β
(
conv

{
(t – s)αm–f

(
s,u(s)

)
; s ∈ [ti–, ti],u ∈ V

})
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= β

(m–∑
i=

ai
�(αm – αi)

∫ t–η


(t – s)αm–αi–V (s)ds

)

+


�(αm)

n∑
i=

(ti – ti–)β
({
(t – s)αm–f

(
s,u(s)

)
; s ∈ [ti–, ti],u ∈ V

})

≤ β

(m–∑
i=

ai
�(αm – αi)

∫ t–η


(t – s)αm–αi–V (s)ds

)

+


�(αm)

n∑
i=

(ti – ti–)(t – ti)αm–β
(
f
(
[,a]×V [ti–, ti]

))

≤ β

(m–∑
i=

ai
�(αm – αi)

∫ t–η


(t – s)αm–αi–V (s)ds

)

+


�(αm)

n∑
i=

(ti – ti–)(t – ti)αm–g
(
V [ti–, ti]

)

≤ β

(m–∑
i=

ai
�(αm – αi)

∫ t–η


(t – s)αm–αi–V (s)ds

)

+


�(αm)

n∑
i=

(ti – ti–)(t – ti)αm–g
(
V (si)

)
.

Using () we have that

∣∣(t – ti)αm–g
(
V (si)

)
– (t – s)αm–g

(
V (s)

)∣∣ < ε.

This implies that


�(αm)

n∑
j=

(ti – ti–)(t – ti)αm–g
(
V (si)

)
≤ 

�(αm)

∫ t–η


(t – s)αm–g

(
V (s)

)
ds + ε(t – η)/�(αm). ()

By using () we claim that

β

(m–∑
i=

ai
�(αm – αi)

∫ t

t–η

(t – s)αm–αi–V (s)ds

)
≤ ε. ()

If we let

A(t) =


�(αm)

∫ t

t–η

(t – s)αm–f
(
s,V (s)

)
ds,

B(t) =
m–∑
i=

ai
�(αm – αi)

∫ t

t–η

(t – s)αm–αi–V (s)ds,
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then a + B(t) ⊂ A(t) + B(t) for a ∈ A(t), which implies that β(B(t)) ≤ β(A(t) + B(t)) < ε.
From relations () and (), we obtain

β

(m–∑
i=

ai
�(αm – αi)

∫ t–η


(t – s)αm–αi–V (s)ds +


�(αm)

∫ t–η


(t – s)αm–f

(
s,V (s)

)
ds

)

≤ ε +


�(αm)

∫ t–η


(t – s)αm–g

(
V (s)

)
ds + ε(t – η)/�(αm). ()

Since

(QV )(t) ⊂
m–∑
i=

ai
�(αm – αi)

∫ t–η


(t – s)αm–αi–V (s)ds

+
m–∑
i=

ai
�(αm – αi)

∫ t

t–η

(t – s)αm–αi–V (s)ds

+


�(αm)

∫ t–η


(t – s)αm–f

(
s,V (s)

)
ds

+


�(αm)

∫ t

t–η

(t – s)αm–f
(
s,V (s)

)
ds,

then by virtue of () and (), we have

β
(
(QV )(t)

) ≤ 
�(αm)

∫ t–η


(t – s)αm–g

(
V (s)

)
ds + ε(t – η)/�(αm) + ε

≤ 
�(αm)

∫ t


(t – s)αm–g

(
V (s)

)
ds + ε

(
(t + )/�(αm)

)
.

As the last inequality is true for every ε > , we infer

β
(
(QV )(t)

) ≤ 
�(αm)

∫ t


(t – s)αm–g

(
V (s)

)
ds, t ∈ [,a],

and thus by using () it follows that

V (t) ≤ 
�(αm)

∫ t


(t – s)αm–g

(
V (s)

)
ds for t ∈ [,a].

Since g(·) is a Kamke function, then V (t) =  for t ∈ T. Using Lemma ., we infer

βc
(
V (T)

)
= sup

t∈T
β
(
V (t)

)
= .

Thus V is relatively compact in C(T,Ew). Therefore, taking a subsequence if neces-
sary, we can assume that {un(·)}n≥ converges weakly in B̃r to a function u(·). Since Q is
weakly-weakly sequentially continuous, then {un –Qun}n≥ converges weakly to u–Qu in
C(T,Ew). Recalling that the norm is weakly lower semicontinuous [], we obtain that

lim
n→∞ sup‖un –Qun‖c ≥ ‖u –Qu‖c.
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Then from () it follows that ‖u –Qu‖c = , and so

u(t) = u +


�(αm)

∫ t

t–η

(t – s)αm–f
(
s,u(s)

)
ds, t ∈ T.

Using Lemma ., we conclude that u(·) is a solution of (). �

Remark . If α = α = · · · = αm– =  and αm = α ∈ (, ), then we obtain Theorem .
from [].

Let E be a weakly sequentially complete space. It is known that if f (·, ·) is a continuous
function from T ×Ew into Ew, then the function t 	→ f (t, y(t)) is Pettis integrable for every
AC function y(·) : E → E (see [, Lemma ]). Therefore, in the case of weakly sequen-
tially complete spaces, we obtain the following result (see also []).

Corollary . Let E be a weakly sequentially complete space. If f (·, ·) : T × E → E is a
continuous function from T × Ew into Ew and conditions (h)-(h) in Theorem . hold,
then () admits a solution y(·) on an interval [,a] with

a =min

{
,

[
r( – a)�(αm + )

M

]/αm}
.

Remark . If α = α = · · · = αm– =  and αm = , then we obtain some known results.
In this case, Corollary . is a generalization of a result from [] and []. Also, for any
Banach space, the following result is a generalization of Theorem . in [] (see also [,
–]) for α = α = · · · = αm– =  and αm = .

Corollary . If f : T × E → E is a continuous function from T × Ew into Ew such that
clw f (T × B) ∈Pwk(E), then () admits a solution on [,a] with

a =min

{
,

[
r( – a)�(αm + )

M

]/αm}
.

If E is a reflexive Banach space, it is not necessary to assume any compactness conditions
since in this case a subset of E is weakly compact if and only if it is weakly closed and norm
bounded. Thus, arguing similarly as in the proof of Theorem ., we obtain the following
result.

Corollary . [] Let E be a reflexive Banach space. If f : T × E → E is a continuous
function from T ×Ew into Ew such that ‖f (t, y)‖ ≤M for all (t, y) ∈ T ×Br , then () admits
a solution on [,a] with

a =min

{
,

[
r( – a)�(αm + )

M

]/αm}
.

Remark . If α = α = · · · = αm– =  and αm = , then we obtain Theorem  from [],
Theorem . from [], and using the conditions of Corollary ., we obtain some known
results from [].
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