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Abstract
In this paper, by using the orthogonality type as defined in the umbral calculus, we
derive an explicit formula for several well-known polynomials as a linear combination
of the Apostol-Euler polynomials.
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1 Introduction
Let�n be the set of all polynomials in a single variable x over the complex fieldC of degree
at most n. Clearly, �n is a (n + )-dimensional vector space over C. Define

H =
{
f (t) =

∑
k≥

ak
tk

k!

∣∣∣ak ∈C

}
(.)

to be the algebra of formal power series in a single variable t. As is known, 〈L|p(x)〉 denotes
the action of a linear functional L ∈H on a polynomial p(x), and we remind that the vector
space on �n is defined by

〈
cL + c′L′|p(x)〉 = c

〈
L|p(x)〉 + c′

〈
L′|p(x)〉

for any c, c′ ∈ C and L,L′ ∈ H (see [–]). The formal power series in variable t define a
linear functional on �n by setting

〈
f (t)|xn〉 = an for all n≥  (see [–]). (.)

By (.) and (.), we have

〈
tk|xn〉 = n!δn,k for all n,k ≥  (see [–]), (.)

where δn,k is the Kronecker symbol. Let fL(t) =
∑

k≥〈L|xk〉 tkk! with L ∈ H. From (.),
we have 〈fL(t)|xn〉 = 〈L|xn〉. So, the map L �→ fL(t) is a vector space isomorphic from �n

ontoH. Henceforth,H is thought of as a set of both formal power series and linear func-
tionals. We callH umbral algebra. The umbral calculus is the study of umbral algebra.
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Let f (t) ∈ H. The smallest integer k for which the coefficient of tk does not vanish is
called the order of f (t) and is denoted by O(f (t)) (see [–]). If O(f (t)) = , O(f (t)) = ,
then f (t) is called a delta, an invertible series, respectively. For given two power series
f (t), g(t) ∈ H such that O(f (t)) =  and O(g(t)) = , there exists a unique sequence Sn(x)
of polynomials with 〈g(t)(f (t))k|Sn(x)〉 = n!δn,k (this condition sometimes is called orthogo-
nality type) for all n,k ≥ . The sequence Sn(x) is called the Sheffer sequence for (g(t), f (t))
which is denoted by Sn(x)∼ (g(t), f (t)) (see [–]).
For f (t) ∈H and p(x) ∈ �, we have

〈
eyt|p(x)〉 = p(y),

〈
f (t)g(t)|p(x)〉 = 〈

f (t)|g(t)p(x)〉, (.)

and

f (t) =
∑
k≥

〈
f (t)|xk 〉 tk

k!
, p(x) =

∑
k≥

〈
tk|p(x)〉xk

k!
(.)

(see [–]). From (.), we derive

〈
tk|p(x)〉 = p(k)(),

〈
|p(k)(x)〉 = p(k)(), (.)

where p(k)() denotes the kth derivative of p(x) with respect to x at x = . Let Sn(x) ∼
(g(t), f (t)). Then we have


g(f̄ (t))

eyf̄ (t) =
∑
k≥

Sk(y)
tk

k!
, (.)

for all y ∈C, where f̄ (t) is the compositional inverse of f (t) (see [–]).
For λ ∈ C with λ 
= –, the Apostol-Euler polynomials (see [–]) are defined by the

generating function to be


λet + 

ext =
∑
k≥

Ek(x|λ) t
k

k!
. (.)

In particular, x = , En(|λ) = En(λ) is called the nth Apostol-Euler number. From (.), we
can derive

En(x|λ) =
n∑

k=

(
n
k

)
En–k(λ)xk . (.)

By (.), we have d
dxEn(x|λ) = nEn–(x|λ). Also, from (.) we have


λet + 

= eE(λ)t =
∑
n≥

En(λ)
tn

n!
(.)

with the usual convention about replacing En(λ) by En(λ). By (.), we get

 = eE(λ)t
(
λet + 

)
= λe(E(λ)+)t + eE(λ)t =

∑
n≥

(
λ
(
E(λ) + 

)n + En(λ)
) tn
n!
.
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Thus, by comparing the coefficients of the both sides, we have

λ
(
E(λ) + 

)n + En(λ) = δn,. (.)

As is well known, the Bernoulli polynomial (see [–]) is also defined by the generating
function to be

t
et – 

ext =
∑
k≥

Bk(x)
tk

k!
. (.)

In the special case, x = , Bn() = Bn is called the nth Bernoulli number. By (.), we get

Bn(x) =
n∑

k=

(
n
k

)
Bn–kxk . (.)

From (.), we note that

t
et – 

= eBt =
∑
n≥

Bn
tn

n!
(.)

with the usual convention about replacing Bn by Bn. By (.) and (.), we get

t = eBt
(
et – 

)
= e(B+)t – eBt =

∑
n≥

(
(B + )n – Bn

) tn
n!
,

which implies

Bn() – Bn = (B + )n – Bn = δn,, B = . (.)

Euler polynomials (see [, , , ]) are defined by


et + 

ext =
∑
k≥

Ek(x)
tk

k!
. (.)

In the special case, x = , En() = En is called the nth Euler number. By (.), we get


et + 

= eEt =
∑
n≥

En
tn

n!
(.)

with the usual convention about replacing En by En. By (.) and (.), we get

 = eEt
(
et + 

)
= e(E+)t + eEt =

∑
n≥

(
(E + )n + En

) tn
n!
,

which implies

En() + En = (E + )n + En = δn,. (.)
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For λ ∈C with λ 
= –, the Frobenius-Euler (see [, –]) polynomials are defined by

 + λ

et + λ
ext =

∑
k≥

Fk(x|–λ)
tk

k!
. (.)

In the special case, x = , Fn(|–λ) = Fn(–λ) is called the nth Frobenius-Euler number
(see []). By (.), we get

 + λ

et + λ
= eFt =

∑
n≥

Fn(–λ)
tn

n!
(.)

with the usual convention about replacing Fn(–λ) by Fn(–λ) (see []). By (.) and (.),
we get

 + λ = eF(–λ)t(et + λ
)
= e(F(–λ)+)t + λeF(–λ)t =

∑
n≥

((
F(–λ) + 

)n + λFn(–λ)
) tn
n!
,

which implies

λFn(–λ) + Fn(|–λ) = λFn(–λ) +
(
F(–λ) + 

)n = ( + λ)δn,. (.)

In the next section, we present ourmain theorem and its applications.More precisely, by
using the orthogonality type, we write any polynomial in�n as a linear combination of the
Apostol-Euler polynomials. Several applications related to Bernoulli, Euler and Frobenius-
Euler polynomials are derived.

2 Main results and applications
Note that the set of the polynomials E(x|λ),E(x|λ), . . . ,En(x|λ) is a good basis for �n.
Thus, for p(x) ∈ �n, there exist constants c, c, . . . , cn such that p(x) =

∑n
k= ckEk(x|λ).

Since En(x|λ)∼ (( + λet)/, t) (see (.) and (.)), we have

〈
 + λet


tk

∣∣∣En(x|λ)
〉
= n!δn,k ,

which gives

〈
 + λet


tk

∣∣∣p(x)
〉
=

n∑
�=

c�
〈
 + λet


tk

∣∣∣E�(x|λ)
〉
=

n∑
�=

c��!δ�,k = k!ck .

Hence, we can state the following result.

Theorem . For all p(x) ∈ �n, there exist constants c, c, . . . , cn such that p(x) =∑n
k= ckEk(x|λ), where

ck =

k!

〈(
 + λet

)
tk|p(x)〉.
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Now, we present several applications for our theorem. As a first application, let us take
p(x) = xn with n≥ . By Theorem ., we have xn =

∑n
k= ckEk(x|λ), where

ck =

k!

〈(
 + λet

)
tk|xn〉 = 



(
n
k

)〈
 + λet|xn–k 〉 = 



(
n
k

)
(δn–k, + λ),

which implies the following identity.

Corollary . For all n ≥ ,

xn =


En(x|λ) + λ



n∑
k=

(
n
k

)
Ek(x|λ).

Let p(x) = Bn(x) ∈ �n, then by Theorem . we have that Bn(x) =
∑n

k= ckEk(x|λ), where

ck =

k!

〈(
 + λet

)
tk|Bn(x)

〉
=



(
n
k

)〈
 + λet|Bn–k(x)

〉

=



(
n
k

)(
Bn–k + λBn–k()

)
,

which, by (.), implies the following identity.

Corollary . For all n ≥ ,

Bn(x) =
(λ – )n


En–(x|λ) +  + λ



n∑
k=,k 
=n–

(
n
k

)
Bn–kEk(x|λ).

Let p(x) = En(x), then by Theorem . we have that En(x) =
∑n

k= ckEk(x|λ), where

ck =

k!

〈(
 + λet

)
tk|En(x)

〉
=



(
n
k

)〈
 + λet|En–k(x)

〉

=



(
n
k

)(
En–k + λEn–k()

)
,

which, by (.), implies the following identity.

Corollary . For all n ≥ ,

En(x) =
 + λ



n∑
k=

(
n
k

)
En–kEk(x|λ).

For another application, let p(x) = Fn(x|–λ), then byTheorem.we have that Fn(x|–λ) =∑n
k= ckEk(x|λ), where

ck =

k!

〈(
 + λet

)
tk|Fn(x|–λ)

〉
=



(
n
k

)〈
 + λet|Fn–k(x|–λ)

〉

=



(
n
k

)(
Fn–k(–λ) + λFn–k(|–λ)

)
,

which, by (.), implies the following identity.
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Corollary . For all n ≥ ,

Fn(x|–λ) =
 + λ


En(x|λ) +  – λ



n–∑
k=

(
n
k

)
Fn–k(–λ)Ek(x|λ).

Again, let p(x) = yn(x) =
∑n

k=
(n+k)!
(n–k)!k!

xk
k be the nth Bessel polynomial (which is the so-

lution of the following differential equation xf ′′(x) + (x + )f ′ + n(n + )f = , where
f ′(x) denotes the derivative of f (x), see [, ]). Then, by Theorem ., we can write
yn(x) =

∑n
k= ckEk(x|λ), where

ck =

k!

n∑
�=

(n + �)!
(n – �)!�!�

〈
 + λet|tkx�

〉

=



n∑
�=k

(n + �)!
(n – �)!�!�

(
�

k

)〈
 + λet|x�–k 〉

=



n∑
�=k

(n + �)!
(n – �)!�!�

(
�

k

)
(δn–k, + λ)

=
k!
k+

(
n
k

)(
n + k
k

)
+ λ

n∑
�=k

k!
�+

(
�

k

)(
n
�

)(
n + �

�

)
,

which implies the following identity.

Corollary . For all n ≥ ,

yn(x) =
n∑

k=

k!
k+

(
n
k

)(
n + k
k

)
Ek(x|λ) + λ

n∑
k=

n∑
�=k

k!
�+

(
�

k

)(
n
�

)(
n + �

�

)
Ek(x|λ).

We end by noting that if we substitute λ =  in any of our corollaries, then we get the
well-known value of the polynomial p(x). For instance, by setting λ = , the last corollary
gives that yn(x) =

∑n
k=

(n+k)!
(n–k)!k!

xk
k , as expected.
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