Apostol-Euler polynomials arising from umbral calculus

Taekyun Kim ${ }^{1 *}$, Toufik Mansour ${ }^{2}$, Seog-Hoon Rim ${ }^{3}$ and Sang-Hun Lee ${ }^{4}$

"Correspondence: tkkim@kw.ac.kr
Department of Mathematics, Kwangwoon University, Seoul, S. Korea

Full list of author information is available at the end of the article

Abstract

In this paper, by using the orthogonality type as defined in the umbral calculus, we derive an explicit formula for several well-known polynomials as a linear combination of the Apostol-Euler polynomials. MSC: 05A40 Keywords: Bernoulli polynomial; Bessel polynomial; Euler polynomial; Frobenius-Euler polynomial; umbral calculus

1 Introduction

Let Π_{n} be the set of all polynomials in a single variable x over the complex field \mathbb{C} of degree at most n. Clearly, Π_{n} is a $(n+1)$-dimensional vector space over \mathbb{C}. Define

$$
\begin{equation*}
\mathcal{H}=\left\{\left.f(t)=\sum_{k \geq 0} a_{k} \frac{t^{k}}{k!} \right\rvert\, a_{k} \in \mathbb{C}\right\} \tag{1.1}
\end{equation*}
$$

to be the algebra of formal power series in a single variable t. As is known, $\langle L \mid p(x)\rangle$ denotes the action of a linear functional $L \in \mathcal{H}$ on a polynomial $p(x)$, and we remind that the vector space on Π_{n} is defined by

$$
\left\langle c L+c^{\prime} L^{\prime} \mid p(x)\right\rangle=c\langle L \mid p(x)\rangle+c^{\prime}\left\langle L^{\prime} \mid p(x)\right\rangle
$$

for any $c, c^{\prime} \in \mathbb{C}$ and $L, L^{\prime} \in \mathcal{H}$ (see [1-4]). The formal power series in variable t define a linear functional on Π_{n} by setting

$$
\begin{equation*}
\left\langle f(t) \mid x^{n}\right\rangle=a_{n} \quad \text { for all } n \geq 0 \text { (see [1-4]). } \tag{1.2}
\end{equation*}
$$

By (1.1) and (1.2), we have

$$
\begin{equation*}
\left\langle t^{k} \mid x^{n}\right\rangle=n!\delta_{n, k} \quad \text { for all } n, k \geq 0 \text { (see [1-4]), } \tag{1.3}
\end{equation*}
$$

where $\delta_{n, k}$ is the Kronecker symbol. Let $f_{L}(t)=\sum_{k \geq 0}\left\langle L \mid x^{k}\right\rangle \frac{\rangle^{k}}{k!}$ with $L \in \mathcal{H}$. From (1.3), we have $\left\langle f_{L}(t) \mid x^{n}\right\rangle=\left\langle L \mid x^{n}\right\rangle$. So, the map $L \mapsto f_{L}(t)$ is a vector space isomorphic from Π_{n} onto \mathcal{H}. Henceforth, \mathcal{H} is thought of as a set of both formal power series and linear functionals. We call \mathcal{H} umbral algebra. The umbral calculus is the study of umbral algebra.

Let $f(t) \in \mathcal{H}$. The smallest integer k for which the coefficient of t^{k} does not vanish is called the order of $f(t)$ and is denoted by $O(f(t))$ (see [1-4]). If $O(f(t))=1, O(f(t))=0$, then $f(t)$ is called a delta, an invertible series, respectively. For given two power series $f(t), g(t) \in \mathcal{H}$ such that $O(f(t))=1$ and $O(g(t))=0$, there exists a unique sequence $S_{n}(x)$ of polynomials with $\left\langle g(t)(f(t))^{k} \mid S_{n}(x)\right\rangle=n!\delta_{n, k}$ (this condition sometimes is called orthogonality type) for all $n, k \geq 0$. The sequence $S_{n}(x)$ is called the Sheffer sequence for $(g(t), f(t))$ which is denoted by $S_{n}(x) \sim(g(t), f(t))$ (see [1-4]).

For $f(t) \in \mathcal{H}$ and $p(x) \in \Pi$, we have

$$
\begin{equation*}
\left\langle e^{y t} \mid p(x)\right\rangle=p(y), \quad\langle f(t) g(t) \mid p(x)\rangle=\langle f(t) \mid g(t) p(x)\rangle \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t)=\sum_{k \geq 0}\left\langle f(t) \mid x^{k}\right\rangle \frac{t^{k}}{k!}, \quad p(x)=\sum_{k \geq 0}\left\langle t^{k} \mid p(x)\right\rangle \frac{x^{k}}{k!} \tag{1.5}
\end{equation*}
$$

(see [1-4]). From (1.5), we derive

$$
\begin{equation*}
\left\langle t^{k} \mid p(x)\right\rangle=p^{(k)}(0), \quad\left\langle 1 \mid p^{(k)}(x)\right\rangle=p^{(k)}(0) \tag{1.6}
\end{equation*}
$$

where $p^{(k)}(0)$ denotes the k th derivative of $p(x)$ with respect to x at $x=0$. Let $S_{n}(x) \sim$ $(g(t), f(t))$. Then we have

$$
\begin{equation*}
\frac{1}{g(\bar{f}(t))} e^{v \bar{y}(t)}=\sum_{k \geq 0} S_{k}(y) \frac{t^{k}}{k!}, \tag{1.7}
\end{equation*}
$$

for all $y \in \mathbb{C}$, where $\bar{f}(t)$ is the compositional inverse of $f(t)$ (see [1-6]).
For $\lambda \in \mathbb{C}$ with $\lambda \neq-1$, the Apostol-Euler polynomials (see [7-10]) are defined by the generating function to be

$$
\begin{equation*}
\frac{2}{\lambda e^{t}+1} e^{x t}=\sum_{k \geq 0} E_{k}(x \mid \lambda) \frac{t^{k}}{k!} \tag{1.8}
\end{equation*}
$$

In particular, $x=0, E_{n}(0 \mid \lambda)=E_{n}(\lambda)$ is called the nth Apostol-Euler number. From (1.8), we can derive

$$
\begin{equation*}
E_{n}(x \mid \lambda)=\sum_{k=0}^{n}\binom{n}{k} E_{n-k}(\lambda) x^{k} . \tag{1.9}
\end{equation*}
$$

By (1.9), we have $\frac{d}{d x} E_{n}(x \mid \lambda)=n E_{n-1}(x \mid \lambda)$. Also, from (1.8) we have

$$
\begin{equation*}
\frac{2}{\lambda e^{t}+1}=e^{E(\lambda) t}=\sum_{n \geq 0} E_{n}(\lambda) \frac{t^{n}}{n!} \tag{1.10}
\end{equation*}
$$

with the usual convention about replacing $E^{n}(\lambda)$ by $E_{n}(\lambda)$. By (1.10), we get

$$
2=e^{E(\lambda) t}\left(\lambda e^{t}+1\right)=\lambda e^{(E(\lambda)+1) t}+e^{E(\lambda) t}=\sum_{n \geq 0}\left(\lambda(E(\lambda)+1)^{n}+E_{n}(\lambda)\right) \frac{t^{n}}{n!} .
$$

Thus, by comparing the coefficients of the both sides, we have

$$
\begin{equation*}
\lambda(E(\lambda)+1)^{n}+E_{n}(\lambda)=2 \delta_{n, 0} . \tag{1.11}
\end{equation*}
$$

As is well known, the Bernoulli polynomial (see [11-14]) is also defined by the generating function to be

$$
\begin{equation*}
\frac{t}{e^{t}-1} e^{x t}=\sum_{k \geq 0} B_{k}(x) \frac{t^{k}}{k!} \tag{1.12}
\end{equation*}
$$

In the special case, $x=0, B_{n}(0)=B_{n}$ is called the nth Bernoulli number. By (1.12), we get

$$
\begin{equation*}
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{n-k} x^{k} . \tag{1.13}
\end{equation*}
$$

From (1.12), we note that

$$
\begin{equation*}
\frac{t}{e^{t}-1}=e^{B t}=\sum_{n \geq 0} B_{n} \frac{t^{n}}{n!} \tag{1.14}
\end{equation*}
$$

with the usual convention about replacing B^{n} by B_{n}. By (1.13) and (1.14), we get

$$
t=e^{B t}\left(e^{t}-1\right)=e^{(B+1) t}-e^{B t}=\sum_{n \geq 0}\left((B+1)^{n}-B_{n}\right) \frac{t^{n}}{n!},
$$

which implies

$$
\begin{equation*}
B_{n}(1)-B_{n}=(B+1)^{n}-B_{n}=\delta_{n, 1}, \quad B_{0}=1 . \tag{1.15}
\end{equation*}
$$

Euler polynomials (see $[4,11,13,15]$) are defined by

$$
\begin{equation*}
\frac{2}{e^{t}+1} e^{x t}=\sum_{k \geq 0} E_{k}(x) \frac{t^{k}}{k!} \tag{1.16}
\end{equation*}
$$

In the special case, $x=0, E_{n}(0)=E_{n}$ is called the nth Euler number. By (1.16), we get

$$
\begin{equation*}
\frac{2}{e^{t}+1}=e^{E t}=\sum_{n \geq 0} E_{n} \frac{t^{n}}{n!} \tag{1.17}
\end{equation*}
$$

with the usual convention about replacing E^{n} by E_{n}. By (1.16) and (1.17), we get

$$
2=e^{E t}\left(e^{t}+1\right)=e^{(E+1) t}+e^{E t}=\sum_{n \geq 0}\left((E+1)^{n}+E_{n}\right) \frac{t^{n}}{n!},
$$

which implies

$$
\begin{equation*}
E_{n}(1)+E_{n}=(E+1)^{n}+E_{n}=2 \delta_{n, 0} . \tag{1.18}
\end{equation*}
$$

For $\lambda \in \mathbb{C}$ with $\lambda \neq-1$, the Frobenius-Euler (see [11, 16-19]) polynomials are defined by

$$
\begin{equation*}
\frac{1+\lambda}{e^{t}+\lambda} e^{x t}=\sum_{k \geq 0} F_{k}(x \mid-\lambda) \frac{t^{k}}{k!} \tag{1.19}
\end{equation*}
$$

In the special case, $x=0, F_{n}(0 \mid-\lambda)=F_{n}(-\lambda)$ is called the $n t h$ Frobenius-Euler number (see [17]). By (1.19), we get

$$
\begin{equation*}
\frac{1+\lambda}{e^{t}+\lambda}=e^{F t}=\sum_{n \geq 0} F_{n}(-\lambda) \frac{t^{n}}{n!} \tag{1.20}
\end{equation*}
$$

with the usual convention about replacing $F^{n}(-\lambda)$ by $F_{n}(-\lambda)$ (see [17]). By (1.19) and (1.20), we get

$$
1+\lambda=e^{F(-\lambda) t}\left(e^{t}+\lambda\right)=e^{(F(-\lambda)+1) t}+\lambda e^{F(-\lambda) t}=\sum_{n \geq 0}\left((F(-\lambda)+1)^{n}+\lambda F_{n}(-\lambda)\right) \frac{t^{n}}{n!},
$$

which implies

$$
\begin{equation*}
\lambda F_{n}(-\lambda)+F_{n}(1 \mid-\lambda)=\lambda F_{n}(-\lambda)+(F(-\lambda)+1)^{n}=(1+\lambda) \delta_{n, 0} . \tag{1.21}
\end{equation*}
$$

In the next section, we present our main theorem and its applications. More precisely, by using the orthogonality type, we write any polynomial in Π_{n} as a linear combination of the Apostol-Euler polynomials. Several applications related to Bernoulli, Euler and FrobeniusEuler polynomials are derived.

2 Main results and applications

Note that the set of the polynomials $E_{0}(x \mid \lambda), E_{1}(x \mid \lambda), \ldots, E_{n}(x \mid \lambda)$ is a good basis for Π_{n}. Thus, for $p(x) \in \Pi_{n}$, there exist constants $c_{0}, c_{1}, \ldots, c_{n}$ such that $p(x)=\sum_{k=0}^{n} c_{k} E_{k}(x \mid \lambda)$. Since $E_{n}(x \mid \lambda) \sim\left(\left(1+\lambda e^{t}\right) / 2, t\right)$ (see (1.7) and (1.8)), we have

$$
\left\langle\left.\frac{1+\lambda e^{t}}{2} t^{k} \right\rvert\, E_{n}(x \mid \lambda)\right\rangle=n!\delta_{n, k}
$$

which gives

$$
\left\langle\left.\frac{1+\lambda e^{t}}{2} t^{k} \right\rvert\, p(x)\right\rangle=\sum_{\ell=0}^{n} c_{\ell}\left\langle\left.\frac{1+\lambda e^{t}}{2} t^{k} \right\rvert\, E_{\ell}(x \mid \lambda)\right\rangle=\sum_{\ell=0}^{n} c_{\ell} \ell!\delta_{\ell, k}=k!c_{k} .
$$

Hence, we can state the following result.

Theorem 2.1 For all $p(x) \in \Pi_{n}$, there exist constants $c_{0}, c_{1}, \ldots, c_{n}$ such that $p(x)=$ $\sum_{k=0}^{n} c_{k} E_{k}(x \mid \lambda)$, where

$$
c_{k}=\frac{1}{2 k!}\left\langle\left(1+\lambda e^{t}\right) t^{k} \mid p(x)\right\rangle .
$$

Now, we present several applications for our theorem. As a first application, let us take $p(x)=x^{n}$ with $n \geq 0$. By Theorem 2.1, we have $x^{n}=\sum_{k=0}^{n} c_{k} E_{k}(x \mid \lambda)$, where

$$
c_{k}=\frac{1}{2 k!}\left\langle\left(1+\lambda e^{t}\right) t^{k} \mid x^{n}\right\rangle=\frac{1}{2}\binom{n}{k}\left\langle 1+\lambda e^{t} \mid x^{n-k}\right\rangle=\frac{1}{2}\binom{n}{k}\left(\delta_{n-k, 0}+\lambda\right),
$$

which implies the following identity.

Corollary 2.2 For all $n \geq 0$,

$$
x^{n}=\frac{1}{2} E_{n}(x \mid \lambda)+\frac{\lambda}{2} \sum_{k=0}^{n}\binom{n}{k} E_{k}(x \mid \lambda) .
$$

Let $p(x)=B_{n}(x) \in \Pi_{n}$, then by Theorem 2.1 we have that $B_{n}(x)=\sum_{k=0}^{n} c_{k} E_{k}(x \mid \lambda)$, where

$$
\begin{aligned}
c_{k} & =\frac{1}{2 k!}\left\langle\left(1+\lambda e^{t}\right) t^{k} \mid B_{n}(x)\right\rangle=\frac{1}{2}\binom{n}{k}\left\langle 1+\lambda e^{t} \mid B_{n-k}(x)\right\rangle \\
& =\frac{1}{2}\binom{n}{k}\left(B_{n-k}+\lambda B_{n-k}(1)\right),
\end{aligned}
$$

which, by (1.15), implies the following identity.
Corollary 2.3 For all $n \geq 2$,

$$
B_{n}(x)=\frac{(\lambda-1) n}{4} E_{n-1}(x \mid \lambda)+\frac{1+\lambda}{2} \sum_{k=0, k \neq n-1}^{n}\binom{n}{k} B_{n-k} E_{k}(x \mid \lambda) .
$$

Let $p(x)=E_{n}(x)$, then by Theorem 2.1 we have that $E_{n}(x)=\sum_{k=0}^{n} c_{k} E_{k}(x \mid \lambda)$, where

$$
\begin{aligned}
c_{k} & =\frac{1}{2 k!}\left\langle\left(1+\lambda e^{t}\right) t^{k} \mid E_{n}(x)\right\rangle=\frac{1}{2}\binom{n}{k}\left\langle 1+\lambda e^{t} \mid E_{n-k}(x)\right\rangle \\
& =\frac{1}{2}\binom{n}{k}\left(E_{n-k}+\lambda E_{n-k}(1)\right),
\end{aligned}
$$

which, by (1.18), implies the following identity.

Corollary 2.4 For all $n \geq 0$,

$$
E_{n}(x)=\frac{1+\lambda}{2} \sum_{k=0}^{n}\binom{n}{k} E_{n-k} E_{k}(x \mid \lambda) .
$$

For another application, let $p(x)=F_{n}(x \mid-\lambda)$, then by Theorem 2.1 we have that $F_{n}(x \mid-\lambda)=$ $\sum_{k=0}^{n} c_{k} E_{k}(x \mid \lambda)$, where

$$
\begin{aligned}
c_{k} & =\frac{1}{2 k!}\left\langle\left(1+\lambda e^{t}\right) t^{k} \mid F_{n}(x \mid-\lambda)\right\rangle=\frac{1}{2}\binom{n}{k}\left\langle 1+\lambda e^{t} \mid F_{n-k}(x \mid-\lambda)\right\rangle \\
& =\frac{1}{2}\binom{n}{k}\left(F_{n-k}(-\lambda)+\lambda F_{n-k}(1 \mid-\lambda)\right),
\end{aligned}
$$

which, by (1.21), implies the following identity.

Corollary 2.5 For all $n \geq 1$,

$$
F_{n}(x \mid-\lambda)=\frac{1+\lambda}{2} E_{n}(x \mid \lambda)+\frac{1-\lambda^{2}}{2} \sum_{k=0}^{n-1}\binom{n}{k} F_{n-k}(-\lambda) E_{k}(x \mid \lambda) .
$$

Again, let $p(x)=y_{n}(x)=\sum_{k=0}^{n} \frac{(n+k)!}{(n-k)!k!} x^{2^{k}}$ be the nth Bessel polynomial (which is the solution of the following differential equation $x^{2} f^{\prime \prime}(x)+2(x+1) f^{\prime}+n(n+1) f=0$, where $f^{\prime}(x)$ denotes the derivative of $f(x)$, see $\left.[3,4]\right)$. Then, by Theorem 2.1, we can write $y_{n}(x)=\sum_{k=0}^{n} c_{k} E_{k}(x \mid \lambda)$, where

$$
\begin{aligned}
c_{k} & =\frac{1}{2 k!} \sum_{\ell=0}^{n} \frac{(n+\ell)!}{(n-\ell)!\ell!2^{\ell}}\left\langle 1+\lambda e^{t} \mid t^{k} x^{\ell}\right\rangle \\
& =\frac{1}{2} \sum_{\ell=k}^{n} \frac{(n+\ell)!}{(n-\ell)!\ell!2^{\ell}}\binom{\ell}{k}\left\langle 1+\lambda e^{t} \mid x^{\ell-k}\right\rangle \\
& =\frac{1}{2} \sum_{\ell=k}^{n} \frac{(n+\ell)!}{(n-\ell)!\ell!2^{\ell}}\binom{\ell}{k}\left(\delta_{n-k, 0}+\lambda\right) \\
& =\frac{k!}{2^{k+1}}\binom{n}{k}\binom{n+k}{k}+\lambda \sum_{\ell=k}^{n} \frac{k!}{2^{\ell+1}}\binom{\ell}{k}\binom{n}{\ell}\binom{n+\ell}{\ell},
\end{aligned}
$$

which implies the following identity.

Corollary 2.6 For all $n \geq 1$,

$$
y_{n}(x)=\sum_{k=0}^{n} \frac{k!}{2^{k+1}}\binom{n}{k}\binom{n+k}{k} E_{k}(x \mid \lambda)+\lambda \sum_{k=0}^{n} \sum_{\ell=k}^{n} \frac{k!}{2^{\ell+1}}\binom{\ell}{k}\binom{n}{\ell}\binom{n+\ell}{\ell} E_{k}(x \mid \lambda) .
$$

We end by noting that if we substitute $\lambda=0$ in any of our corollaries, then we get the well-known value of the polynomial $p(x)$. For instance, by setting $\lambda=0$, the last corollary gives that $y_{n}(x)=\sum_{k=0}^{n} \frac{(n+k)!}{(n-k) \cdot k!} \frac{x^{k}}{2^{k}}$, as expected.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Kwangwoon University, Seoul, S. Korea. ${ }^{2}$ Department of Mathematics, University of Haifa, Haifa, 3498838 , Israel. ${ }^{3}$ Department of Mathematics Education, Kyungpook National University, Taegu, S. Korea. ${ }^{4}$ Division of General Education, Kwangwoon University, Seoul, S. Korea.

Acknowledgements

This paper is supported in part by the Research Grant of Kwangwoon University in 2013.
Received: 3 April 2013 Accepted: 10 October 2013 Published: 08 Nov 2013

References

1. Kim, DS, Kim, T: Applications of umbral calculus associated with p-adic invariant integrals on \mathbb{Z}_{p}. Abstr. Appl. Anal. 2012, Article ID 865721 (2012)
2. Kim, DS, Kim, T: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Adv. Differ. Equ. 2012, Article ID 196 (2012)
3. Roman, S: More on the umbral calculus, with emphasis on the q-umbral calculus. J. Math. Anal. Appl. 107, 222-254 (1985)
4. Roman, S: The Umbral Calculus. Dover, New York (2005)
5. Kim, T: Identities involving Frobenius-Euler polynomials arising from non-linear differential equations. J. Number Theory 132(12), 2854-2865 (2012)
6. Robinson, Tl: Formal calculus and umbral calculus. Electron. J. Comb. 17(1), \#R95 (2010)
7. Bayad, A, Kim, T: Results on values of Barnes polynomials. Rocky Mt. J. Math. Forthcoming Articles (2013)
8. Kim, T: Symmetry p-adic invariant integral on \mathbb{Z}_{p} for Bernoulli and Euler polynomials. J. Differ. Equ. Appl. 14(279), 1267-1277 (2008)
9. Tremblay, R, Gaboury, S, Fugére, B-J: Some new classes of generalized Apostol-Euler and Apostol-Genocch polynomials. Int. J. Math. Math. Sci. 2012, Article ID 182785 (2012)
10. Kim, T: Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}. Russ. J. Math. Phys. 16, 484-491 (2009)
11. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 22(3), 399-406 (2012)
12. Bayad, A, Kim, T: Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 18(2), 133-143 (2011)
13. Kim, T: An identity of the symmetry for the Frobenius-Euler polynomials associated with the fermionic p-adic invariant q-integrals on \mathbb{Z}_{p}. Rocky Mt. J. Math. 41, 239-247 (2011)
14. Ding, D, Yang, J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. 20(1), 7-21 (2010)
15. Bayad, A, Kim, T: Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 20(2), 247-253 (2010)
16. Carlitz, L: The product of two Eulerian polynomials. Math. Mag. 23, 247-260 (1959)
17. Carlitz, L: The product of two Eulerian polynomials. Math. Mag. 36, 37-41 (1963)
18. Can, M, Cenkci, M, Kurt, V, Simsek, Y: Twisted Dedekind type sums associated with Barne's type multiple Frobenius-Euler L-functions. Adv. Stud. Contemp. Math. 18(2), 135-160 (2009)
19. Cangul, IN, Kurt, V, Ozden, H, Simsek, Y: On the higher-order w-q-Genocchi numbers. Adv. Stud. Contemp. Math. 19(1), 39-57 (2009)

10.1186/1687-1847-2013-301

Cite this article as: Kim et al.: Apostol-Euler polynomials arising from umbral calculus. Advances in Difference Equations 2013, 2013:301

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

