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Abstract

In this paper we generalize the fractional g-Leibniz formula introduced by Agarwal in
(Ganita 27(1-2):25-32, 1976) for the Riemann-Liouville fractional g-derivative. This
extension is a g-version of a fractional Leibniz formula introduced by Osler in (SIAM J.
Appl. Math. 18(3):658-674, 1970). We also introduce a generalization of the fractional
g-Leibniz formula introduced by Purohit for the Weyl fractional g-difference operator
in (Kyungpook Math. J. 50(4):473-482, 2010). Applications are included.

1 g-notions and notations

Let g be a positive number, 0 < g < 1. In the following, we follow the notations and notions
of g-hypergeometric functions, the g-gamma function I';(x), Jackson g-exponential func-
tions E,(x), and the g-shifted factorial as in [1, 2]. By a g-geometric set A, we mean a set
that satisfies if x € A, then gx € A. Let f be a function defined on a g-geometric set A. The
q-difference operator is defined by

S ~flaw)

x—qx

D,f (x) x#0. 1)

The nth g-derivative, D;f , can be represented by its values at the points {qjx, j=0,1,...,n}
through the identity

D;f(x) = (_1)’1(1 _ q)—nx—nq—n(n—l)/Z Z(_l)r |:;::| qr(r—l)/Zf(an—r) (2)
q

r=0

for everyxin A\ {0}. After some straightforward manipulations, formula (2) can be written

as
e e @D,
qu(x)_(l—q) x Zq 7f(xq) forx € A\ {0}. (3)
—~ " (@D
Moreover, formula (2) can be inverted through the relation

fleg") =Y (1) [Z] (1- @ q® D (). (4)
k=0 q
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Formulas (2) and (4) are well known and follow easily by induction. Jackson [3] introduced

an integral denoted by

/abf(x) dgx

as a right inverse of the g-derivative. It is defined by

b b a
/f(t)dqt::/f(t)dqt—/f(t)dqt, a,beC, (5)
a 0 0
where
[ rodt=a-0 Y srer), sec, ©)
n=0

provided that the series at the right-hand side of (6) converges at x = 4 and b. In [4], Hahn
defined the g-integration for a function f over [0, 00) and [, 00), x > 0, by

[ rode-a-0 3 ar()

N o (7)
[ r0da=0-0Y 50 -y,

x n=1

respectively, provided that the series converges absolutely. Al-Salam [5] defined a frac-

tional g-integral operator K * by

—lot(oz—l) 00

q? o—1 . 1-a
O &/t a9 (tg ) dyt, ®

KJp(x) := p(x),

K ¢(w) =

where a # -1,-2,..., as a generalization of the g-Cauchy formula

ko= [ [ [T owdtdpn e dg
*x Xn-1 X1

q—%n(n—l)
C Ty

/ N/t Quad(tg" ) dgt,

which he introduced in [6] for a positive integer n. Using (7), we can write (8) explicitly as

K “p(x) = 7 51— g Z(_l)kq(é) [_/ﬂ & (xg%), ©)
q

k=0

or in a more simple form

oo

_ _afa+l) ke (@ Di ak
K ¢ =q 2 x*0-q)" Y g *"=¢(xg ™). (10)
! kZO: (@ @)k
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Using (2), we can prove
Kjpx)=(-1)"Dj¢p(x) (neN). (11)

This paper is organized as follows. In Section 2, we mention in brief some known fractional
and g-fractional Leibniz formulae. In Section 3, we generalize the fractional g-Leibniz
formula of the Riemann-Liouville fractional g-derivative introduced by Agarwal in [7].
Finally, in Section 4, we extend the fractional g-Leibniz formula introduced by Purohit [8]
for the g-Weyl derivatives of nonnegative integral orders to any real order.

2 Fractional and g-fractional Leibniz formulas
The Riemann-Liouville fractional g-integral operator is introduced by Al-Salam in [5] and
later by Agarwal in [9] and defined by

IDf (x) =

q( ~ / (Gt/% Qurf O dyts & (~1—2,...). 12)

Using (6), (12) reduces to

= (qa’q)n
Lf&)=x1-9)" ) q" f(xq"), (13)
! HX;' (% Dn

which is valid for all @. The Riemann-Liouville fractional g-derivative of order «, @ > 0, is
defined by

DY =DAINe,  k=Tal.

For the definition of Caputo fractional g-derivatives, see [10]. See also [11] for more appli-
cations. Liouville [12] introduced the fractional Leibniz rule

)i {f(x)g(x)} = Z <_ka>/(k)(x)[a+kg(x)’ (14)

k=0

where
I*{f (%)} = / (x—t)* 7 f(t) dt

is the familiar Riemann-Liouville integral operator. While Liouville used Fourier expan-
sions in obtaining (14), Griinwald [13] and Letnikov [14] obtained (14) by a different tech-
nique. Other extensions and proofs are in the work of Watanabe [15], Post [16], Bassam
[17], and Gaer-Rubel [18]. In a series of papers [19-23], Osler introduced several general-
izations of (14). For example, in [19] Osler introduced the fractional Leibniz formula

oo

Dg(z){u(z)v(z)} = Z (y Oi k)Dg e ku(z)Dy+kv(z) 15)

—00

which coincides with (14) when we set g(z) = z, ¥ = 0 and replace & with —« in (15). For an
extensive study of the fractional calculus and its applications in physics and control theory,
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see [24-28]. There are two g-analogues of the fractional Leibniz rule (14). Al-Salam and
Verma [29] introduced the fractional Leibniz formula

oo

I;(UV)(Z) = Z |:;:::| D;”u(zq_a—m)ltqwrm V(Z), (16)
q

m=0

formally. An analytic proof of (16) is introduced in [10] where the following theorem is
introduced.

Theorem 2.1 Let U(z) be an entire function with q-exponential growth of order k, k <
Ing™!, and a finite type 8, § € R. Let V' be a function that satisfies

Zq’|V(zq’)| <oo (zeQ).
j=0

Then (16) holds for z € C\ {0} and « € R.

For the definition of the g-exponential growth, see [30]. In [7], Agarwal introduced the
following fractional g-Leibniz formula.

Theorem 2.2 Let U and V be two analytic functions which have power series representa-
tions at z = 0 with radii of convergence Ry and Ry, respectively, and R = min{Ry, Ry}. Then

U@ =Y. [‘:} DIUGIE"V (2q") (12l <R), 17)
n=0 q
Proof See [7]. O

Recently, Purohit [31] used (17) to derive a number of summation formulae for the gen-
eralized basic hypergeometric functions. In the following section, we introduce a gener-
alization of Agarwal’s fractional g-Leibniz formula (17). Let 0 < R < 0o and Dg:={z € C:
|z| < R}. In the following, we say that a function f € L}I(DR) if

oo

qu[f(ijﬂ <oo forallze D\ {0}.

j=0

In [8], Purohit derived a g-extension of the Leibniz rule for g-derivative via the Weyl
q-derivative operator defined in (8). He proved that for a nonnegative integer o,

o

(_l)rqr(r+1)/2(q—a; q)
KX(UV)(2) =
“(UV)(2) ZO @

"KST UK,V (24 ), (18)

where U(z) = 277 u(z), V(z) = z7P2v(z), u and v are analytic functions having a power series
expansion at z = 0 with radii of convergence p, p > 0, and py, p> > 0. Purohit established
some summation formulae as an application of the fractional Leibniz formula (18) which
can be represented as

o

K (UV)2) =Y

r=0

@ *:q),
(:9)r

Ky'U@D; . {V(2q")}, 19)
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where we used
D;q,z V(zqa) = (_1)rqr(r+l)/2K;Z V(qu_a).

3 A generalization for Agarwal’s fractional g-Leibniz formula
In this section we introduce a g-analogue of the fractional Leibniz formula (15) when
g(z) =z. The case y = 0 of the derived fractional g-Leibniz formula is the fractional

q-Leibniz formula (17) introduced by Agarwal [7].

Theorem 3.1 Let G be a branch domain of the logarithmic function. Let a, b be complex
numbers and R be a positive number. Let u and v be analytic functions in the disk Dg. Let
U and V be defined in G N Dy through the relations

Uz) = 2ulz),  V(z) =2"v(2). (20)
If V() and UV(-) are in L(D), then
IZUV(2)
Lo DO S (g g) U @)V, D)
Tla-nN&| m |7 y et
= q
where z € GN Dg, and o,y € R.
Remark 3.2 It is worthwhile to notice that if we set y = 0 in (21), we obtain Agarwal’s frac-
tional Leibniz rule (17) with less restrictive conditions on the functions U(z) and V(z). Ac-
tually, the special case y = 0 of Theorem 3.1 is an extension of the result given by Manocha

and Sharma in [32].

Proof Since V, UV are in qu(DR), then
Ve L}Z(DR), Re(b)>-1 and Re(a+b)>-1.

From (13) we obtain

2 (@D

WM@fﬂWZ @a)

n=0

— 2 U(2q") V (24"). (22)

Substituting with

(qa; q)n _ (qa_y;q)n
(@ Dn (4 Dn

(qa;q)_y (qoz—ywl; q)y

into (22), we obtain

e Y.
MWW)ﬂIquVZfW'q

q q) o— ym;q)yU(an)V(an). (23)
n=0 »d/n

Page 5 of 16
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The existence of UV in the space L}I(DR) guarantees that the series in (22) or in (23) con-
verges absolutely for all z € Dg \ {0}. Replace x in (4) with & and then let

[ = (g7 El5q), UG

Consequently,

(qa—yw; q)yu(zqn)

n " ) W
=Y (Dfa-g) [ k] gD (47 €1z ) UE))], - (24)
= q
Then substituting (24) into (23), we get

0 V.
EUV)@) =2 (1- ) (4% q) yzq”(q(aq q’)q)" V(zq")
— ;

xZ( D'a-q* k} gD (¢ €1z ) UE) ., (25
q

k=0

Using (2), we obtain

D ((q‘*-é;q)yu@)

= (D - E g (6 5q),

E=k
k
rr-1) kI @@k wna
) Zq |: ]q (qa_y;q)k—rq (Zq )

Therefore, since u(z) is analytic in Dg, there exists M > 0 such that

(47 55q) ue)
! z 1% &=k

k(k-1)
< (1 _q)—k|Z|Re(a)—quRea— 5

_ (k D _
—M(l q) klleea )—k kRea (_q Re(a);q)k

e(a) ea—i(k ] —Re(a
< M(1 - g) ¥ |z|R@FgR (-7 *“;q) .. (26)
Consequently,

" n
Z(l _ q)k |:k:| qk(k—l)/Z
k=0 q

(-4 q) 00 1 - ¢
(9% 1-gRe

sz';(<qw§;q) U(s))‘
z 1% &=z

(n+1)Re(a)

< M|z|Re@ (27)
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Set F(§):= (¢ %; q), U(£). Then substituting (27) into (25), we obtain

Zfﬂ(q y»Q)n |Zl qk|:ni| qk(k1/2’ZkaF )|

Re(a). (H+1) Re(a)

V5 q)oo(— q q)ooz g q"|V(an)|. (28)

< Mief0 1 o

The last series converges for all z € Dy \ {0} since V,z*V € L}I(DR), Consequently, the
series in (28) is absolutely convergent, and we can interchange the order of summations
in (25). This leads to

I(UV)(2)

( l)quk 1)/2 k(l 61) k ()Z (q ’q)” V(an)

=21-0"(a"a), @ @ Drr

14

Mg IM&;

qu1<+1/2 k(l 9"

=2(1-9)*(9%;9)_
— (& D

14

x DAF(2) Z qf i)y, V(zg™). (29)
=0 (@ 6])/

Since

7V o) = ey gt g L Dy ey
pr 49);

and

a-y+k,

(@759, = (@ 759), (4755 9),

the substitution with the last two identities in (29) gives

(U@
= - NCamsts
—27(1—g) a; -1 k —k(k=1)/2+k(-a+y)
Z(1-9) (4 q),yg( )q G
x <1;V*kv><zqk>Dz((w;q) ue)|
E=z
2/ (1-9) (4% 9) VZ[ } Ia‘y*kV)(zqk)Df,«q“‘yiq) U(E))‘ ,
k=0 q z Y &=z
and the theorem follows. O

Example 3.3 Let y, A, i, and o be complex numbers satisfying

Re(A) >0, Re(A+u)>0, pné¢Ny and Re(x)>O0.

Page 7 of 16
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Then

Lgh + w)Cy()Ty(A + o —y)
Lyl =) To(MWT (A + p + o)

= @7 a7 Qm _
_ qu(k+u)(gqu++_y.g)2¢l( y,qxul qu m+1,q’q ) (30)

Proof We prove the identity by using Theorem 3.1. Take U(z) = z* and v(z) = z*"!. Then
m a— é
Dy { (q "=iq) &
z
v
a\ k
mZ $Q)k<q_) %_,Hk
@k \ z

00 k
q(M+k+1) +k-m
Z (61, ( ) Tyl +k - m+1)gu '

Hence,
Vi o— E
o) o]
Y §=z
m Tglp+1) _ _
— H-m q y o u+l, pu-m+l, o
A — (M_m”)zcb;(q 459" 9,47)
w5 Dm
— 1 m;/, ( ) H— ;L+1 n— m+1, . 31
=0T T 2 api(g g g 2.9%) (31)
and
r',(a A=
(Ig—wmv)(zqm): q() (qu)M y+m-1

FA+a—y+m)

— Fq()\) (1 - Q)m m\Ata—y+m-1
T T,004a—y) (@5 q)m (z4™) : (32)

Then applying Theorem 3.1 gives

I r,(x
IjUV)(z) = 2ot (o)
g Cyla—y)TyA +a—y)
i m(h+ ) Mﬂ’l( *V,qlﬁl q" m+1,q,q ) (33)
- @7 Dm
On the other hand,
i Atp=1 _ Fq()‘ + H’) Z)u+u+a—1‘ (34)
g+ p+a)

Equating (33) and (34) gives (30). O
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Example 3.4 For complex numbers a, b, A, B, d, and D such that Re(b) > -1, Re(B) > 0,
and Re(b + B) > 1,

2¢1 (qa+A’qb+B;qd+D;q’ q—(zz+A)Z)
I',(d + D)T,(B)
b+B)'y(d+B-b)

= (- _ _\B-D
=(z9)-a o (1-q)

o b—d
(D gms @G Dm
* g( et (@ Dm(@®P; @)m

% 3¢2 (q—m’qd+D—b—B,zq—a;qd—b’z; q, qb+1)2¢1 (qA’qB;qd+B—b+m;q, q—u—A+m)’ (35)
for |zg=*4| < 1.
Proof The previous identity follows by taking

U@ =2 @q)-0r  V()=2""(2g%q)_,

and applying Theorem 3.1 with
a=d+D-b-B, y =D-B.

Then using (3), we obtain

D;"((W%) s”(s;q)a)
D-B

o @ 9)
=(1-q) """ @G q) -
- (4P B )0

X 3¢2(q—m’qd—b+D—B'Zq—a;qd—b’Z; q, qb+l). (36)

In addition,

o—y+m m —b+B-1+m m?+(d—b+p-1)m F(ﬁ)
) = 2 e d=B)
x201(q* a5 a" a9 ) (37)
and
- m _(y—-a)m (" ( v )m
4 =(-1) q(V ) q( 2 )u (38)
m ] (@ Dm

Substituting with (36)-(38) into (21), we obtain

T'y(B)

Iotuv - d+D-1 l— D-B 5 —a
UV(2) =27 (1-q9)" " (z9) T, (B+d—b)

o b-d,
_1)7 (%) B (@ Dm
X,;( S D)

% 3¢2(q_’”,f*D_b_B,zq_“;qd_b,z; q, qb+1)

% 2¢1 (qA7qB;qd+B—b+m;q, q—a—A+m). (39)
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On the other hand,
o (b + B) a —(a
Iq UV(z) = W‘Zdﬂj 1 (q +A,qb+B qd+D 4.q ( +A)). (40)
Iy
Combining (39) and (4.0), we obtain (35). O

4 A g-extension of the Leibniz rule via Weyl-type of a g-derivative operator

In this section, we prove that the g-expansion in (18) can be derived for any o € R. The
proof we introduce is completely different from the one introduced by Purohit for non-
negative integer values of or. We start with characterizing a sufficient class of functions for

which K ;" exists for some «.

Definition 4.1 Let o € C and let f be a function defined on a g'-geometric set A. We say
that f is of class S, if there exists u € C, Re u > Rea such that

f(xq’”) = O(q"") asn — 00,x € A.

Proposition 4.2 If o« € Z, then K *f exists for any function f defined on (0,00). If « ¢ Z
and f € Sy, then K °f exists.

Proof 1If o € Z, then by (11), K_“f exists for any functions f defined on a (0,00). If o« ¢ Z

and f € S, then for each x > 0, there exists a constant C > 0, C depends on x and «, such
that

If (xq™")| < Cq™.

Applying the previous inequality in (10) gives

|I( f(x)| < qua (or+1) /2|x| (1 q)‘)’ ’q)oo Z k(Re 1—Re )

Rea

(-4°°% @)oo
(1 - gRer-Rea))(g; g) o

< Cq—a(ot+1)/2|x|a(1 _q)ot 0

In the following, we define a sufficient class of functions S, for which K_“f exists for

all .

Definition 4.3 Let f be a function defined on a g !-geometric set A. We say that f is in
the class &, if there exist 1 > 0 and v € R such that for each x € A,

[f(xq’”)’ = O(q’“’("”)) as n — 0o.
Itis clear thatif f € &, thenf € S, for all «. The spaces S;, and &, are g-analogues

of the spaces of fairly good functions and good functions, respectively, introduced by
Lighthill [33, p.15], see also [34, Chapter VII].
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Example 4.4 An example of a function in a class Sy, is any function of the form

P, (x)
(a%; @)oo

for all n € Ny,

where P,,(x) is a polynomial of degree 7 and a is a constant such that axg® #1 for all k € N.

The keynotes in proving the generalization of Purohit g-fractional Leibniz formula are
two identities. The first one is

Lyla +p)
L)

I(qaz—p _ qa(l—a)/Zq—apZ—a—p (4'1)

which holds for any p € R when « € N or holds when « + p > 0. The proof of (41) follows
from (10) by replacing o with —«, x with z, and setting ¢(z) = z7#. The second identity
follows from the formula (4) with g replaced with 7! and x with z. That is,

n

f(zq_") _ Z(q—l _ 1)"61-(5) |:Zi| sz];_]f(Z)
!

k=0
= >R g -"k[ ] ZDEf (), (42)

k=0

where we use [1, Eq. (1.47)]

n _ n k2 —nk
q q

The identity in (41) leads to the following result.

Lemma 4.5 Let p and «a be such that 0 < Rep <1 and o > Rep. Let G be the principal
branch of the logarithmic function and let D := {z € C: |z| > R} N G. Assume that

U(z) =72 Z ﬂ}‘Z_j

j=0
is analytic on Dg. Let
Qa = {Z GDR IqaZ GDR}.

Then Kzu (2) exists for all z € Q, and is equal to

K;U(z) =g fiio(l pl)? 2 Z 1 a _;,qq); 727 (43)

Proof From (10) we find that

00
o a(l-a a, — —a o ( 4 —a+k)j
KoUE) = g g vz (1 - gy Y gtlen 1Tk a0 Z ag =, (44)
pary (@ @)«
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From the assumptions of the present lemma, we can easily deduce that the double series
in (44) is absolutely convergent for all z € ©,. Hence, we can interchange the order of

summations in (44). This and the g-binomials theorem [1, Eq. (1.3.2)] give

Kau(z) or(1- u)/2qapzp A1—g)® Za q —j, }qua kp+kj (Zq ()])}
Jj=0 k=0 q

> -pHj.
_ (1-a)/2 jap, p-a —a —oj ] (q :q)oo
=g PGP - )Y g VT
= (@773 q)oo

Simple manipulations give (43). d

Lemma 4.6 Letp, a, G, U, Dy, and Q, be as in Lemma 4.5. Then
o0
Zq“j|u(zq“‘j)| <00 Vz€E Q.

Proof The proof is easy and is omitted. O

Theorem 4.7 Let U and V be functions defined on a q'-geometric set A and let o € R.
Assume that UV € Sy and U € Sz, 1 > % Then

— (D)

KUV (2) = Z Ga Ky"U(2)DY {V(2q%)} (45)

forall ze€ A and for all @ € R. If n =1/2, then (45) may not hold for all @ on R but only for
o in a subdomain of R.

Proof Let z € A be arbitrary but fixed. Since UV € S, then
qu"‘yu(zq“_k)\/(zq“_k)} < 00. (46)

From (10),
(I( U V) (2)

o(l-a -, = am( _a; )m o—m o—m
= g* 21— g) g Zq %U(zq )V (zq )

m=0

Applying (42) with f(z) = V(zq®) yields

o a(l—a )/2 o o OlWl :q)m o—m
(Keuv)(2) = (1-g) Zq (q’ o, dE)

X3 - g [ﬂ Z0l ., {v(ea)]}. )
q

j=0
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From the assumptions on the function U, there exists a constant C; > 0 and v € R such
that

|u(zqa—m)| < Clqum(nﬁv)'
Using (2) with (¢! instead of g), we obtain
sz’%,l‘Z{V(zq“)} <G,.

Consequently, the double series on (47) is bounded from above by

Clczm i Ream ;un m+v Xm:q’ 1-)/2 —mj
G ) — -
m j= p
< Cl@% Z Ream ;tm(m+u)( q_m.q)
B (@ Do m
—Rea [e%e}
= C1C2 ( (qu)qo)o( 9,9 oo Z qReamqum(WHv)q—m(erl)/Z’ (48)
»H700 m=0
where we applied the identity cf, e.g., [1, p.11],
. ARG k(k=1) k
(@ani= (V)| 4+t (49)
k=0 q

Now, it is clear that if > 1/2, then the series on the most right-hand side of (48) is conver-
gent for all @ € C. On the other hand, it is convergent only for Rea > —v + % when p = 5
Therefore, we can interchange the order of summation in the series on the right-hand side
of (47). This gives

(I(; UV) (Z) a(l—a /2(1 q) o,

« Z (q—“;Q?/zj(l _ q)jD;flsz(an)

= (7:9);
(e @ ‘“’,q)r L
pprd 2T @y, 50
X,zzozq (@ 9D)r Ueg"") (50)

But

a+] )
Z a-j)r (q ;q)r u(an—]—r) — —](1 q)a—l a—j)(e—j-1) /2[(0(‘1 V(Z).
=0 (61, Q)r

Combining this latter identity with (50) yields the theorem. O

Example 4.8 Let y, X, i, and « be complex numbers satisfying

Re(A) >0, Re(A+u)>0, né¢Ny and Re(x)>O0.
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Then

Lgh + w)Cy()Ty(A + o —y)
Lyl =) To(MWT (A + p + o)

= ( _y’ _I’L; )m —
_ qu(k+u)(gqu++_y.g)2¢l( y,qxul qu m+1,q’q ) (51)

Proof We prove the identity by using Theorem 3.1. Take U(z) = z* and v(z) = z*"L. Then

sz"(q“‘y%;q) g
D" ;q)k qa . etk
Z 7 )¢

(@ 9k

00 k
q(M+k+1) +k-m
Z (61, ( ) Tyl +k - m+1)gu '

Hence,
Vi a— E
Dq <q VEJQ) 3
1% §=z
Ly(n+1)
— H-m q -y o ut+l, pu-m+l, o
A — (M_m”)zcb;(q 459" 9,47)
( ) )m m + m+
= (-1)" (ql Z)m )i (q7 "4, (52)
and
a— r ()") Ata—y+m-1
(137 V) ™) = (e

FA+a—y+m)

— Fq()\) (1 - Q)m m\Ata—y+m-1
T T,004a—y) (@5 q)m (z4™) : (53)

Then applying Theorem 3.1 gives

I r,(x
IjUV)(z) = 2ot (o)
g Cyla—y)TyA +a—y)
i m(h+ ) Mﬂ’l( *V,qlﬁl q" m+1,q,q ) (54)
- @7 Dm
On the other hand,
i Atp=1 _ Fq()‘ + H’) Z)u+u+a—1‘ (55)
g+ p+a)

Equating (54) and (55) gives (51). O
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Example 4.9 For complex numbers a, b, A, B, d, and D such that Re(b) > -1, Re(B) > 0,
and Re(b +B) > 1,

2¢1 (qa+A’qb+B;qd+D;q’ q—(zz+A)Z)
I',(d + D)T,(B)
b+B)'y(d+B-b)

= (- _ _\B-D
=(z9)-a o (1-q)

o b—d
(D gms @G Dm
* g( et (@ Dm(@®P; @)m

% 3¢2 (q—m’qd+D—b—B,zq—a;qd—b’z; q, qb+1)2¢1 (qA’qB;qd+B—b+m;q, q—u—A+m) (56)
for |zg=*4| < 1.
Proof The previous identity follows by taking

U@ =2"@q)-0r V(@)= (2g%q)_,

and applying Theorem 3.1 with
a=d+D-b-B, y =D-B.

Then using (3), we obtain

D;"((W%) s”(s;q)a)
D-B

o @ 9)
=(1-q) """ @G q) -
- (4P B )0

X 3¢2(q—m’qd—b+D—B'Zq—a;qd—b’Z; q, qb+l). (57)

In addition,

a—y+m m\ _ d-b+B-1+m m? +(d-b+B-1)m Fq(ﬁ)
(1‘1 V)(eq") = 2 1 IyB+m+d-Db)

x201(q* a5 a" a9 ) (58)

and

v Cpyngram (1 @D o
"1, (@ Dm

Substituting with (57)-(59) into (21), we obtain

T'y(B)

Iotuv - d+D-1 l— D-B 5 —a
UV(2) =27 (1-q9)" " (z9) T, (B+d—b)

o b-d,
_1)7 (%) B (@ Dm
X,;( S D)

% 3¢2(q_’”,f*D_b_B,zq_“;qd_b,z; q, qb+1)

% 2¢1 (qA7qB;qd+B—b+m;q, q—a—A+m). (60)
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On the other hand,
N I',(b+ B) _ _
Iq UV(Z) _ Fz(d " D) Zd+D 12¢1 (qa+A’qb+B;qd+D; 9,9 (a+A))' (61)
Combining (60) and (61), we obtain (56). O
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