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Abstract
In this paper, we use the elementary method and the reciprocity theorem of
Dedekind sums to study the computational problem of one kind Dedekind sums, and
give two interesting computational formulae related to Dedekind sums and the
second-order linear recurrence polynomials.
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1 Introduction
For any positive integer x, we define the generalized Lucas polynomial Ln(x) as follows:
L(x) = , L(x) = x, and Ln+(x) = xLn(x) + Ln–(x) for all n≥ .
It is clear that this polynomial is a second-order linear recurrence polynomial, it is sat-

isfying the computational formula:

Ln(x) =
(
x +

√
x + 


)n

+
(
x –

√
x + 


)n

.

Ln() = Ln is the well-known Lucas sequence; Ln() = Qn is the Lucas-Pell sequence.
About the properties of this sequence and related contents, some authors had studied
them, and obtained many interesting results, see [–]. In this paper, we use the elemen-
tary method and the reciprocity theorem of Dedekind sums to study the computational
problem of one kind Dedekind sums, and obtain some interesting identities related to
Dedekind sums and the second-order linear recurrence polynomials. For convenience,
we first give the definition of the Dedekind sums S(h,q) as follows:
For a positive integer q and integer h with (q,h) = , the classical Dedekind sum S(h,q)

is defined by

S(h,q) =
q∑

a=

((
a
q

))((
ah
q

))
,

where

(
(x)

)
=

{
x – [x] – 

 , if x is not an integer;
, if x is an integer.
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This sum describes the behaviour of the logarithm of eta-function (see []) under modu-
lar transformations. About its other properties and applications, see [–]. For example,
Carlitz [] proved the reciprocity theorem

S(h,q) + S(q,h) =
h + q + 

hq
–


, ()

where h > , q >  and (h,q) = .
In this paper, we shall give an exact computational formula for S(Ln(x),Ln+(x)). That is,

we shall prove the following two theorems.

Theorem  For any integers n ≥  and odd number x ≥ , we have the computational
formula

S
(
Ln(x),Ln+(x)

)
=




· x
 + 

x + 
· Ln(x)
Ln+(x)

+
x – x + x – 

(x + )
.

Theorem  For any integers n ≥  and odd number x ≥ , we have the computational
formula

S
(
Ln–(x),Ln(x)

)
=




· x
 + 

x + 
· Ln–(x)
Ln(x)

+
x


· x
 + 

x + 
.

From the theorems, we may immediately deduce the following two corollaries.

Corollary  For any positive integer n, we have the identities

S(Ln–,Ln) =

{

 · Lm

Lm+
– 

 , if n = m + ;

 · Lm–

Lm
+ 

 , if n = m.

Corollary  For any odd number x ≥ , we have the limits

lim
n→∞S

(
Ln–(x),Ln(x)

)
=




· x + √
x + 

and

lim
n→∞S

(
Ln(x),Ln+(x)

)
=




· x
 +  –  · √x + √

x + 
.

In our theorems, x must be a positive odd number. If x is an even number, then
(Ln(x),Ln+(x)) = · · · = (,x) = . This time, the situation is more complex, it is very dif-
ficult for us to give an exact computational formula for S(Ln(x),Ln+(x)).

2 Proof of the theorems
In this section, we shall prove our theorems directly. First, we prove Theorem . It
is clear that for any positive integer n and odd number x, we have (Ln(x),Ln+(x)) =
(Ln–(x),Ln(x)) = · · · = (L(x),L(x)) = (,x) = . So, by reciprocity theorem (), we have

S
(
Ln(x),Ln+(x)

)
+ S

(
Ln+(x),Ln(x)

)
=




[
Ln+(x)
Ln(x)

+
Ln(x)
Ln+(x)

+


Ln+(x)Ln(x)

]
–
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=



[
xLn(x) + Ln–(x)

Ln(x)
+

Ln(x)
Ln+(x)

+


Ln+(x)Ln(x)

]
–



=



[
Ln(x)
Ln+(x)

+
Ln–(x)
Ln(x)

+


Ln+(x)Ln(x)

]
+

x


–


. ()

Similarly, we also have the identity

S
(
Ln–(x),Ln(x)

)
+ S

(
Ln(x),Ln–(x)

)
=




[
Ln–(x)
Ln(x)

+
Ln–(x)
Ln–(x)

+


Ln(x)Ln–(x)

]
+

x


–


. ()

Note that S(Ln(x),Ln–(x)) = S(Ln–(x),Ln–(x)) and S(Ln+(x),Ln(x)) = S(Ln–(x),
Ln(x)), from identities () and (), we have

S
(
Ln(x),Ln+(x)

)
– S

(
Ln–(x),Ln–(x)

)
=




[
Ln(x)
Ln+(x)

–
Ln–(x)
Ln–(x)

+


Ln+(x)Ln(x)
–


Ln(x)Ln–(x)

]

=



[
Ln(x)
Ln+(x)

–
Ln–(x)
Ln–(x)

–
x

Ln+(x)Ln–(x)

]

=



[
Ln(x)
Ln+(x)

–
Ln–(x)
Ln–(x)

+
x

x + x

(
Ln(x)
Ln+(x)

–
Ln–(x)
Ln–(x)

)]

=



· x
 + 

x + 
·
[

Ln(x)
Ln+(x)

–
Ln–(x)
Ln–(x)

]
. ()

From (), we may immediately deduce the recurrence formula

S
(
Ln(x),Ln+(x)

)
–




· x
 + 

x + 
· Ln(x)
Ln+(x)

= S
(
Ln–(x),Ln–(x)

)
–




· x
 + 

x + 
· Ln–(x)
Ln–(x)

. ()

Using (), repeatedly, and note that formula () and S(x, ) = , we have

S
(
Ln(x),Ln+(x)

)
–




· x
 + 

x + 
· Ln(x)
Ln+(x)

= · · ·

= S
(
L(x),L(x)

)
–




· x
 + 

x + 
· L(x)
L(x)

= S(,x) –



· x
 + 

x + 
· 
x

=
x + 
x

–


–




· x
 + 

x + 
· 
x
=
x – x + x – 

(x + )

or

S
(
Ln(x),Ln+(x)

)
=




· x
 + 

x + 
· Ln(x)
Ln+(x)

+
x – x + x – 

(x + )
.

This proves Theorem .
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Now, we prove Theorem . From the method of proving (), we have

S
(
Ln–(x),Ln(x)

)
+ S

(
Ln(x),Ln–(x)

)
=




[
Ln(x)
Ln–(x)

+
Ln–(x)
Ln(x)

+


Ln(x)Ln–(x)

]
–



=



[
xLn–(x) + Ln–(x)

Ln–(x)
+
Ln–(x)
Ln(x)

+


Ln(x)Ln–(x)

]
–



=



[
Ln–(x)
Ln(x)

+
Ln–(x)
Ln–(x)

+


Ln(x)Ln–(x)

]
+

x


–



()

and

S
(
Ln–(x),Ln–(x)

)
+ S

(
Ln–(x),Ln–(x)

)
=




[
Ln–(x)
Ln–(x)

+
Ln–(x)
Ln–(x)

+


Ln–(x)Ln–(x)

]
–



=



[
xLn–(x) + Ln–(x)

Ln–(x)
+
Ln–(x)
Ln–(x)

+


Ln–(x)Ln–(x)

]
–



=



[
Ln–(x)
Ln–(x)

+
Ln–(x)
Ln–(x)

+


Ln–(x)Ln–(x)

]
+

x


–


. ()

Note that S(Ln(x),Ln–(x)) = S(Ln–(x),Ln–(x)), S(x + ,x) = S(,x), S(x, ) = , from
(), () and (), we have

S
(
Ln–(x),Ln(x)

)
– S

(
Ln–(x),Ln–(x)

)
=




[
Ln–(x)
Ln(x)

–
Ln–(x)
Ln–(x)

+


Ln(x)Ln–(x)
–


Ln–(x)Ln–(x)

]

=



[
Ln–(x)
Ln(x)

–
Ln–(x)
Ln–(x)

–
x

Ln(x)Ln–(x)

]

=



[
Ln–(x)
Ln(x)

–
Ln–(x)
Ln–(x)

–


x + 

(
Ln–(x)
Ln(x)

–
Ln–(x)
Ln–(x)

)]

=



· x
 + 

x + 
·
(
Ln–(x)
Ln(x)

–
Ln–(x)
Ln–(x)

)

or

S
(
Ln–(x),Ln(x)

)
–




· x
 + 

x + 
· Ln–(x)
Ln(x)

= S
(
Ln–(x),Ln–(x)

)
–




· x
 + 

x + 
· Ln–(x)
Ln–(x)

= · · ·

= S
(
x,x + 

)
–




· x
 + 

x + 
· x
x + 

= S
(
x,x + 

)
+ S

(
x + ,x

)
– S(,x) – S(x, ) –




· x
 + 

x + 
· x
x + 

=
x + (x + ) + 

x(x + )
–
x + 
x

–



· x
 + 

x + 
· x
x + 

=
x


· x
 + 

x + 
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or

S
(
Ln–(x),Ln(x)

)
=




· x
 + 

x + 
· Ln–(x)
Ln(x)

+
x


· x
 + 

x + 
.

This completes the proof of Theorem .
Note that the definition of Ln(x), x > , and the limit

lim
n→+∞

Ln(x)
Ln+(x)

= lim
n→+∞

Ln–(x)
Ln(x)

=


x +
√
x + 

=
–x +

√
x + 


,

from our theorems, we may immediately deduce Corollary .
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