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1 Introduction
In the recent years, fractional differential equations played an important role inmany fields
such as physics, electrical circuits, biology, control theory, etc. (see [–]). Thus, many
scholars have paid more attention to fractional differential equations and gained some
achievements (see [–]). For example, Wang [] considered a class of fractional multi-
point boundary value problems at resonance byMawhin’s continuation theorem (see []):

⎧⎪⎪⎨⎪⎪⎩
Dα

+u(t) = f (t,u(t),Dα–
+ u(t)), t ∈ (, ), a.e. t ∈ (, ),

u() = , Dα–
+ u() =

∑m
i= aiDα–

+ u(ξi),

Dα–
+ u() =

∑m
i= biDα–

+ u(ηi),

(.)

where  < α ≤ ,  < ξ < ξ < · · · < ξm < ,  < η < η < · · · < ηn < ,
∑m

i= ai = ,
∑n

i= bi = ,∑n
i= biηi = , Dα

+ is the standard fractional derivative, f : [, ] × R → R satisfies the
Carathéodory condition.
But Mawhin’s continuation theorem is not suitable for quasi-linear operators. In [],

Ge and Ren had extended Mawhin’s continuation theorem, which was used to deal with
more general abstract operator equations. In [], Pang et al. considered a higher order
nonlinear differential equation with a p-Laplacian operator at resonance:

⎧⎪⎪⎨⎪⎪⎩
(ϕp(u(n–)(t)))′ = f (t,u(t), . . . ,u(n–)(t)) + e(t), t ∈ (, ),

u(i)() = , i = , , . . . ,n – ,

u() =
∫ 
 u(s)dg(s),

(.)
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where ϕp(s) = |s|p–s, p > , f : [, ]× Rn → Rn and e : [, ] → R are continuous, n ≥  is
an integer. g : [, ] → R is a nondecreasing function with

∫ 
 dg(s) = , the integral in the

second part of (.) is meant in the Riemann-Stieltjes sense.
However, there are few articles which consider the fractional multi-point bound-

ary value problem at resonance with p-Laplacian operator and dimKerM = , because
p-Laplacian operator is a nonlinear operator, and it is hard to construct suitable continu-
ous projectors. In this paper, we will improve and generalize some known results.
Motivated by thework above, our article is to investigate themulti-point boundary value

problem at resonance for a class of Riemanne-Liouville fractional differential equations
with p-Laplacian operator and dimKerM =  by constructing suitable continuous projec-
tors and using the extension of Mawhin’s continuation theorem:

⎧⎪⎪⎨⎪⎪⎩
Dβ

+ϕp(Dα
+u(t)) = f (t,u(t),Dα–

+ u(t),Dα–
+ u(t),Dα

+u(t)), t ∈ (, ),

u() =Dα
+u() = , u() =

∑m
i= aiu(ξi),

Dα–
+ u() =

∑m
i= biDα–

+ u(ηi),

(.)

where  < α ≤ ,  < β ≤ ,  < α+β ≤ ,  < ξ < ξ < · · · < ξm < ,  < η < η < · · · < ηm < ,
ai ∈ R, bi ∈ R,  < m, m ∈ N ,

∑m
i= aiξα–

i = ,
∑m

i= aiξα–
i = ,

∑m
i= bi = , ϕp(s) = |s|p–s,

ϕp() = ,  < p, /p+/q = , ϕp is invertible and its inverse operator is ϕq,Dα
+ is Riemann-

Liouville standard fractional derivative, f : [, ]×R → R is continuous.
In order to investigate the problem, we need to suppose that the following conditions

hold:

� =�� –�� �= ,

where

� =
�(α)q�(αq + βq – q – α – β + )

�(α + β)q–�(αq + βq – q – β + )

(
 –

m∑
i=

aiξ
αq+βq–q–β+
i

)
,

� =
�(α – )q–�(α)�(αq + βq – q – α – β + )

�(α + β – )q–�(αq + βq – q – β + )

(
 –

m∑
i=

aiξ
αq+βq–q–β+
i

)
,

� =
�(α)q–

�(α + β)q–(αq + βq – q – α – β + )

(
 –

m∑
i=

biη
αq+βq–q–α–β+
i

)
,

� =
�(α – )q–

�(α + β – )q–(αq + βq – q – α – β + )

(
 –

m∑
i=

biη
αq+βq–q–α–β+
i

)
.

The rest of this article is organized as follows: In Section , we give some notations,
definitions and lemmas. In Section , based on the extension of Mawhin’s continuation
theorem due to Ge, we establish a theorem on existence of solutions for BVP (.).

2 Preliminaries
For the convenience of the reader, we present here some necessary basic knowledge and
definitions for fractional calculus theory that can be found in the recent literature (see [,
, , , , ]).
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Let X and Y be two Banach spaces with norms ‖ · ‖X and ‖u‖Y , respectively. A contin-
uous operator

M|domM∩X : X ∩ domM → Y

is said to be quasi-linear if
(i) ImM :=M(X ∩ domM) is a closed subset of Y ,
(ii) KerM := {u ∈ X ∩ domM :Mu = } is linearly homeomorphic to Rn, n < ∞.
Let X = KerM and X be the complement space of X in X, then X = X ⊕ X. On the

other hand, suppose that Y is a subspace of Y , and Y is the complement space of Y in Y ,
so that Y = Y ⊕ Y. Let P : X → X be a projector and Q : Y → Y a semi-projector, and
	 ⊂ X an open and bounded set with origin θ ∈ 	. θ is the origin of a linear space.
Suppose that Nλ :	 → Y , λ ∈ [, ] is a continuous operator. Denote N by N . Let �λ =

{u ∈ 	 :Mu = Nλu}. Nλ is said to be M-compact in 	 if there is an Y ⊂ Y with dimY =
dimX and an operator R : 	× [, ]→ X continuous and compact such that for λ ∈ [, ],

(I –Q)Nλ(	) ⊂ ImM ⊂ (I –Q)Y , (.)

QNλx = θ , λ ∈ (, ) ⇔ QNx = θ , (.)

R(·,λ)|�λ
= (I – P)|�λ

(.)

and R(·, ) is the zero operator,

M
[
P + R(·,λ)] = (I –Q)Nλ. (.)

Lemma . (Ge-Mawhin’s continuation theorem []) Let (X,‖ · ‖X) and (Y ,‖ · ‖Y ) be
two Banach spaces, and 	 ⊂ X an open and bounded nonempty set. Suppose that M :
X ∩ domM → Y is a quasi-linear operator Nλ : 	 → Y , λ ∈ [, ] is M-compact in 	. In
addition, if

(i) Lu �=Nλu, ∀(u,λ) ∈ (domM ∩ ∂	)× (, ),
(ii) deg(JQN ,KerM ∩ 	, ) �= ,

where J : ImQ → KerM is a homeomorphism with J(θ ) = θ and N =N, then the equation
Mu =Nu has at least one solution in domM ∩ 	.

Definition . The Riemann-Liouville fractional integral of order α >  of a function u is
given by

Iα+u(t) =


�(α)

∫ t


(t – s)α–u(s)ds,

provided the right-hand side integral is pointwise almost everywhere defined on (,+∞).

Definition . The Riemann-Liouville fractional derivative of order α >  of a function
u is given by

Dα
+u(t) =


�(n – α)

(
d
dt

)n ∫ t



u(s)
(t – s)α–n+

ds,
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provided the right-hand side integral is pointwise everywhere defined on (,+∞), where
n = [α] + .

Definition . Let X be a Banach space, and X ⊂ X is a subspace. AmappingQ : X → X

is a semi-projector if Q satisfies
(i) Qx =Qx, ∀x ∈ X ,
(ii) Q(μx) = μQx, ∀x ∈ X , μ ∈ R.

Lemma . Assume that u ∈ C(, ) ∩ L(, ) with a fractional derivative of order α > 
that belongs to C(, )∩ L(, ). Then

Iα+D
α
+u(t) = u(t) + ctα– + ctα– + · · · + cNtα–N

for some ci ∈ R, i = , , . . . ,N , where N = [α] + .

Lemma . Assume that u(t) ∈ C[, ], ≤ p ≤ q, then

Dq
+ I

p
+u(t) = Ip–q+ u(t).

Lemma . Assume that α ≥ , then:
(i) If λ > –, λ �= α – i, i = , , . . . , [α] + , we have that

Dα
+ t

λ =
�(λ + )

�(λ – α + )
tλ–α .

(ii) Dα
+ tα–i = , i = , , . . . , [α] + .

In this paper, we take X = {u | u,Dα–
+ u,Dα–

+ u,Dα
+u ∈ C[, ]} with the norm ‖u‖X =

max{‖u‖∞,‖Dα–
+ u‖∞‖Dα–

+ u‖∞,‖Dα
+u‖∞}, where ‖u‖∞ = maxt∈[,] |u(t)|, and Y =

C[, ] with the norm ‖y‖Y = ‖y‖∞. By means of the linear functional analysis theory,
it is easy to prove that X and Y are Banach spaces, so we omit it.
Define the operatorM : domM → Y by

Mu =Dβ

+ϕp
(
Dα

+u(t)
)
, (.)

domM =

{
u ∈ X

∣∣∣∣Dβ

+ϕp
(
Dα

+u
) ∈ Y ,u() =Dα

+u() = ,

u() =
m∑
i=

aiu(ξi),Dα–
+ u() =

m∑
i=

biDα–
+ u(ηi)

}
. (.)

Based on the definition of domM, it is easy to find that domM �=∅ such as u(t) = ctα– ∈
domM, c ∈ R.
Define the operator Nλ : X → Y , λ ∈ [, ],

Nλu(t) = λf
(
t,u(t),Dα–

+ u(t),Dα–
+ u(t),Dα

+u(t)
)
, t ∈ [, ].

Then BVP (.) is equivalent to the operator equationMu =Nu, where N =N.

http://www.advancesindifferenceequations.com/content/2013/1/295
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3 Main result
In this section, a theorem on existence of solutions for BVP (.) will be given.
Define operators Tj : Y → Y , j = ,  as follows:

Ty =
∫ 


( – s)α–ϕq

(


�(β)

∫ s


(s – τ )β–y(τ )dτ

)
ds

–
m∑
i=

ai
∫ ξi


(ξi – s)α–ϕq

(


�(β)

∫ s


(s – τ )β–y(τ )dτ

)
ds,

Ty =
∫ 


ϕq

(


�(β)

∫ s


(s – τ )β–y(τ )dτ

)
ds

–
m∑
i=

bi
∫ ηi


ϕq

(


�(β)

∫ s


(s – τ )β–y(τ )dτ

)
ds.

Let us make some assumptions, which will be used in the sequel.
(H) There exist nonnegative functions r,d, e,h,k ∈ Y such that for all t ∈ [, ],

(u, v,w, z) ∈ R,

∣∣f (t,u, v,w, z)∣∣ ≤ r(t) + d(t)|u|p– + e(t)|v|p– + h(t)|w|p– + k(t)|z|p–.

(H) There exists a constant A >  such that for u ∈ domM, if |Dα–
+ u(t)| > A for all

t ∈ [, ], then

sgn
{
Dα–

+ u(t)
} 
�

(
�TNu(t) –�TNu(t)

)
> 

or

sgn
{
Dα–

+ u(t)
} 
�

(
�TNu(t) –�TNu(t)

)
< .

(H) There exists a constant B >  such that for u ∈ domM, if |Dα–
+ u(t)| > B for all

t ∈ [, ], then

sgn
{
Dα–

+ u(t)
} 
�

(
–�TNu(t) +�TNu(t)

)
> 

or

sgn
{
Dα–

+ u(t)
} 
�

(
–�TNu(t) +�TNu(t)

)
< .

Theorem . Let f : [, ] × R → R be continuous and condition (H)-(H) hold, then
BVP (.) has at least one solution, provided that


�(β + )

(
A‖d‖∞ + ‖e‖∞ + ‖h‖∞ + ‖k‖∞

)
< , (.)

where A = 
�(α+) +


�(α) +


�(α–) .

In order to prove Theorem ., we need to prove some lemmas below.

http://www.advancesindifferenceequations.com/content/2013/1/295
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Lemma . The operator M : domM ∩X → Y is quasi-linear.

KerM =
{
u ∈ X | u(t) = ctα– + ctα–, c, c ∈ R

}
, (.)

ImM = {y ∈ Y | Tjy = , j = , }. (.)

Proof Suppose that u(t) ∈ domM, by Dβ

+ϕp(Dα
+u(t)) = , we have

Dα
+u(t) = ϕq

(
ctβ–

)
.

Based on Dα
+u() = , one has

u(t) = ctα– + ctα– + ctα–,

which together with u() =  yields that

KerM =
{
u ∈ X | u(t) = ctα– + ctα–, c, c ∈ R

}
.

It is clear that dimKerM = . So, KerM is linearly homeomorphic to R.
If y ∈ ImM, then there exists a function u ∈ domM such that y(t) = Dβ

+ϕp(Dα
+u(t)).

Based on Lemmas . and ., we have

u(t) = Iα+ϕq
(
Iβ+y(s)

)
+ ctα– + ctα–,

Dα–
+ u(t) =Dα–

+ Iα+ϕq
(
Iβ+y(s)

)
+ c�(α),

which together with
∑m

i= aiξα–
i = ,

∑m
i= aiξα–

i =  and
∑m

i= bi =  yields that Tjy(t) = ,
j = , .
On the other hand, suppose that y ∈ Y and satisfies (.), and let u(t) = Iα+ϕq(Iβ+y(t)),

then u ∈ domM andMu(t) =Dβ

+ϕp(Dα
+u(t)) = y, so y ∈ ImM and ImM :=M(domM) is a

closed subset of Y . Thus,M is a quasi-linear operator. �

Lemma . Let 	 ⊂ X be an open and bounded set, then Nλ is M-compact in 	.

Proof Define the continuous projector P : X → X by

Pu(t) =


�(α)
Dα–

+ u()tα– +


�(α – )
Dα–

+ u()tα–, t ∈ [, ].

Define the continuous projector Q : Y → Y, by

Qy(t) =
(
Qy(t)

)
tα– +

(
Qy(t)

)
tα–, t ∈ [, ],

where

Qy(t) = ϕp

(

�

(
�Ty(t) –�Ty(t)

))
,

Qy(t) = ϕp

(

�

(
–�Ty(t) +�Ty(t)

))
.

http://www.advancesindifferenceequations.com/content/2013/1/295
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Obviously, X = KerM = ImP and Y = ImQ. Thus, we have dimY = dimX = . For any
y ∈ Y , we have

Q
(
Qy(t)tα–

)
= ϕp

(

�

(
�T

(
Qy(t)tα–

)
–�T

(
Qy(t)tα–

)))
= Qy(t)ϕp

(

�
(�� –��)

)
=Qy(t).

Similarly, we can get

Q
(
Qy(t)tα–

)
= , Q

(
Qy(t)tα–

)
= , Q

(
Qy(t)tα–

)
=Qy(t).

Hence, themapQ is idempotent. Similarly, we can getQ(μy) = μQy, for all y ∈ Y ,μ ∈ R.
Thus, Q is a semi-projector. For any y ∈ ImM, we can get that Qy =  and y ∈ KerQ,
conversely, if y ∈ KerQ, we can obtain that Qy = , that is to say, y ∈ ImM. Thus, KerQ =
ImM. Let 	 ⊂ X be an open and bounded set with θ ∈ 	, for each u ∈ 	, we can get
Q[(I –Q)Nλ(u)] = . Thus, (I –Q)Nλ(u) ∈ ImM =KerQ. Take any y ∈ ImM in the type y =
(y–Qy) +Qy, sinceQy = , we can get y ∈ (I –Q)Y . So, (.) holds. It is easy to verify (.).
Define R : 	 × [, ]→ X by

R(u,λ)(t) =


�(α)

∫ t


(t – s)α–ϕq

(


�(β)

∫ s


(s – τ )β–

(
(I –Q)Nλu(τ )

)
dτ

)
ds.

By the continuity of f , it is easy to get that R(u,λ) is continuous on 	× [, ]. Moreover,
for all u ∈ 	, there exists a constant T >  such that |Iβ+(I –Q)Nλu(τ )| ≤ T , so, we can eas-
ily obtain that R(	,λ), Dα–

+ R(	,λ), Dα–
+ R(	,λ) and Dα

+R(	,λ) are uniformly bounded.
By Arzela-Ascoli theorem, we just need to prove that R : 	 × [, ] → X is equicontinu-
ous.
For u ∈ 	,  < t < t ≤ ,  < α ≤ ,  < β ≤ ,  < α + β ≤ , we have

∣∣R(u,λ)(t) – R(u,λ)(t)
∣∣

=


�(α)

∣∣∣∣∫ t


(t – s)α–ϕq

(
Iβ+

(
(I –Q)Nλu(τ )

))
ds

–
∫ t


(t – s)α–ϕq

(
Iβ+

(
(I –Q)Nλu(τ )

))
ds

∣∣∣∣
≤ ϕq(L)

�(α)

(∫ t



(
(t – s)α– – (t – s)α–

)
ds +

∫ t

t
(t – s)α– ds

)
=

ϕq(T)
�(α + )

(
tα – tα

)
,∣∣Dα–

+ R(u,λ)(t) –Dα–
+ R(u,λ)(t)

∣∣
=

∣∣∣∣∫ t


(t – s)ϕq

(
Iβ+

(
(I –Q)Nλu(τ )

))
ds –

∫ t


(t – s)ϕq

(
Iβ+

(
(I –Q)Nλu(τ )

))
ds

∣∣∣∣
≤ ϕq(T)

(∫ t


(t – s) – (t – s)ds +

∫ t

t
(t – s)ds

)
=

ϕq(T)


(
t – t

)
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and

∣∣Dα–
+ R(u,λ)(t) –Dα–

+ R(u,λ)(t)
∣∣

=
∣∣∣∣∫ t


ϕq

(
Iβ+

(
(I –Q)Nλu(τ )

))
ds –

∫ t


ϕq

(
Iβ+

(
(I –Q)Nλu(τ )

))
ds

∣∣∣∣
≤ ϕq(T)(t – t).

Since tα is uniformly continuous on [, ], so, R(	,λ), Dα–
+ R(	,λ) and Dα–

+ R(	,λ) are
equicontinuous. Similarly, we can get that Iβ+((I –Q)Nλu(τ ))⊂ C[, ] is equicontinuous.
Considering that ϕq(s) is uniformly continuous on [–T ,T], we have that Dα

+R(	,λ) =
Iβ+((I –Q)Nλ(	)) is also equicontinuous. So, we can obtain that R : 	 × [, ] → X is
compact.
For each u ∈ �λ, we have Dβ

+ϕp(Dα
+u(t)) =Nλ(u(t)) ∈ ImM. Thus,

R(u,λ)(t) =


�(α)

∫ t


(t – s)α–ϕq

(


�(β)

∫ s


(s – τ )β–

(
(I –Q)Nλu(τ )

)
dτ

)
ds

=


�(α)

∫ t


(t – s)α–ϕq

(


�(β)

∫ s


(s – τ )β–Dβ

+ϕp
(
Dα

+u(τ )
)
dτ

)
ds,

which together with Dα
+u() = u() =  yields that

R(u,λ)(t) = u(t) –


�(α)
Dα–

+ u()tα– –


�(α – )
Dα–

+ u()tα– = (I – P)u(t).

It is easy to verify that R(u, )(t) is the zero operator. So, (.) holds. Besides, for any u ∈ 	,

M
[
Pu + R(u,λ)

]
(t)

=M
[


�(α)

∫ t


(t – s)α–ϕq

(


�(β)

∫ s


(s – τ )β–

(
(I –Q)Nλu(τ )

)
dτ

)
ds

+


�(α)
Dα–

+ u()tα– +


�(α – )
Dα–

+ u()tα–
]

= (I –Q)Nλu(t),

which implies (.). So, Nλ isM-compact in 	. �

Lemma . Suppose that (H), (H) hold, then the set

	 =
{
u ∈ domM \KerM |Mu =Nλu,λ ∈ (, )

}
is bounded.

Proof By Lemma ., for each u ∈ domM, we have

u(t) = Iα+D
α
+u(t) + ctα– + ctα– + ctα–.
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Combined with u() = , we get c = . Thus,

u(t) = Iα+D
α
+u(t) + ctα– + ctα–,

Dα–
+ u(t) = I+D

α
+u(t) + c�(α),

Dα–
+ u(t) = I+D

α
+u(t) + c�(α)t + c�(α – ).

By simple calculation, we get

c =


�(α)

(
Dα–

+ u(t) –
∫ t


Dα

+u(s)ds
)
,

c =


�(α – )

(
Dα–

+ u(t) –
∫ t


(t – s)Dα–

+ u(s)ds –
(
Dα–

+ u(t) –
∫ t


Dα

+u(s)ds
)
t
)
.

Take any u ∈ 	, then Nu ∈ ImM = KerQ and QNu = . It follows from (H) and (H)
that there exist ε, ε ∈ [, ] such that |Dα–

+ u(ε)| ≤ A, |Dα–
+ u(ε)| ≤ B. Thus,

Dα–
+ u(t) =Dα–

+ u(ε) +
∫ t

ε

Dα
+u(t)dt,

Dα–
+ u(t) =Dα–

+ u(ε) +
∫ t

ε

Dα–
+ u(t)dt,

∥∥Dα–
+ u

∥∥∞ ≤ A +
∥∥Dα

+u
∥∥∞,∥∥Dα–

+ u
∥∥∞ ≤ B +

∥∥Dα–
+ u

∥∥∞ ≤ A + B +
∥∥Dα

+u
∥∥∞.

So, we get

|c| ≤ 
�(α)

(∥∥Dα–
+ u

∥∥∞ +
∥∥Dα

+u
∥∥∞

) ≤ 
�(α)

(
A + 

∥∥Dα
+u

∥∥∞
)
,

|c| ≤ 
�(α – )

(∥∥Dα–
+ u

∥∥∞ +


∥∥Dα–

+ u
∥∥∞ +

∥∥Dα
+u

∥∥∞

)
≤ 

�(α – )

(
A


+ B +


∥∥Dα

+u
∥∥∞

)
,

‖u‖∞ ≤ A
∥∥Dα

+u
∥∥∞ + B,

where A = 
�(α+) +


�(α) +


�(α–) , B = A

�(α) +
A

�(α–) +
B

�(α–) .
Based on Dα

+u() = , we have

ϕp
(
Dα

+u(t)
)
= λIβ+Nu(t).

From (H) and λ ∈ (, ), we have

∣∣ϕp
(
Dα

+u(t)
)∣∣

≤ 
�(β)

∫ t


(t – s)β–

∣∣f (s,u(s),Dα–
+ u(t),Dα–

+ u(s),Dα
+u(s)

)∣∣ds
≤ 

�(β)

∫ t


(t – s)β–

(
r(s) + d(s)

∣∣u(s)∣∣p– + e(s)
∣∣Dα–

+ u(s)
∣∣p–
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+ h(s)
∣∣Dα–

+ u(s)
∣∣p– + k(s)

∣∣Dα
+u(s)

∣∣p–)ds
≤ 

�(β + )
(‖r‖∞ + ‖d‖∞‖u‖p–∞ + ‖e‖∞

∥∥Dα–
+ u

∥∥p–
∞

+ ‖h‖∞
∥∥Dα–

+ u
∥∥p–

∞ + ‖k‖∞
∥∥Dα

+u
∥∥p–

∞
)
,

which together with |ϕp(Dα
+u(t))| = |Dα

+u(t)|p–, we can get

∥∥Dα
+u

∥∥p–
∞ ≤ 

�(β + )
(‖r‖∞ + ‖d‖∞‖u‖p–∞ + ‖e‖∞

∥∥Dα–
+ u

∥∥p–
∞

+ ‖h‖∞
∥∥Dα–

+ u
∥∥p–

∞ + ‖k‖∞
∥∥Dα

+u
∥∥p–

∞
)

≤ 
�(β + )

(‖r‖∞ + ‖d‖∞
(
A

∥∥Dα
+u

∥∥∞ + B
)
+ ‖e‖∞

(
A +

∥∥Dα
+u

∥∥∞
)p–

+ ‖h‖∞
(
A +

∥∥Dα
+u

∥∥∞
)p– + ‖k‖∞

∥∥Dα
+u

∥∥p–
∞

)
.

In view of (.), we can obtain that there exists a constantM >  such that

∥∥Dα
+u

∥∥∞ ≤M,
∥∥Dα–

+ u
∥∥∞ ≤ A +M :=M,∥∥Dα–

+ u
∥∥∞ ≤ A +M :=M, ‖u‖∞ ≤ AM + B :=M.

Thus, we have

‖u‖X =max
{‖u‖∞,

∥∥Dα–
+ u

∥∥∞,
∥∥Dα–

+ u
∥∥∞,

∥∥Dα
+u

∥∥∞
} ≤max{M,M,M,M} :=M.

So, 	 is bounded. �

Lemma . Suppose that (H) holds, then the set

	 = {u | u ∈KerM,Nu ∈ ImM}

is bounded.

Proof For each u ∈ 	, we have that u(t) = ctα– + ctα–, c, c ∈ R and QNu = . It
follows from (H) and (H) that there exists an ε, ε ∈ [, ] such that |Dα–

+ u(ε)| ≤ A,
|Dα–

+ u(ε)| ≤ A, which implies that |c| ≤ A
�(α) and |c| ≤ A+B

�(α–) . So, 	 is bounded. �

Define the isomorphism J– : KerM → ImQ by J–(ctα– + ctα–) = ctα– + ctα–,
c, c ∈ R, t ∈ [, ]. In fact, for each c, c ∈ R, suppose that (Qy(t),Qy(t)) = (c, c), we
have⎧⎨⎩�Ty(t) –�Ty(t) = �ϕq(c) := c̃,

–�Ty(t) +�Ty(t) = �ϕq(c) := c̃,
(.)

where c̃, c̃ ∈ R, by the condition �� – �� �= , there exists a unique solution for
(.), which is (Ty(t),Ty(t)) = (m,m), m,m ∈ R. Now, we will prove that there exists
y ∈ Y such that (Ty(t),Ty(t)) = (m,m). Based on y(t) ∈ C[, ], we choose y(t) =Dβ

+y(t),
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where y(t) = ϕp(lt(α+β–)(q–) + lt(α+β–)(q–)), l = ��(α)q–
�(α+β)q– , l =

��(α–)q–
�(α+β–)q– ,� = m�–m�

�
,

� = m�–m�
�

, t ∈ [, ], which together with  < α ≤ ,  < β ≤ ,  < α + β ≤ , q > ,
we have (α + β – )(q – ) >  and (α + β – )(q– ) > . So, we have y() = . Thus, we can
obtain that

Iβ+y(t) = Iβ+D
β

+y(t) = y(t) + ctβ–,

where c ∈ R, which together with y() = , we have c = . So, we have

⎧⎪⎪⎨⎪⎪⎩
Ty(t) =

∫ 
 ( – s)α–ϕq(y(s))ds –

∑m
i= ai

∫ ξi
 (ξi – s)α–ϕq(y(s))ds

=�� +�� =m,

Ty(t) =
∫ 
 ϕq(y(s))ds –

∑m
i= bi

∫ ηi
 ϕq(y(s))ds =�� +�� =m.

Thus, there exists y ∈ Y such that (Ty(t),Ty(t)) = (m,m). So J– : KerL → ImQ is well
defined.

Lemma . Suppose that the first part of (H) holds, then the set

	 =
{
u ∈KerM | λJ–u + ( – λ)QNu = ,λ ∈ [, ]

}
is bounded.

Proof For each u ∈ 	, we can get that u(t) = ctα– + ctα–, c, c ∈ R. By the definition of
the set 	, we can obtain that

λ
(
ctα– + ctα–

)
+ ( – λ)

(
QN

(
ctα– + ctα–

)
tα– +QN

(
ctα– + ctα–

)
tα–

)
= .

Thus,

λc + ( – λ)ϕp

(

�

(
�TN

(
ctα– + ctα–

)
–�TN

(
ctα– + ctα–

)))
= , (.)

λc + ( – λ)ϕp

(

�

(
–�TN

(
ctα– + ctα–

)
+�TN

(
ctα– + ctα–

)))
= . (.)

If λ = , then 	 is bounded because of the first part of (H) and (H). If λ = , we get
c = c = , obviously, 	 is bounded. If λ ∈ (, ), by the first part of (H) and (.), we can
obtain that |c| ≤ A

�(α) , by the first part of (H) and (.), we have |c| ≤ A+B
�(α–) . So, 	 is

bounded. �

Remark . If the second part of (H) holds, then the set

	′
 =

{
u ∈KerM | –λJ–u + ( – λ)QNu = ,λ ∈ [, ]

}
is bounded.
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Proof of Theorem . Assume that 	 is a bounded open set of X with
⋃

i= 	i ∪ 	′
 ⊂ 	.

By Lemmas . and ., we can obtain that M : domM ∩ X → Y is quasi-linear, and Nλ is
M-compact on 	. By the definition of 	 , we have

Lu �=Nλu, ∀(u,λ) ∈ (domM ∩ ∂	)× (, ),

H(u,λ) = ±λJ–(u) + ( – λ)QN(u) �= , (∂	 ∩KerM)× [, ].

Thus, by the homotopic property of degree, we can get

deg(JQN ,	 ∩KerM, ) = deg
(
H(·, ),	 ∩KerM, 

)
= deg

(
H(·, ),	 ∩KerM, 

)
= deg(±I,	 ∩KerM, ) �= .

So Lemma . is satisfied, and Mu = Nu has at least one solution in domM ∩ 	. Namely,
BVP (.) have at least one solution in the space X. �
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