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1 Introduction

In the recent years, fractional differential equations played an important role in many fields
such as physics, electrical circuits, biology, control theory, etc. (see [1-7]). Thus, many
scholars have paid more attention to fractional differential equations and gained some
achievements (see [8—22]). For example, Wang [21] considered a class of fractional multi-
point boundary value problems at resonance by Mawhin’s continuation theorem (see [23]):

D& u(t) =f(¢,u(t), D3 u(t)), te(0,1), ae. te(0,1),
u(0)=0,  D§'u(l) =37 aiD§ ul&), a1
D 2u(1) = Y7 biD%u(ny),

wherel<a <2,0<§ <& < <, <,0<m<m<--<n, <, Y Ma=1,% " b=1,
Y oiibimi =1, D}, is the standard fractional derivative, f : [0,1] x R?> — R satisfies the
Carathéodory condition.

But Mawhin’s continuation theorem is not suitable for quasi-linear operators. In [24],
Ge and Ren had extended Mawhin’s continuation theorem, which was used to deal with
more general abstract operator equations. In [25], Pang et al. considered a higher order

nonlinear differential equation with a p-Laplacian operator at resonance:

(0" D(@0)) = f(&u(®), ..., u" (D) +e(t), t€(0,1),
u0)=0, i=1,2,....,n-1, (1.2)

u() = [, u(s)dg(s),
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where ¢,(s) = Is|P2s, p>1,f:[0,1] x R” — R" and e: [0,1] — R are continuous, # > 2 is
an integer. g : [0,1] — R is a nondecreasing function with fol dg(s) = 1, the integral in the
second part of (1.2) is meant in the Riemann-Stieltjes sense.

However, there are few articles which consider the fractional multi-point bound-
ary value problem at resonance with p-Laplacian operator and dimKerM = 2, because
p-Laplacian operator is a nonlinear operator, and it is hard to construct suitable continu-
ous projectors. In this paper, we will improve and generalize some known results.

Motivated by the work above, our article is to investigate the multi-point boundary value
problem at resonance for a class of Riemanne-Liouville fractional differential equations
with p-Laplacian operator and dim Ker M = 2 by constructing suitable continuous projec-
tors and using the extension of Mawhin’s continuation theorem:

D§+ ‘pp(Dg+ u(t)) = f(t, u(t),ngzu(t),nglu(t),D‘())ﬁu(t)), t€(0,1),
u(0) =D u(0)=0,  u() =37 au&), 13)
D tu(1) = Y- bD& u(ny),

where2<a <3,0<B8<1,3<a+B<4,0<& <& <<, <,0<m<m< <<,
ai€Rb;eR1<mmeN, Yy Haf =1, " ag?>=1,31" b =1, ¢ls) = [s]Ps,
©p(0)=0,1<p,1/p+1/q =1, @, is invertible and its inverse operator is ¢, Dj, is Riemann-
Liouville standard fractional derivative, f : [0,1] x R* — R is continuous.

In order to investigate the problem, we need to suppose that the following conditions
hold:

A=AAy—NAyA3 70,

where

" T+ p)rT(ag+Bg—q-B+2)

i=1

F@)iT(aqg+Bg—g—a—B+2) (1 B ia'éngq_q-ﬂu)

_lle- DT ()T (ag + g ~2q —o B +3) - aq+fq-2q-p+2
*T T+B-1"T(aq+pq—2q- P +3) (1-2% :

i=1

1—‘(01)6]71 “ ag+Bgq-q—oa—pf+2
A3 = 1- A )
’ F(a+ﬁ)q‘1(aq+ﬁq—q—a—ﬁ+2)( 21: L

r -1 q-1 m
A4 = — (Ol ) 1— Zbin?q+ﬂq—2q—a—ﬂ+3 )
Pla+p-1)"Haq+pg-2q-a-p+3)\ S

The rest of this article is organized as follows: In Section 2, we give some notations,

definitions and lemmas. In Section 3, based on the extension of Mawhin’s continuation

theorem due to Ge, we establish a theorem on existence of solutions for BVP (1.3).

2 Preliminaries
For the convenience of the reader, we present here some necessary basic knowledge and
definitions for fractional calculus theory that can be found in the recent literature (see [1,
3,14, 21, 24, 25]).
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Let X and Y be two Banach spaces with norms || - ||x and |||y, respectively. A contin-
uous operator

M|d0mMﬂX :XNdomM — Y

is said to be quasi-linear if
(i) ImM := M(X NdomM) is a closed subset of Y,

(i) KerM :={u € XNdomM : Mu = 0} is linearly homeomorphic to R", n < 0.

Let X; = Ker M and X, be the complement space of X; in X, then X = X & X;. On the
other hand, suppose that Y; is a subspace of Y, and Y5 is the complement space of Y7 in Y,
sothat Y =Y; @ Y;. Let P: X — Xj be a projector and Q : Y — Y] a semi-projector, and
2 C X an open and bounded set with origin 6 € Q. 6 is the origin of a linear space.

Suppose that N, : @ — Y, A € [0,1] is a continuous operator. Denote N; by N. Let I =
{u € Q: Mu = N,u}. N, is said to be M-compact in Qifthereisan ¥; C Y with dimY; =
dim X; and an operator R: Q x [0,1] — X continuous and compact such that for 1 € [0,1],

(I - QN.(Q) CImM C (I - Q)Y, (2.1)
QNx=6, Are(0,1) < QNx=0, (2.2)
R(, M5, = =P, (2.3)

and R(-,0) is the zero operator,
M[P+R(,1)] = - Q)N;. (2.4)

Lemma 2.1 (Ge-Mawhin’s continuation theorem [24]) Let (X, || - |lx) and (Y, || - |ly) be
two Banach spaces, and Q2 C X an open and bounded nonempty set. Suppose that M :
X NdomM — Y is a quasi-linear operator N, : Q@ — Y, A € [0,1] is M-compact in Q. In
addition, if

(i) Lu#Nyu,V(u,r) € (domMNaIR) x (0,1),

(i) deg(JON,KerM N ,0)#0,
where ] : Im Q — Ker M is a homeomorphism with J(0) = 0 and N = Ny, then the equation
Mu = Nu has at least one solution in domM N Q.

Definition 2.1 The Riemann-Liouville fractional integral of order « > 0 of a function u is
given by

Ifou(t) = ﬁ /o (¢ — )" Lu(s) ds,

provided the right-hand side integral is pointwise almost everywhere defined on (0, +00).

Definition 2.2 The Riemann-Liouville fractional derivative of order « > 0 of a function

u is given by

o oL (AN [T uls)
Do u(®) = I'n-o) (a’t> /0 (t — s)a—n+l ds,
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provided the right-hand side integral is pointwise everywhere defined on (0, +00), where
n=[a]+1.

Definition 2.3 Let X be a Banach space, and X; C X is a subspace. A mapping Q: X — X;
is a semi-projector if Q satisfies

(i) Q*x=Qx, VxeX,

(if) Q(ux)=uQx,Vxe X, u R

Lemma 2.2 Assume that u € C(0,1) N LY(0,1) with a fractional derivative of order o > 0
that belongs to C(0,1) N L}(0,1). Then

I, Dy, u(t) = u(t) + at® taot® ot ™N
forsomec; €R,i=1,2,...,N, where N = [a] + 1.
Lemma 2.3 Assume that u(t) € C[0,1],0 < p < g, then

D15, u(t) = I T u(t).

Lemma 2.4 Assume that o > 0, then:
(@) Ifr>-1,A#a—-i,i=12,...,[a] +1, we have that

-

r(x+1)
Dyt = ——————t
F'(A—o+1)
(i) D% t*"=0,i=1,2,...,[@] + 1.

In this paper, we take X = {u | u, D3u, D& u, DY, u € C[0,1]} with the norm ||u|x =
max({]|u]| oo, 1D§7 | oo IDGT el o, |1 D thlloc}, Where [[utlloo = maxsepo [u(2)], and Y =
C[0,1] with the norm |y|ly = [|¥]l- By means of the linear functional analysis theory,
it is easy to prove that X and Y are Banach spaces, so we omit it.

Define the operator M :domM — Y by

Mu = Djy, 9, (DG u(t)), (2.5)

domM = {u ex ’ Db ¢y (D% u) € Y,u(0) = D%.u(0) = 0,

u(l) =Y au(E), Di- u(l) = Y bDf u(n) | (2.6)
i=1

i=1

Based on the definition of dom M, it is easy to find that dom M # & such as u(t) = ct*! €
domAM, c e R.
Define the operator N; : X — Y, A € [0,1],
Nyu(t) = M (t, u(t), D3 u(t), Dy u(t), D, u(t)), t<€[0,1].

Then BVP (1.3) is equivalent to the operator equation Mu = Nu, where N = N;.

Page 4 of 13


http://www.advancesindifferenceequations.com/content/2013/1/295

Shen et al. Advances in Difference Equations 2013, 2013:295
http://www.advancesindifferenceequations.com/content/2013/1/295

3 Main result
In this section, a theorem on existence of solutions for BVP (1.3) will be given.
Define operators T;: Y — Y, j = 1,2 as follows:

1 1 s
T1y=/0 (l—s)“l(pq(Tﬂ)/O (s - r)ﬁly(r)dr) ds

il & 1 s
- Zﬂi/(; & _S)a_l(pq(rﬁ) /0 (s— 1) y(r) dr) ds,
i=1

1 1 s
= _— —_ ﬂ_l
Thy /(; (pq( N0 /0 (s—1) y(r)dt) ds

o wq(%ﬂ) [ (s—r)ﬂ-lymdr) ds.
i=1

Let us make some assumptions, which will be used in the sequel.
(H1) There exist nonnegative functions r,d, e, i,k € Y such that for all £ € [0,1],
(u,v,w,2) € R%,

[f &, v, w,2)| < r(8) + d@)|ulP™ + e vIF + (@) |wP™ + k() |zP .

(H2) There exists a constant A > 0 such that for # € dom M, if | D§7 Lu(t)] > A for all
t €[0,1], then

sgn{D§: u(e)} % (A4TiNu(t) = AsT>Nu(t)) > 0
or
sgn{DSIlu(t) } % (A4 TiNu(t) — Az TzNu(t)) <0.

(H3) There exists a constant B > 0 such that for # € dom M, if |Dg‘:2u(t)| > B for all
t €[0,1], then

sgn{D§u(t)} % (=A2TiNu(t) + A1 ToNu(t)) > 0
or
sgn{Dg‘Izu(t)} % (—Az TiNu(t) + AszNu(t)) <0.

Theorem 3.1 Let f : [0,1] x R* — R be continuous and condition (H1)-(H3) hold, then
BVP (1.3) has at least one solution, provided that

1
T3+ Al + lleloo + lloe + Ikllo) <1, 31)

1 2 7
Ta+D) T T T 2"

where A1 =

In order to prove Theorem 3.1, we need to prove some lemmas below.

Page 5of 13
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Lemma 3.1 The operator M :domM N X — Y is quasi-linear.

KerM = {ue X |u(t) = it + cot* %, c1,c0 € R}, (3.2)

ImM={yeY|Ty=0,j=12}. (3.3)
Proof Suppose that u(t) € domM, by Dg+ @p(Dg+u(t)) = 0, we have
D ult) = g (cot”™).
Based on Df, #(0) = 0, one has
u(t) = %7+ 02 + 58973,
which together with #(0) = 0 yields that
KerM = {u eX | ult)=at* '+t 2,0 € R}.
It is clear that dim Ker M = 2. So, Ker M is linearly homeomorphic to R.
If y € ImM, then there exists a function u € domM such that y(¢) = D’g+ @p (DY u(t)).

Based on Lemmas 2.2 and 2.3, we have

u(t) =I5 ¢, (I(’)S+y(s)) + ot et 2,
D§u(t) = DI 0, (I15.9(9)) + T (@),
which together with Y7, 2,67 =1, Y " a;§7* =1and ) ", b; = 1 yields that Tjy(t) = 0,
j=1,2.
On the other hand, suppose that y € Y and satisfies (3.3), and let u(¢) = Ij. (pq(lg+ ¥(2)),

then u € dom M and Mu(t) = D§+<pp(D‘(’,‘+ u(t)) =y,soy € ImM and ImM := M(dom M) is a
closed subset of Y. Thus, M is a quasi-linear operator. O

Lemma 3.2 Let Q C X be an open and bounded set, then N, is M-compact in Q.

Proof Define the continuous projector P: X — Xj by

Pu(t) = ﬁD‘(’)‘Ilu(O)t"‘_1 +

Diu(0)* %, te0,1].
Fa Ty 26O c(0.1]
Define the continuous projector Q: Y — Y, by

Q(®) = (Qu®)) " + (Q®)*, relo,1],
where

Quy(t) = ¢p (% (AsT1y(t) — As sz(t))),

Qay(8) = Wp(%(_AZ Tiy(t) + Ay sz(t))>~
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Obviously, X; = KerM = ImP and Y; = ImQ. Thus, we have dim ¥; = dim X; = 2. For any
y €Y, wehave

1
Q(QuE™) = g, (X (AT (Quy®)t* ™) = A3T, (Qly(t)t“_l)))
= Qly(t)ﬁﬂp(%(AzLAl - A3A2)> = Quy(t).
Similarly, we can get

Qi (Qu(®)t*?) =0, Q(Qu®t ) =0, Qo (Quy(O*7?) = Quy(2).

Hence, the map Q is idempotent. Similarly, we can get Q(uy) = nQy, forally e Y, u e R.
Thus, Q is a semi-projector. For any y € ImM, we can get that Qy = 0 and y € KerQ,
conversely, if y € Ker Q, we can obtain that Qy = 0, that is to say, y € ImM. Thus, KerQ =
ImM. Let Q C X be an open and bounded set with 6 € Q, for each u € Q, we can get
QI( = Q)N;.(#)] = 0. Thus, (I — Q)N (1) € ImM = Ker Q. Take any y € ImM in the type y =
(y— Qy) + Qy, since Qy =0, we can get y € (I - Q)Y. So, (2.1) holds. It is easy to verify (2.2).

Define R: Q x [0,1] — X, by

1

R(u, M)(8) = ﬁ /0 (t- s)“lgoq(m /0 (s— 1)U - QNu(v)) dr) ds.

By the continuity of £, it is easy to get that R(u, A) is continuous on  x [0,1]. Moreover,
for all u € , there exists a constant 7 > 0 such that |I(')3+ (I-Q)N,u(r)| < T, so, we can eas-
ily obtain that R(Q, 1), D$2R(S2, 1), DZ7'R(2, A) and DZ, R(S2, A) are uniformly bounded.

By Arzela-Ascoli theorem, we just need to prove that R : Q x [0,1] — X, is equicontinu-
ous.

Foru€§,0<t1<t2§1,2<a53,0<,3§1,3<oe+ﬁ§4,wehave

|R(u, 1) (t2) = R(u, M) (1)

/O 1y - 9, (1P (1 - QNu(r))) ds

B 1
" T(a)
- [ -9 a0 (- Q) s

L t 2
< (?‘q(—(oz)) (/0 ((tz —s) (- s)"‘_l) ds + / (£ —5)*7! ds)

_ Qoq(T) o a
“TaspE 4

D& R(u, M) (1) — D> R, 1) (1)
= ‘ /0 2 (t = 8)pq (5. (I - QN uu(2))) ds — /0 1 (t - o, (I8, (I - QNu(7))) ds

swq(T)(/l(tz—s)—(tl—s>ds+/2<t2—s)ds)
0 15}

- 20 (G-1)
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and

| DS R(u, 1) () — DR, (1)

| entth (- @) ds= [, (0 - Qi) s

0

< 9q(T)(t2 - 1).

Since ¢* is uniformly continuous on [0,1], so, R(, 1), D272R(, 1) and DE'R(Q, 1) are
equicontinuous. Similarly, we can get that Ig+ ((I - Q)N u(t)) C C[0,1] is equicontinuous.
Considering that ¢,(s) is uniformly continuous on [-T, T], we have that D8‘+R(§,A) =
I§+((1— Q)N,(Q)) is also equicontinuous. So, we can obtain that R : Q x [0,1] — X, is
compact.

For each u € X5, we have Dg+ @p (D5 u(t)) = Ny (u(t)) € In M. Thus,

1 [t 1
m/{) (t—s)algpq(m/o (s— 1)U - QNu(x)) dr) ds

1 t 1 $
m/O (t_s)a_l(pq(ﬁﬁ)./o (3—r)f“ng+(pp(Dg+u(r))dt> ds,

which together with D, #(0) = u(0) = 0 yields that

R(u, 1)(2)

R(u, A)(t) = u(t) — ﬁDg:lu(O)t"“1 DS u(0)t* % = (I - P)u(?).

CT(a-1)

It is easy to verify that R(u, 0)(¢) is the zero operator. So, (2.3) holds. Besides, for any u € £,

M[Pu + R(u, 1)](t)

1 ¢ 1 s
:M[mfo (t—s)O‘l(pq(Tﬂ)/o (s—t)ﬁl((I—Q)N,\u(t))dr> ds
1

1
MNa-1)

+ —D;’)‘Ilu(O)t"“1 +

o—2 a-2
INGY! De a0} ]

which implies (2.4). So, N, is M-compact in Q. d

Lemma 3.3 Suppose that (H1), (H2) hold, then the set
Q1 = {u € domM \ Ker M | Mu = Nyu, » € (0,1)}

is bounded.

Proof By Lemma 2.2, for each u € dom M, we have

u(t) = I8 DE u(t) + crt™ ™ + ot + c3t* 73,

Page 8 of 13
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Combined with #(0) = 0, we get c3 = 0. Thus,

u(t) = I3, DG, u(t) + !+ ot 2,
D& tu(t) = Ip. D& u(t) + o T (@),

Dg:2u(t) = 13+D‘(’)‘+ u(t) + el (@)t + oM (e = 1).

By simple calculation, we get

a= Mo )<D8‘+1u(t) /Dwu(s)ds),

1 t t
Cy = m(Dgﬁzu(t) /0 (t —s)Dm u(s)ds — (D‘(’)‘Ilu(t)—/o D u(s) ds)t).

Take any u € Qy, then Nu € ImM = Ker Q and QNu = 0. It follows from (H2) and (H3)
that there exist &1, &, € [0,1] such that |[D% u(e1)| < A, |D&2u(ey)| < B. Thus,

t
D&t u(t) = D& u(er) + / Dg. u(t) dt,

t
D& u(t) = DY u(62)+/ D& u(t) dt,
)

|6 1] <A+ | D]

|i2ul. =B+ |Dgul <A+ B+ [al

So, we get

)
el = (D62l +§||Da:1u|| + Dl
T (e —1) \"70" Tleo o 7707 Flloo 07" lloo

1 (54 70
<5 B g Ibl.)

lulloo < Ax HD‘&uHm + By,

ol = s (1987l + 1080) < s + 2D,

_ 1 2 7 _ A 5A B
where A1 = ¢y + 1oy + 77 B1 = Tl * T t T

Based on D, u(0) = 0, we have
0p (D u(t)) = AL} Nu(t).
From (H1) and A € (0,1), we have
|90p (Dg+ “(t))|
< %ﬂ) /t(t — )P f (s, u(s), D§>u(t), D§ u(s), D, u(s)) | ds

=T ﬂ)/ (£ = )P (r(s) + d(s)|u(s) [ + e(s)| DG 2uls) [
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+ h(s)| D () [P + k(s)| DR us) P dis

1 _
< (I7lloo + Illloo 2l + el oo | DE 2|

rB+1)

+ 1 Alloo | DS a2 + 1Ko | D222,

which together with |¢, (D& u(t))| = |D§. u(t)|P~!, we can get

_ 1 _ _ -
D50l = gy Il + Nllec ! + el | DG
+ Wl [ DF w2 + 1Ko | D )
. :
= 7g 7 Ml # 1l (A D] + Bu) + el (24 + [ D5 e] )

+ Whloo (A + [ D] )7 + Klleo | D5 u]2).
In view of (3.1), we can obtain that there exists a constant M; > 0 such that

||Dg+M||oo§M1, ||Dg:1u||oo§A +M1 :=M2’

”D‘6‘:2u||oo§2A + My := M3, ]l oo < A1 M, + By := My.

Thus, we have

D u|

llellx = max{[lulloo, | DG 2u ., |DGeu|| .} < max{My, My, M3, My} := M.

So, €1 is bounded. O

Lemma 3.4 Suppose that (H2) holds, then the set
Qy ={u| u € KerM, Nu € Im M}

is bounded.

Proof For each u € Q,, we have that u(t) = c;t* + ¢2t*2, ¢1,¢; € R and QNu = 0. It
follows from (H2) and (H3) that there exists an ¢;,&, € [0,1] such that [D§7 lu(e))| < A,
A+B

|Dg:2u(82)| < A, which implies that |¢;| < %a) and || < NFnE So, 2, is bounded. a

Define the isomorphism /™! : KerM — ImQ by J X (c;t*™! + ¢pt*72) = 1%t + cpt*72,
c1,¢ €R, t € [0,1]. In fact, for each ¢y, ¢y € R, suppose that (Quy(£), Quy(t)) = (c1,¢2), we
have

Ay Try(t) — AsToy(t) = Agy(cr) :=c1,
—AaTiy(t) + A Toy(t) = Agy(ca) := Ca,

(3.4)

where ¢1,¢; € R, by the condition AgA; — AyA3z # 0, there exists a unique solution for
(3.4), which is (T1y(¢), Toy(t)) = (my, my), my, my € R. Now, we will prove that there exists
y € Y such that (Tyy(t), Toy(¢)) = (my, my). Based on y(¢) € C[0,1], we choose y(t) = ng(t),
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—_1)4-1 -
where ¥(t) = ¢, (Lj£@*FDD 4 [ple+b-2la-D) [ = A(ll:r(ﬂ;q by = ﬁfarfg_gq_l, Ay = bl

Ay = %,te [0,1], which together with 2 <o <3,0<8<1,3<a+B<4,q>1,
we have (¢ + 8 —1)(g—1) >0 and (« + 8 — 2)(g — 1) > 0. So, we have y(0) = 0. Thus, we can
obtain that

I.y(6) = 15D} 5(0) = 3(8) + et 7,
where ¢ € R, which together with ¥(0) = 0, we have ¢ = 0. So, we have

Tiy(t) = [3 (1-9)*"0,(5(s)) ds — Y0 ai [ (6 — 5)* g (3(s)) s
= A1A1 + A2A2 =,

Tz)’ fo (pq(y dS - Zlnil b; /‘Ofli ¢q@(5))d5 = A1A3 + Ay Ay = my.

Thus, there exists y € Y such that (T1y(¢), Toy(t)) = (m1,m3). So J7! : Ker L — Im Q is well
defined.

Lemma 3.5 Suppose that the first part of (H3) holds, then the set
Q3 ={ueKerM |2 'u+(1-2)QNu=0,1€[0,1]}
is bounded.

Proof For each u € Q3, we can get that u(t) = ¢;t*™! + ¢2t*72, ¢1, ¢ € R. By the definition of

the set 3, we can obtain that
Mt + et ) + (1= M) (QIN(at* ™ + 02t ?)e* ™ + QuN(crt*™ + ¢pt* %)% %) = 0.
Thus,
Aer+ (1= Mgy, ( % (A4TIN (™ + 2t %) = A3ToN (et + czt“_Z))) =0, (35)
rey + (1= 2A)gy (% (~A2TiN (a1t + c2t*%) + Ay ToN (et + cztaz))> =0. (3.6)
If A = 0, then Q3 is bounded because of the first part of (H2) and (H3). If » = 1, we get
a=c=0, obviously, Q3 is bounded. If A € (0,1), by the first part of (H2) and (3.5), we can

obtain that |¢;| < =2 by the first part of (H3) and (3.6), we have |c;| < “”B . So, Q3 is
bounded. O

Remark 3.1 If the second part of (H3) holds, then the set
Qy={ueKerM|-A"u+(1-2)QNu=0,1¢€[0,1]}

is bounded.
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Proof of Theorem 3.1 Assume that 2 is a bounded open set of X with | 7, ;U €} C Q.
By Lemmas 3.1 and 3.2, we can obtain that M : domM N X — Y is quasi-linear, and N} is
M-compact on . By the definition of &2, we have

Lu#Nyu, VY(u,1) e (domMnNa)x (0,1),

H@u,A) =240 w) + A= A)QN () £0, (32N KerM) x [0,1].
Thus, by the homotopic property of degree, we can get

deg(JQN, 2 NKer M, 0) = deg(H(-,0), 2 N Ker M, 0)
= deg(H(-,1), 2 N Ker M, 0)

=deg(xI,2 N KerM,0) #0.

So Lemma 2.1 is satisfied, and Mu = Nu has at least one solution in dom M N Q. Namely,
BVP (1.3) have at least one solution in the space X. O
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