
Guo et al. Advances in Difference Equations 2013, 2013:294
http://www.advancesindifferenceequations.com/content/2013/1/294

RESEARCH Open Access

A certain class of completely monotonic
sequences
Senlin Guo1*, Hari M Srivastava2 and Necdet Batir3

*Correspondence:
sguo@hotmail.com
1Department of Mathematics,
Zhongyuan University of
Technology, Zhengzhou, Henan
450007, People’s Republic of China
Full list of author information is
available at the end of the article

Abstract
In this article, we present some necessary conditions, a sufficient condition and a
necessary and sufficient condition for sequences to be completely monotonic. One
counterexample is also presented.
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1 Introduction and themain results
We first recall some definitions and basic results on or related to completely monotonic
sequences and completely monotonic functions.

Definition  [] A sequence {μn}∞n= is called amoment sequence if there exists a function
α(t) of bounded variation on the interval [, ] such that

μn =
∫ 


tn dα(t), n ∈N. ()

Here, in Definition  and throughout the paper,

N := {} ∪N,

and N is the set of all positive integers.

Definition  [] A sequence {μn}∞n= is called completely monotonic if

(–)k�kμn � , n,k ∈ N, ()

where

�μn = μn ()

and

�k+μn = �kμn+ –�kμn. ()
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Such a sequence is called totally monotone in [].
FromDefinition , usingmathematical induction, we can prove, for a completely mono-

tonic sequence {μn}∞n=, that the sequence {(–)m�mμn}∞n= is non-increasing for any fixed
m ∈ N, and that the sequence {(–)m�mμn}∞m= is non-increasing for any fixed n ∈ N.
The difference equation () plays an important role in the proofs of these properties and
our main results of this paper.
In [], the authors showed that for a completely monotonic sequence {μn}∞n=, we always

have

(–)k�kμn > , n,k ∈N, ()

unless μn = c, a constant for all n ∈N.
Let

λk,m :=
(
k
m

)
(–)k–m�k–mμm, k,m ∈N. ()

It was shown (see []) as follows.

Theorem  A sequence {μn}∞n= is a moment sequence if and only if there exists a constant
L such that

k∑
m=

|λk,m| < L, k ∈N, ()

where in (), λk,m is defined by ().

For completely monotonic sequences, the following is the well-known Hausdorff’s the-
orem (see []).

Theorem  A sequence {μn}∞n= is completely monotonic if and only if there exists a non-
decreasing and bounded function α(t) on [, ] such that

μn =
∫ 


tn dα(t), n ∈N. ()

From this theorem,we know (see []) that a completelymonotonic sequence is amoment
sequence and is as follows.

Theorem  A necessary and sufficient condition that the sequence {μn}∞n= should be a
moment sequence is that it should be the difference of two completely monotonic sequences.

We also recall the following definition.

Definition  [] A function f is said to be completely monotonic on an interval I if f is
continuous on I has derivatives of all orders on Io (the interior of I) and for all n ∈N,

(–)nf (n)(x)� , x ∈ Io. ()
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Some mathematicians use the terminology completely monotone instead of completely
monotonic. The class of all completely monotonic functions on the interval I is denoted
by CM(I).
The completely monotonic functions and completely monotonic sequences have re-

markable applications in probability and statistics [–], physics [, ], numerical and
asymptotic analysis [], etc.
For the completely monotonic functions on the interval [,∞), Widder proved (see []).

Theorem  A function f on the interval [,∞) is completely monotonic if and only if there
exists a bounded and non-decreasing function α(t) on [,∞) such that

f (x) =
∫ ∞


e–xt dα(t). ()

There is rich literature on completely monotonic functions. For more recent works, see,
for example, [–].
There exists a close relationship between completely monotonic functions and com-

pletely monotonic sequences. For example, Widder [] showed the following.

Theorem  Suppose that f ∈ CM[a,∞), then for any δ � , the sequence {f (a + nδ)}∞n= is
completely monotonic.

This result was generalized in [] as follows.

Theorem  Suppose that f ∈ CM[a,∞). If the sequence {�xk}∞k= is completely monotonic
and x � a, then the sequence {f (xk)}∞k= is also completely monotonic.

For the meaning of �xk , k ∈N in Theorem , see () and ().
Suppose that f ∈ CM[,∞). By Theorem , we know that {f (n)}∞n= is completely mono-

tonic.
The following result was obtained in [].

Theorem  Suppose that the sequence {μn}∞n= is completely monotonic, then for any ε ∈
(, ), there exists a continuous interpolating function f (x) on the interval [,∞) such that
f |[,ε] and f |[ε,∞) are both completely monotonic and

f (n) = μn, n ∈N.

From this result or Theorem , we can get the following.

Theorem  Suppose that the sequence {μn}∞n= is completely monotonic. Then there exists
a completely monotonic interpolating function g(x) on the interval [,∞) such that

g(n) = μn, n ∈N.

It should be noted that (see [, Chapter IV]) under the condition of Theorem , we can-
not guarantee that there exists a completely monotonic interpolating function g(x) on the
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interval [,∞) such that

g(n) = μn, n ∈N.

In this article, we shall further investigate the properties of the completely monotonic
sequences.We shall give some necessary conditions, a sufficient condition and a necessary
and sufficient condition for sequences to be completely monotonic. More precisely we
have the following results.

Theorem Suppose that the sequence {μn}∞n= is completely monotonic.Then, for any m ∈
N, the series

∞∑
j=

(–)j�jμm+

converges and

μm �
∞∑
j=

(–)j�jμm+.

Corollary  Suppose that the sequence {μn}∞n= is completely monotonic. Then for m,k ∈
N,

μm = (–)k+�k+μm +
k∑
i=

(–)i�iμm+. ()

Remark  Although from the complete monotonicity of the sequence {μn}∞n=, we can
deduce that for any m ∈N, the series

∞∑
j=

(–)j�jμm+

converges, it cannot guarantee the convergence of the series

∞∑
j=

(–)j�jμ.

For example, let

μn =


n + 
, n ∈N.

Since the function

f (x) =


x + 

is completely monotonic on the interval [,∞), by Theorem , we see that the sequence

{μn}∞n= :=
{
f (n)

}∞
n= =

{


n + 

}∞

n=
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is completely monotonic. This conclusion can also be obtained by setting

α(t) = t

in Theorem .
We can verify that

�jμ =
(–)j

j + 
.

Hence,

∞∑
j=

(–)j�jμ =
∞∑
j=


j + 

is the famous harmonic series, which is divergent.

Theorem  Suppose that the sequence {μn}∞n= is completely monotonic. Then for any
k,m ∈N,

(–)k�kμm �
∞∑
j=k

(–)j�jμm+. ()

Theorem Suppose that the sequence {μn}∞n= is completelymonotonic and that the series

∞∑
j=

(–)j�jμ

converges. Let μ be such that

μ �
∞∑
j=

(–)j�jμ.

Then the sequence {μn}∞n= is completely monotonic.

Theorem Anecessary and sufficient condition for the sequence {μn}∞n= to be completely
monotonic is that the sequence {μn}∞n= is completely monotonic, the series

∞∑
j=

(–)j�jμ

converges and

μ �
∞∑
j=

(–)j�jμ.
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2 Proofs of themain results
Now, we are in a position to prove the main results.

Proof of Theorem  Since {μn}∞n= is completely monotonic, by Theorem , there exists a
non-decreasing and bounded function α(t) on the interval [, ] such that

μn =
∫ 


tn dα(t), n ∈N. ()

From (), () and (), we can prove that

(–)i�iμn =
∫ 


( – t)itn dα(t), i,n ∈ N. ()

Now, for k ∈N, we have

k–∑
i=

(–)i�iμm+ =
k–∑
i=

∫ 


( – t)itm+ dα(t)

=
∫ 


tm+

k–∑
i=

( – t)i dα(t)

=
∫ 


tm

(
 – ( – t)k

)
dα(t)

=
∫ 


tm dα(t) –

∫ 


( – t)ktm dα(t)

= μm – (–)k�kμm, m ∈N.

Hence, for k ∈N,

μm = (–)k�kμm +
k–∑
i=

(–)i�iμm+, m ∈N. ()

Since

(–)i�iμn � , i,n ∈N, ()

from (), we get, for k � ,

μm �
k–∑
i=

(–)i�iμm+, m ∈N. ()

From (), we also know that

∞∑
j=

(–)j�jμm+, m ∈ N
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is a positive series. Then by (), we obtain that

∞∑
j=

(–)j�jμm+, m ∈ N

converges and that

μm �
∞∑
j=

(–)j�jμm+, m ∈N. ()

The proof of Theorem  is thus completed. �

Proof of Corollary  This corollary can be obtained from (). �

Proof of Theorem  Let m be a fixed non-negative integer.
From Theorem , we see that

μm �
∞∑
j=

(–)j�jμm+, ()

which means that () is valid for k = .
Suppose that () is valid for k = r. Then

(–)r+�r+μm = (–)r+
(
�rμm+ –�rμm

)
= (–)r

(
�rμm –�rμm+

)
= (–)r�rμm – (–)r�rμm+

�
∞∑
j=r

(–)j�jμm+ – (–)r�rμm+

=
∞∑

j=r+

(–)j�jμm+, ()

which means that () is valid for k = r + . Therefore, by mathematical induction, () is
valid for all k ∈ N. The proof of Theorem  is completed. �

Proof of Theorem  By the definition of completely monotonic sequence, we only need
to prove that

(–)k�kμ � , k ∈N. ()

We first prove that

(–)k�kμ �
∞∑
j=k

(–)j�jμ, k ∈N. ()

From the condition of Theorem , () is valid for k = .

http://www.advancesindifferenceequations.com/content/2013/1/294
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Suppose that () is valid for k =m. Then we have

(–)m+�m+μ = (–)m+(�mμ –�mμ
)

= (–)m
(
�mμ –�mμ

)
= (–)m�mμ – (–)m�mμ

�
∞∑
j=m

(–)j�jμ – (–)m�mμ

=
∞∑

j=m+

(–)j�jμ, ()

which means that () is valid for k =m+ . Therefore, by mathematical induction, () is
valid for all k ∈ N.
Since

∞∑
j=

(–)j�jμ

is a convergent positive series, we know that

∞∑
j=k

(–)j�jμ � , k ∈N. ()

From () and (), we obtain that

(–)k�kμ � , k ∈N.

The proof of Theorem  is completed. �

Proof of Theorem  By Definition  and by setting m =  in Theorem , we see that the
condition is necessary. By Theorem , we know that the condition is sufficient. The proof
of Theorem  is completed. �
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