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1 Introduction
Impulsive differential equations arising from the real world describe the dynamics of pro-
cesses in which sudden, discontinuous jumps occur. Such processes are naturally seen in
biology, medicine, mechanics, engineering, chaos theory and so on. Due to their signifi-
cance, a great deal of work has been done in the theory of impulsive differential equations
[1-8].

In this paper, we consider the following second-order impulsive differential equations
on the half-line:

—u"(t) + u(t) = uf(t,u(t)), t#t, ae tel0,+00),
-Au'(8) = L(u(y)), j=12,...,n, 1.1)
#'(0) =0, u'(+00) = 0,

where 0 =ty <t; <ty <---<t, <00, Au/(tj) = u/(tj") - u/(tj’) for u/(tji) = limt*)t];t u'(t),j=
1,2,...,1, 1/ (+00) = limy_, .o ¢/ (£).

In recent years, boundary value problems (BVPs) for impulsive differential equations
in an infinite interval have been studied extensively and many results for the existence
of solutions, positive solutions, multiple solutions have been obtained [9-12]. The main
methods used for the infinite interval problems are upper and lower solutions techniques,
fixed point theorems and the coincidence degree theory of Mawhin in a special Banach
space. On the other hand, many researchers used variational methods to study the exis-
tence of solutions for impulsive boundary value problems on the finite intervals [13-19].

However, to the best of our knowledge, the study of solutions (in particular the multi-

plicity of solutions) for impulsive boundary value problems on the half-line using a varia-
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tional method has received considerably less attention. In [20], Chen and Sun studied the

following equations:

—u"(t) + u(t) = Af (t,u(t)), t#t, ae tel0,+00),
-Au'(t) = Li(u(ty), j=1,2,...,1, (1.2)
u'(0%) = g(u(0)), u'(+00) = 0,

where X is a positive parameter. By using a variational method and a three critical points
theorem, the authors proved the existence and multiplicity of solutions for IBVP (1.2).

Motivated by the above work, in this paper we use critical point theory and variational
methods to investigate the existence and multiple of solutions of IBVP (1.1), in particular,
its multiple solutions generated from the impulsive. Here, a solution for problem (1.1) is
said to be generated from the impulsive if this solution emerges when the impulsive is not
zero, but disappears when the impulsive is zero. For example, if problem (1.1) possesses
at most one solution when the impulsive is zero, but it possesses three solutions when
the impulsive is not zero, then problem (1.1) has at least two solutions generated from the
impulsive. Our method is different from problem (1.2) and the main results extend the
study made in [20].

2 Preliminaries and statements
Firstly, we introduce some notations and some necessary definitions.
Suppose that

V= {u : [0, +00) — R is absolutely continuous, ' € L*[0, +c>o)}.

Denote the Sobolev space X by
+00 9 9
X:{ue\/:/ (| @] + |u@) )dt<oo}.
0
In the Sobolev space X, consider the inner product

(,v) = /+OO (u'(t)v/(t) + u(t)V(t)) dt,
0

inducing the norm

llaell = (/0 (|« @] +|u@)]) dt)i.

Obviously, X is a reflexive Banach space.

Let Y = {u € C[0, +00) : sup,[g,,o0) |4(t)| < +00}, with the norm |[|u|| oo = maxe(o,+00) [4(2)].
Then Y is a Banach space. In addition, X is continuously embedded in Y, then there exists
a constant M > 0 such that

oo < Mllu| forall ueX. (2.1)
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Suppose that u € C[0,+00). Moreover, assume that for every j = 0,1,...,n - 1, u; =
ul(y4;,,) belongs to C*(tj, t541) and u,, = (s, 100) belongs to C*(z,, +00). We say that u is
a classical solution of BVP (1.1) if it satisfies the following conditions: u satisfies the first
equation of (1.1) a.e. on [0, +00); the limits u/(tj*), u’(tj‘), j=1,2,...,n, exist and the im-
pulsive condition of Eq. (1.1) holds; #'(0), #/(+00) exists, and the boundary conditions in
Eq. (1.1) hold.

In order to study problem (1.1), we assume that the following conditions are satisfied:

(H1) There exist a(t) € L2[0, +00), b(t) € L[0,+00), ¢ > 0, 0 < r < 2, such that

|F(t, u)} < b(t)(|u|’+c), [f(t, u)’ <a(t)|lu™" forae.te[0,+00)and all u € R,

where F(t,u) = fouf(t, s)ds.
For each u € X, consider the functional ¢ defined on X by

1 +00 , n u(t;) +00
o(u) = 5/0 (|« @ + |u@)[*) de + ]2_1:/(; Ij(s)ds—u/o F(t,u(t)) dt

~ 1 ) n u(ty) +00
= 5 llul +121: fo Li(s)ds — /0 F(t,u(t)) dt. (2.2)

In view of (H1), it follows that |F(t,u)| < b(¢)(lu|” + ¢), then Yu,v € X C L*[0,+00),
b(t) € L[0,+00), we can conclude that ¢ is well defined, and it is easily verified that ¢
is a Gateaux derivative functional whose Gateaux derivative at the point u € X is the func-
tional ¢'(«) € X*, given by

((p/(u), v) = /0 (u' )V (2) + u(t)v(t)) dt + le(u(t,»))v(tj)
j=1

- /+Oof(t, u(t))v(t) dt (2.3)
0

for any v € X.
In fact, by (H1), for any u,v € X and ¢ € [0, +00), it holds that

a*(t) + v/

& wv| < a@lul™ v < llul™ ——

Since a(t) € L*[0, +00) and v(£) € L2[0, +00), by applying (2.3) and Leibniz formula of dif-
ferentiation, we obtain (¢'(u),v) < +oo for any v € X. That is, ¢’ : X — X* is well defined
on X.

Lemma 2.1 Ifu € X is a critical point of ¢, then u is a classical solution of IBVP (1.1).

Proof Let u € X be a critical point of the function ¢, we have
f (# @)V (©) + u(Ov(t)) dt + le(u(tj))v(tj) -u / ftu@®)v(t)dt=0 (2.4)
0 0

j-1

foranyve X.
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Foranyje {1,2,...,n} and v € X with v(t) = 0, for every ¢ € [0, £] U [¢},1, +00). Then (2.4)
implies

ti1 b1
f (uV +uv)de = /L/ f(&u@®)v(o) dt
5 i
This means, for any w € Hj (¢, tj + 1),
ti41 G+l
f (ul/w’ +ujw) dt = ,u/ S (6w @) w(e) dt,
i i

where u; = u|(,4;,,). Thus u; is a weak solution of the following equation:

u’(t) +u(t) = Mf(t, u(t)), (2.5)

and u; € Hy(t,t1) C Cltj, 2]
Let g(¢) := —u(t) + uf (t, u(t)), then (2.5) becomes of the following form:

u'(t)=q(t) on (t, ). (2:6)

Then the solution of (2.6) can be written as
u(t) =c +02t—/ / qw)dwds, te(t,t.1),

where ¢; and ¢, are two constants. Then u e C? (¢, 4+1) and u” € C(tj, tj1). Therefore,
uj € C2(t 4, 4+1). By the previous equation, we can easily get that the limits #’ (f') u (t ),
j=12,...,n—1,u4'(0") and #/(£;) exist. On the other hand, choose any v € X such that
v(t) =0 for £ € [0,¢,]. Then (2.4) implies

/m (Vv +uv)de=p /mf(t, u(t))v(t) dt.

By a similar argument, we can get that u,, = u|(;, +00) € C*(£, +00) and u/(t}}), ' (+00) exist.
Therefore, u satisfies the equation in IBVP (1.1) a.e. on [0, +00).
By integrating (2.4), one has

+00

/0+°° u'v dt + /0+°° uvdt + ;I,(u(t]))v(t/) - ,u/o f(t, u(t))v(t) dt

_ fo [ + 1~ pf (6 )] vdt+Z (u(ty)) — A () [v(5)

j=1

+ ' (+00)v(+00) — 1/ (0)v(0) = 0. (2.7)

Since u satisfies the equation in IBVP (1.1) a.e. on [0, +00), by (2.7), one has

n

Z[I] (u(t)) = A (8)) [v(8) + ' (+00)v(+00) — ' (0)v(0) = 0. (2.8)

j-1

Page 4 of 12
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Next we will show that u satisfies the impulsive conditions in IBVP (1.1). If not, without
loss of generality, we assume that there exists i € {1,2,...,n} such that

L(u(t) + A/ (&) #0. (2.9)

Let v(t) =e™* QW#U—q)
Obviously, v € X. By simple calculations, we obtain v(£;)) =0, =0,1,...,i-Li+1,...,n,

v(+00) = 0. Then, by (2.8), we get

n

Z[Ij(u(tj)) - A(u'(tj))]v(t/) + 1/ (+00)v(+00) — 1/ (0)v(0)
j=1

n

= ¢ [L(ue) - A ®)] [T ¢-=0,

j=0,#i

which contradicts (2.9). So u satisfies the impulsive conditions of (1.1).

Thus, (2.8) becomes of the following form:
u' (+00)v(+00) — 1/ (0)v(0) = 0 (2.10)

for all v € X. Since v is arbitrary, (2.10) shows that '(+o0) = #’(0) = 0. Therefore, u is a
classical solution of IBYP (1.1). a

To this end, we state some basic notions and celebrated results from critical points the-

ory.

Definition 2.1 (see [21]) Let X be a real reflexive Banach space. For any sequence
{ur} C X, if {@(ur)} is bounded and ¢'(ux) — 0 as k — 0 possesses a convergent subse-
quence, then we say that ¢ satisfies the Palais-Smale condition (denoted by the P.S. condi-
tion for short).

Lemma 2.2 (see [22]) Let X be a real Banach space, and let ¢ € C'(X,R) satisfy the P.S.
condition. If ¢ is bounded from below, then

=inf
c=infy
is a critical value of .

Definition 2.2 (see [23]) If X is a real Banach space, we denote by wy the class of all func-
tionals ¢ : X — R possessing the following property: if {u,} is a sequence in X converging
weakly to u# € X and liminf,_, o ¢(u,) < ¢(u), then {u,} has a subsequence converging
strongly to u.

Lemma 2.3 (see [23]) Let X be a separable and reflexive real Banach space; let ¢ : X — R
be a coercive, sequentially weakly lower semicontinuous C* functional, belonging to wy,
bounded on each bounded subset of X and whose derivative admits a continuous inverse
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on X*;let ] : X — R be a C* functional with compact derivative. Assume that ¢ has a strict
local minimum xo with ¢(xo) = J(xo) = 0. Finally, setting

J(x) J(%) } J(%)
0, limsup =, lim - AL
* max{ IILrlln—>SJlrl£ ¢(9C) x~>x0 ¢(x) IB x€¢p=1(0,+00) d)(x)

assume that a < 8. Then, for each compact interval [a,b] C (%,é (with the conventions
% = +00, é = 0), there exists o > 0 with the following property: for every A € [a,b] and
every C! functional \ : X — R with compact derivative, there exists § > 0 such that for each
wu € [0,8], the equation ¢'(x) = MJ'(x) + u'(x) has at least three solutions whose norms are

less than o .

3 Main results
Now we get the main results of this paper.

Theorem 3.1 Suppose that (H1) and > 0 hold. Then IBVP (1.1) has at least one solution
if the following conditions hold:
(H2) The impulsive function I has sublinear growth, i.e., there exist constants a; > 0,
bj>0and y;€[0,1),j=1,2,...,n, such that

|1j(u)| <a;+bjlul” foreveryueR,j=1,2,...,n

Proof 1t follows from conditions (H1), (H2) and (2.2) that

1 n u(t;) +00 .
o0 = Sl =3 [ [ islds - [ b))
j=1

n

1 - +00 .
=l = [t + By )| 1]—u/0 b(e)de - (Il + )
j=1
1 +00
> -l —Za,nunoo anun —u/ be)dt - (lull, +c)
0
1
> Sl —MZa,nun MW“Zb||u||V/”—u||b||L1(M’||u|| +e). (31)
j=1 j=1

Since 0 <7< 2, 0 < y; < 1, the above inequality implies that lim -« ¢(#) = +00.So ¢ is a
functional bounded from below.

Next we prove that ¢ satisfies the P.S. condition. Let {u} be a sequence in X such that
{@(ur)} is bounded and ¢'(ux) — 0 as k — oo. Then there exists a constant M; such that
lo(ui)| < M;. We first prove that {u;} is bounded. From (3.1), we have

1 n v n .
el = MY S alanel) = MYy llaael 7 = peBlls (M el + ) < p(ase) < M.
j=1 j=1

Since 0 <r<2,0<y;<1l,and M >0, u > 0, it follows that {u;} is bounded in X. From the
reflexivity of X, we may extract a weakly convergent subsequence that, for simplicity, we
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call {ug}, ux — u in X. Next, we will verify that {u} strongly converges to u in X. By (2.3),

we have

(¢ () — ' () (s — 1) = uw = wll® + Y[ (a(8) = I((5)) ] (e () — ()

j=1

o fowo[f(t, wur(8)) —f (& u(0)) ] (ac(8) — () dit. (3.2)

By uy — u in X, we see that {#} uniformly converges to u in C([0, +00)). So,

n

D [5(m(®)) - ()] (ma(5) - u(5)) — 0,
j=1 (3.3)

/0 [f(t, uk(t)) —f(t, u(t))] (uk(t) - u(t)) dt — 0 ask— oo.
By limy_ 00 ¢’ (ux) = 0 and ug — u, we have
(go’(uk) - (p’(u))(uk —u)— 0 ask— oo. (3.4)

In view of (3.2), (3.3) and (3.4), we obtain ||u; — u|| — 0 as k — oo. Then ¢ satisfies the
P.S. condition. According to Lemma 2.2, ¢ has at least one critical point, i.e., IBVP (1.1)
has at least one classical solution for u > 0. O

Theorem 3.2 Suppose that (H1) and the following conditions hold, then there exist con-
stants § > 0, o > 0 such that for each p € [0, 8], IBVP (1.1) possesses at least three solutions,
and their norms are less than o . Moreover, two of them are generated from the impulsive.

(H3) f(¢, u) is nonincreasing about u for all t € [0, +00).

(H4) There exists a constant & > 0 such that —6 Z;;l f(f Ii(s)ds > &3,

(H5) max{I° 1>} <§;,0<2M > 8 <1, where

u u
-, Ii(s)ds -, Ii(s)ds
L(z)’ I® = lim sup fo#
u—0 |Lt| |u|— o0 |M|
Proof We apply Lemma 2.3 to prove this theorem.
Firstly, we denote that

_1 9 ~ +00 ~ n u(tj)‘
B =S luls )= fo F(t,u) dt, J(u)——; fo I(s)ds,

then ¢(u) = ¢(u) - J(u) — p (u).

Now, we show that the fundamental assumptions are satisfied. Obviously, X is a separa-
ble and reflexive real Banach space. It is easy to see that ¢(u) is a C! functional, coercive,
bounded on each bounded subset of X, ¢(u) belongs to wx. Suppose that {u,} C X, u, — u
in X, then u, converges uniformly to u on [0, T] with T € (0, +00) an arbitrary constant
and liminf,_, .o ||#,| > ||«||. Thus

1 1
liminf ¢ (u,) = liminf5||u,,||2 > Enun2 = ¢ (u).

n—+00
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Therefore, ¢ is sequentially weakly lower semicontinuous. For any u, v € X, we have

(' () — &' (), —v)
= /(; (@) =V ©®) (e (t) -V (1)) dt + /0 (u(t) = v(8)) (u(®) — v(2)) dt

2
= [lu—v|"

So ¢’ is uniformly monotone. By [24], we know that (¢')™! exists and is continuous on X*.

For any u € X, we have (J'(u),v) = —Z;’lej(u(tj))v(t,-). Suppose that u, — u € X, then
u, — u on C'[0,1]. By I; € C(R,R), we have J'(u,) — J'(u) as n — +00. So J' is strongly
continuous which implies J' is a compact operator by [24].

From the continuity of f(¢, u), we can obtain that f(¢, u,) converges uniformly to f (¢, u)
as n — +00. Thatis, ¥'(u,) — ¥'(4) as n — +00. So ¥’ is strongly continuous on X, which
shows that ¥’ is a compact operator by [24]. Moreover, ¥/’ is continuous since it is strongly
continuous. In addition, ¢ has a strict local minimum 0 with ¢(0) = J/(0) = 0.

Therefore, all the fundamental assumptions hold.

Next we show that o <1< 8.

From (H5), there exist 0 < p; < p, such that

~ [ 5©ds <8P for lul €10, U (ps, +00).
0

By the continuity of Jj, j = 1,2,...,n, we know that — [,* Ii(s) ds is bounded for any |u| €
[o1, o1]. One can choose d; >0, =1,2,...,1,and k > 2 such that

—/ Ii(s)ds < 5,»|z4|2 +d,|u|k for any |u| € R.
0

Then, for any u € X, we have

n u(tj) n n
J(u) = —Z/ L(s)ds <> 8lul® + ) djlul*
j=1 70 j=1 j=1
n n n n
<D illulZ, + Y dillull §M<Zr3;||u||2 + Zd,||u||k).
j=1 j=1 j=1 j=1
Hence, we have

MO Sillul)? + Y0, dilul* "
](u) < (21_1 1” “ Z/_l /” ” ) §2M28j<1. (35)
j=1

lim su <
u—)Op(l)(u) ||I/t||2/2

On the other hand, if |u(t)| < pa, then —fou(t’)l,»(s) ds < hj, where ;> 0,j=1,2,...,n. If
lu(t;)| > pa, then —fou(tj)lj(s) ds < 8jlu(tj)|>. Then it follows that

n u() n n n n
](u):—Z/ L&)ds<d i+ Slu <> i+ MY 8lul’.
j=1 ¥ j=1 j=1 j=1 j=1
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Therefore, we have

lim sup ——<2M) 6§ <1 (3.6)
ll4l| = +00 ¢ M) Z

Combining (3.5) with (3.6), we obtain

o= max{O limsup — Jw) ,limsup %} <1

lul—>00 @) w0 @

From (H4), one has

Jw) _ Jwo) =3y hs)d

B= su > > ,
'4€¢’1(£+oo) ¢(u) ¢(uo) 53
where
& 0=<t=<§,
uo(t) =
0, t>

Obviously, up € X N ¢~1(0, +00).

Therefore, we obtain o <1< 8.

By Lemma 2.3, we can choose A =1 € [g, b] such that [a,b] C (%, é), there exists o > 0
with the following property: for every f € C([0, +00) x R, R), there exists § > 0 such that for
each u € [0, 8], the equation ¢'(u) = J'(u) + uy'(u) has at least three solutions in X whose
norms are less than o. Hence, IBVP (1.1) has at least three solutions in X whose norms are
less than o

Now we prove that IBVP (1.1) has at least two solutions generated from the impulsive.
In fact, we only need to verify that IBVP (1.1) has at most one solution when I; = 0, j =
1,2,...,n. On the contrary, assume that IBVP (1.1) has at least two distinct solutions u;, u;
when [; =0, =1,2,...,n, then uy, u, are critical points of the operator ¢, which implies
¢'(m) = ¢'(u2) = 0. From (H3), we know that f(¢, ) is nonincreasing about u for any ¢ €
[0, +00), then

(f (&, m (@) —f (£, u2(9))) (a (£) — u2(2)) < 0.
Hence, one has
= (7 (1) =T (42), 1 — 113 = /O +oo[(ul(;:) — ()’ + () () - up(8))*] dt
-u /o +oo[f(t, i (t)) = f (6, u2(0) ] (1 (8) — ua (1)) dt
> |luy — ua ],

which implies that |lu; — u,||? = 0, i.e., IBVP (1.1) has at most one solution when the im-
pulsive are zero. Therefore, we obtain that IBVP (1.1) has at least two solutions generated
from the impulsive.

This completes the proof. d

Page 9 of 12
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4 Example
To illustrate how our main results can be used in practice, we present the following exam-
ple.

Example 4.1 Let u =1, consider the following problem:

—u"(t) +u(t) =f(t,u), t#t,tel0,+00),
-Au'(t) = Li(u(t), j=1, (4.1)
#/(0) =0, U/ (+00) = 0,

where

1 1-¢t 0<t«<l,
Il(u) =1+M§(t), f(lf,bt) =
0, t>1.

Since |F(t, u)| < 2a(t)|ul, |f (¢, u)| < 2a(t)|u|'! for a.e. t € [0,+00) and all u € R, where

1-t, 0<t<l,
alt) =
0, t>1,

r =1, with f0+°° a(t)dt = % < +00, then it shows that (H1) is satisfied.
It is easy to see that the impulsive function ; has sublinear growth, then condition (H2)
holds.

Applying Theorem 3.1, problem (4.1) possesses at least one solution.
Example 4.2 Let u =1, consider the following problem:

—u"(t) +u(t) =f(t,u), t#t,tel0,+00),
=AU () = Li(u(g), j=1, (4.2)
/' (0) =0, U (+00) = 0,

cost, 0<t<3, -320ul®,  |ul<1,
flt,u) = L(u) =

bq 1
1, t>7%, -32|u|3, |u|>1.
Suppose that & = % and L(u) = fou I(s) ds, then

“8lul*,  |u|<1,

L(u) = .
—24|u|3, |ul>1.
Obviously, |F(t,u)| < 2a(t)|ul, |f(t, u)| < 2a(t)|u|' fora.e.t € [0, +00) and all u € R, where

cost, 0<t<7,

T
1: tZ bR

r =1, with fowo a(t)dt =1 < +00. Then it shows that (H1) is satisfied.

Page 10 of 12
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It is easy to see that f (¢, u) is nonincreasing about « for all £ € [0, +00), then (H3) holds.
Since

§ NN 1 1 g
—/ L(s)ds=8x [ = =—>—=E—,
o 2 2748 6
so (H4) holds.
By a simple computation, one has I° = I® = 0, which implies that condition (H5) is sat-
isfied.

Applying Theorem 3.2, problem (4.2) possesses at least three solutions, and two of them
are generated from the impulsive.
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