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Abstract
In this paper, we introduce some Cesàro-type difference sequences spaces defined
over a real linear n-normed space and investigate the spaces for completeness under
suitable n-norm in each case. Relevant relations among the classes of sequences are
examined. We also introduce the notion of n-BK-spaces and show that the spaces can
be made an n-BK-space under certain condition. Further, we compute the
Köthe-Toeplitz duals of the spaces, wherever possible within the scope of the
research of this article.
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1 Introduction
The studies of linear transformation on sequence spaces are called summability. The ear-
liest idea of summability theory was perhaps contained in a letter written by Leibnitz to
Wolf (), in which the sum of the oscillatory series -+-+- - - - as given by Leib-
nitz was 

 . Studies on sequence space were further extended through summability the-
ory. Summability theory, or in short summability, is the theory of the assignment of limits,
which is fundamental in analysis, function theory, topology and functional analysis.
Throughout w, �∞, �p, l, c and c denote the spaces of all, bounded, p-absolutely

summable, absolutely summable, convergent and null sequences x = (xk) with complex
terms, respectively.
The zero element of a normed linear space (n.l.s.) is denoted by θ . A complete n.l.s. is

called a Banach space.
�p ( < p < ∞) denotes the space of all complex sequences such that

∑
k |xk|p <∞, called

as the space of p-absolutely summable sequences. The space �p for p ≥  is complete under
the norm defined by ‖x‖ = (

∑
k |xk|p)/p.

For  < p < , �p is a complete p-normed space, p-normed by ‖x‖ = ∑∞
k= |xk|p.

A BK-space (introduced by Zeller []) (X,‖ · ‖) is a Banach space of complex sequences
x = (xk), in which the co-ordinate maps are continuous, that is, |xnk – xk| → , whenever
‖xn – x‖ →  as n → ∞, where xn = (xnk ) for all n ∈N and x = (xk).
Let (X,‖ · ‖) be a normed linear space, and λ is a scalar-valued sequence space, then the

vector-valued sequence space or X-valued sequence space λ(X) is defined as λ(X) = {(xk) :
xk ∈ X for all k ∈N and ‖xk‖ ∈ λ}.
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Clearly, λ(X) is a linear space under coordinate wise addition and scalar multiplication
over the field of scalars of X.
Similarly, if X is a Banach space, then �p(X) ( = p < ∞) is a Banach space with the norm

given by ‖x‖ = (
∑∞

k= ‖xk‖p)

p .

The Cesàro means (also called Cesàro averages) of sequence {an} are the terms of se-
quence {cn}, where cn =∑n

i= an is the arithmetic mean of the first n elements of {an}. This
concept is named after ErnestoCesàro. It is known that if {an} converges to l, then {an} also
converges to the same limit. This means that the operation of taking Cesàro means pre-
serves convergent sequences and their limits. This is the basis of taking Cesàro means as
a summability method in the theory of divergent sequences. If the sequence of the Cesàro
means is convergent, the series is said to be Cesàro summable. There are certainly many
examples, for which the sequence of Cesàro means converges, but the original sequence
does not. For example, sequence {an} = {(–)n} which is Cesàro summable to .
The Cesàro sequence spaces

Cesp =

{
x = (xk) : ‖x‖p =

( ∞∑
n=


n

n∑
k=

|xk|p
) 

p

<∞,  ≤ p < ∞
}

and

Ces =

{
x = (xk) : ‖x‖∞ = sup

n


n

n∑
k=

|xk| < ∞
}

have been introduced and studied by Shiue [], and it was observed that �p ⊂ Cesp
( < p < ) is strict, although it does not hold for p = .
Nag and Lee [] defined and studied the Cesàro sequence space Xp of non-absolute-type

as follows:

Xp =

{
x = (xk) : ‖x‖p =

( ∞∑
n=

∣∣∣∣∣ n
n∑
k=

xk

∣∣∣∣∣
p) 

p

< ∞,  ≤ p < ∞
}

and

X∞ =

{
x = (xk) : ‖x‖∞ = sup

n

∣∣∣∣∣ n
n∑
k=

xk

∣∣∣∣∣ < ∞
}
.

The inclusion Cesp ⊂ Xp, ≤ p < ∞ is strict.
Orhan [] defined and studied the Cesàro difference sequence spaces Xp(�) and X∞(�)

by replacing x = (xk) with �x = (�xk) = (xk – xk+), k = , , . . . and showed that for  ≤
p < ∞, the inclusions Xp ⊂ Xp(�) and X∞ ⊂ X∞(�) are strict. In fact, Orhan [] used Cp

instead of Xp(�) and C∞ instead of X∞(�).
Further, Orhan [] defined and studied the following sequence spaces:

Op(�) =

{
x = (xk) :

∞∑
n=

(

n

n∑
k=

|�xk|
)p

<∞,  ≤ p < ∞
}
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and

O∞(�) =

{
x = (xk) : sup

n≥


n

n∑
k=

|�xk| < ∞
}
.

He showed that for ≤ p < ∞, the inclusionsOp(�) ⊂ Xp(�) and Cesp ⊂Op(�) are strict.
Mursaleen et al. [] defined and studied the Cesàro difference sequence space Xp(�),

i.e.,

Xp
(
�) =

{
x = (xk) :

∞∑
n=

∣∣∣∣∣ n
n∑
k=

�xk

∣∣∣∣∣
p

<∞,  ≤ p <∞
}
,

and

X∞
(
�) =

{
x = (xk) : sup

n≥

∣∣∣∣∣ n
n∑
k=

�xk

∣∣∣∣∣ <∞
}
,

where �xk =�xk –�xk+.
For uniformity of the literature, henceforth, we shall write Cp instead of Xp and C∞

instead of X∞.
For some useful works on Cesàro-type summable spaces, we refer to [–].
Let E and F be two sequence spaces. Then the F dual of E is defined as EF = {(xk) ∈ w :

(xkyk) ∈ F for all (yk) ∈ E}.
For F = l, the dual is termed as α-dual (Köthe-Toeplitz dual) of E and denoted by Eα . If

X ⊂ Y , then Y α ⊂ Xα .
For initial and useful works on the notion of Köthe-Toeplitz duals, we refer to [–].
Let n ∈ N and X be a real vector space of dimension d, where n ≤ d. A real-valued

function ‖·, . . . , ·‖ on Xn satisfying the following four conditions:
(N) ‖x,x, . . . ,xn‖ =  if and only if x,x, . . . ,xn are linearly dependent,
(N) ‖x,x, . . . ,xn‖ is invariant under permutation,
(N) ‖αx,x, . . . ,xn‖ = |α|‖x,x, . . . ,xn‖, for any α ∈ R,
(N) ‖x + x′,x, . . . ,xn‖ ≤ ‖x,x, . . . ,xn‖ + ‖x′,x, . . . ,xn‖

is called an n-norm on X, and the pair (X,‖·, . . . , ·‖) is called an n-normed space.
A trivial example of an n-normed space is X = Rn equipped with the following Euclidean

n-norm:

‖x,x, . . . ,xn‖E = abs

⎛
⎜⎜⎝

∣∣∣∣∣∣∣∣
x · · · xn
...

. . .
...

xn · · · xnn

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠ ,

where xi = (xi, . . . ,xin) ∈ Rn for each i = , , . . . ,n.
Gunawan [] showed how we can actually define an n-inner product and, accordingly,

an n-norm on any inner product space provided the dimension is sufficiently large as fol-
lows:
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Let n ∈ N and (X, 〈·, ·〉) be a real inner product space of dimension d = n. Define the
following function 〈·, . . . , ·|·, ·〉 on X × · · · ×X (n +  factors) by

〈x, . . . ,xn–|y, z〉 =

∣∣∣∣∣∣∣∣∣∣

〈x,x〉 · · · 〈x,xn–〉 〈x, z〉
...

. . .
...

...
〈xn–,x〉 · · · 〈xn–,xn–〉 〈xn–, z〉
〈y,x〉 · · · 〈y,xn–〉 〈y, z〉

∣∣∣∣∣∣∣∣∣∣
.

Then one may check that this function satisfies the following five properties:
(I) 〈x, . . . ,xn–|xn,xn〉 = ; 〈x, . . . ,xn–|xn,xn〉 =  if and only if x, . . . ,xn are linearly

dependent;
(I) 〈x, . . . ,xn–|xn,xn〉 = 〈xi , . . . ,xin– |xin ,xin〉 for every permutation (i, . . . , in) of

(, . . . ,n);
(I) 〈x, . . . ,xn–|y, z〉 = 〈x, . . . ,xn–|z, y〉;
(I) 〈x, . . . ,xn–|y,αz〉 = α〈x, . . . ,xn–|y, z〉;
(I) 〈x, . . . ,xn–|y, z + z′〉 = 〈x, . . . ,xn–|y, z〉 + 〈x, . . . ,xn–|y, z′〉.

Accordingly, we can define ‖·, . . . , ·‖ on X × · · · ×X (n factors) by

‖x, . . . ,xn‖ = 〈x, . . . ,xn–|xn,xn〉/,

that is,

‖x, . . . ,xn‖ =

∣∣∣∣∣∣∣∣
〈x,x〉 · · · 〈x,xn〉

...
. . .

...
〈xn,x〉 · · · 〈xn,xn〉

∣∣∣∣∣∣∣∣




.

For n = , we know that ‖ · ‖ is a norm, while for n = , ‖·, ·‖ defines a -norm. Note
further that for n = , ‖x‖ gives the length of x, while for n = , ‖x,x‖ represents the
area of the parallelogram spanned by x and x. For n =  and X = R, one may observe
that ‖x,x,x‖ is nothing but the volume of the parallelepiped spanned by x, x and x,
that is, ‖x,x,x‖ = |x.(x × x)|.
Sequence (xk) in an n-normed space (X,‖·, . . . , ·‖) is said to converge to some L ∈ X in

the n-norm if

lim
k→∞

‖xk – L,u, . . . ,un‖ =  for every u, . . . ,un ∈ X.

Sequence (xk) in an n-normed space (X,‖·, . . . , ·‖) is said to be Cauchy with respect to the
n-norm if

lim
k,l→∞

‖xk – xl,u, . . . ,un‖ =  for every u, . . . ,un ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete
with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.
For some relevant works on -normed structure and its extension to n (≥ )-normed

structure and subsequent applications, one may refer to [–].
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The notion of difference sequence space was introduced by Kizmaz [], who studied
the difference sequence spaces �∞(�), c(�) and c(�). The notion was further generalized
by Et and Colak [] by introducing the spaces �∞(�m), c(�m) and c(�m), where n is a
non-negative integer. In general, we have the following definition of difference sequence
spaces.
Let m be non-negative integers, then for Z, a given sequence space, we have

Z
(
�m)

=
{
x = (xk) ∈ w :

(
�mxk

) ∈ Z
}
,

where �mx = (�mxk) = (�m–xk –�m–xk+) and �xk = xk for all k ∈ N , which is equiva-
lent to the following binomial representation:

�mxk =
m∑

υ=

(–)υ
(
m
υ

)
xk+υ .

2 Definitions and preliminaries
Let (X,‖·, . . . , ·‖) be an n-normed real linear space, and w(n – X) denotes X-valued se-
quence space. Let m be a non-negative integer and  ≤ p < ∞, then we introduce the fol-
lowing sequence spaces for every non zero z, . . . , zn– ∈ X:

Cp
(
�m,‖·, ·, . . . , ·‖)

=

{
(xk) ∈ w(n –X) :

∞∑
i=

(∥∥∥∥∥i
i∑

k=

�mxk , z, . . . , zn–

∥∥∥∥∥
)p

<∞
}
,

C∞
(
�m,‖·, . . . , ·‖)

=

{
(xk) ∈ w(n –X) : sup

i

(∥∥∥∥∥i
i∑

k=

�mxk , z, . . . , zn–

∥∥∥∥∥
)
<∞

}
,

�p
(
�m,‖·, . . . , ·‖)
=

{
(xk) ∈ w(n –X) :

∞∑
k=

(∥∥�mxk , z, . . . , zn–
∥∥)p < ∞

}
,

Op
(
�m,‖·, . . . , ·‖)

=

{
(xk) ∈ w(n –X) :

∞∑
i=

(

i

i∑
k=

(∥∥�mxk , z, . . . , zn–
∥∥))p

<∞
}
,

O∞
(
�m,‖·, . . . , ·‖)

=

{
(xk) ∈ w(n –X) : sup

i

(

i

i∑
k=

∥∥�mxk , z, . . . , zn–
∥∥)

< ∞
}
.

We procure the following result, whichwill help us in establishing the results of this article.

Lemma . (Tripathy, Esi and Tripathy [])
(a) Let ≤ p < ∞. Then

http://www.advancesindifferenceequations.com/content/2013/1/286
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(i) The space Cp is a Banach space, normed by

‖x‖ =
( ∞∑

i=

∣∣∣∣∣i
i∑

k=

xk

∣∣∣∣∣
p) 

p

.

(ii) The space Op is a Banach space, normed by

‖x‖ =
( ∞∑

i=


i

i∑
k=

|xk|p
) 

p

.

(iii) The space �p is a Banach space, normed by

‖x‖ =
( ∞∑

k=

|xk|p
) 

p

.

(b) (i) The space C∞ is a Banach space, normed by

‖x‖ = sup
i

∣∣∣∣∣i
i∑

k=

xk

∣∣∣∣∣.
(ii) The space O∞ is a Banach space, normed by

‖x‖ = sup
i


i

i∑
k=

|xk|.

Definition . An n-BK-space (X,‖·, . . . , ·‖) is an n-Banach space of real sequences x =
(xk) in which the co-ordinate maps are continuous.

3 Construction of n-norms and relevant properties
In this section, we construct n-norms on the introduced spaces of previous section and
investigate the spaces for completeness and some relations among them. The proof of the
following result is a routine verification.

Proposition . The classes of sequences Cp(�m,‖·, . . . , ·‖), Op(�m,‖·, . . . , ·‖), �p(�m,
‖·, . . . , ·‖), C∞(�m,‖·, . . . , ·‖) and O∞(�m,‖·, . . . , ·‖) for  ≤ p < ∞ are linear spaces over
the field of reals.

Theorem .
(a) Let ≤ p < ∞, and the base space X is an n-Banach space. Then

(i) The space Cp(�m,‖·, . . . , ·‖) is an n-Banach space, n-normed by
‖x,x, . . . ,xn‖�m

CP
=  if x,x, . . . ,xn are linearly dependent and

=
∑m

k= ‖xk , z, . . . , zn–‖ + (
∑∞

i= ‖ 
i
∑i

k= �
mxk , z, . . . , zn–‖p)


p for every

z, . . . , zn– ∈ X if x,x, . . . ,xn are linearly independent.
(ii) The space Op(�m,‖·, . . . , ·‖) is an n-Banach space, n-normed by

‖x,x, . . . ,xn‖�m
OP

=  if x,x, . . . ,xn are linearly dependent and

http://www.advancesindifferenceequations.com/content/2013/1/286
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=
∑m

k= ‖xk , z, . . . , zn–‖ + (
∑∞

i=

i
∑i

k= ‖�mxk , z, . . . , zn–‖p)

p for every

z, . . . , zn– ∈ X if x,x, . . . ,xn are linearly independent.
(iii) The space �p(�m,‖·, . . . , ·‖) is an n-Banach space, n-normed by

‖x,x, . . . ,xn‖�m
�p = , if x,x, . . . ,xn are linearly dependent and

=
∑m

k= ‖xk , z, . . . , zn–‖ + (
∑∞

k= ‖�mxk , z, . . . , zn–‖p)

p for every z, . . . , zn– ∈ X

if x,x, . . . ,xn are linearly independent.
(b) (i) The space C∞(�m,‖·, . . . , ·‖) is an n-Banach space, n-normed by

‖x,x, . . . ,xn‖�m
C∞ =  if x,x, . . . ,xn are linearly dependent and

=
∑m

k= ‖xk , z, . . . , zn–‖ + supi ‖ 
i
∑i

k= �
mxk , z, . . . , zn–‖ for every

z, . . . , zn– ∈ X if x,x, . . . ,xn are linearly independent.
(ii) The space O∞(�m,‖·, . . . , ·‖) is an n-Banach space, n-normed by

‖x,x, . . . ,xn‖�m
C∞ =  if x,x, . . . ,xn are linearly dependent and

=
∑m

k= ‖xk , z, . . . , zn–‖ + supi

i
∑i

k= ‖�mxk , z, . . . , zn–‖ for every
z, . . . , zn– ∈ X if x,x, . . . ,xn are linearly independent.

Proof It is a routine verification that the spaces Cp(�m,‖·, . . . , ·‖), Op(�m,‖·, . . . , ·‖),
�p(�m,‖·, . . . , ·‖), C∞(�m,‖·, . . . , ·‖) andO∞(�m,‖·, . . . , ·‖) are n-normed spaces under the
n-norm, defined as above.
Here, we prove the completeness for the space C∞(�m,‖·, . . . , ·‖), and for the other

spaces, it will follow on applying similar arguments.
Let (xs)∞s= be a Cauchy sequence in C∞(�m,‖·, . . . , ·‖), where xs = (xsi) = (xs,xs, . . .) ∈

C∞(�m,‖·, . . . , ·‖) for each s ∈ N . Let ε >  be given. Then there exists a positive in-
teger n such that ‖xs – xt ,u, . . . ,un‖�m

C∞ < ε for all s, t ≥ n and for every u, . . . ,un in
C∞(�m,‖·, . . . , ·‖).

⇒
m∑
k=

∥∥xsk – xtk , z, . . . , zn–
∥∥ + sup

i

∥∥∥∥∥i
i∑

k=

�m(
xsk – xtk

)
, z, . . . , zn–

∥∥∥∥∥ < ε

for all s, t ≥ n and for every z, . . . , zn– ∈ X.

⇒
m∑
k=

∥∥xsk – xtk , z, . . . , zn–
∥∥ < ε and sup

i

∥∥∥∥∥i
i∑

k=

�m(
xsk – xtk

)
, z, . . . , zn–

∥∥∥∥∥ < ε

for all s, t ≥ n and for every z, . . . , zn– ∈ X.
Hence ‖xsk – xtk , z, . . . , zn–‖ < ε for all k = , , . . . ,m and for every z, . . . , zn– ∈ X.
⇒ (xsk) is a Cauchy sequence for all k = , , . . . ,m in X, an n-Banach space.
Hence, (xsk) converges in X for all k = , , . . . ,m. Let lims→∞ xsk = xk for all k = , , . . . ,m.
Next, we have

sup
i

∥∥∥∥∥i
i∑

k=

�m(
xsk – xtk

)
, z, . . . , zn–

∥∥∥∥∥ < ε

for all s, t ≥ n and for every z, . . . , zn– ∈ X.

This implies that for every z, . . . , zn– ∈ X

∥∥∥∥∥i
i∑

k=

�m(
xsk – xtk

)
, z, . . . , zn–

∥∥∥∥∥ < ε for all s, t ≥ n and i ∈N .

http://www.advancesindifferenceequations.com/content/2013/1/286
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⇒ (�mxsk) is a Cauchy sequence in C∞(‖·, . . . , ·‖), which is complete (it is easy to check
that C∞(‖·, . . . , ·‖) is complete).
Hence, (�nxsk) converges for each k ∈N . Let lims→∞ �n

mxsk = yk for each k ∈N .
Let k = , we have

lim
s→∞�mxs = lim

s→∞

m∑
υ=

(–)υ
(
m
υ

)
x+υ = y. (..)

We have

lim
s→∞xsk = xk , for k =  + υ, for υ = , , . . . ,m – . (..)

Thus, from (..) and (..), we have that lims→∞ xs+m exists. Let lims→∞ xs+m = x+m.
Proceeding in this way inductively, we have that lims→∞ xsk = xk exists for each k ∈N .
Now, for every z, . . . , zn– ∈ X

lim
t

m∑
k=

∥∥xsk – xtk , z, . . . , zn–
∥∥ =

m∑
k=

∥∥xsk – xk , z, . . . , zn–
∥∥ < ε for all s ≥ n.

Again, using the continuity of n-norm, we find that for every z, . . . , zn– ∈ X

∥∥∥∥∥i
i∑

k=

�mxsk – lim
t→∞�mxtk , z, . . . , zn–

∥∥∥∥∥ < ε for all s ≥ n and i ∈ N .

Hence, for every z, . . . , zn– ∈ X

sup
i

∥∥∥∥∥i
i∑

k=

�mxsk –�mxk , z, . . . , zn–

∥∥∥∥∥ < ε for all s≥ n.

Thus, for every u, . . . ,un in C∞(�m,‖·, . . . , ·‖)
∥∥xs – x,u, . . . ,un

∥∥�m

C∞ < ε for all s ≥ n.

Hence, (xs – x) ∈ C∞(�m,‖·, . . . , ·‖). Since C∞(�m,‖·, . . . , ·‖) is a linear space, so we have
for all s ≥ n,

x = xs –
(
xs – x

) ∈ C∞
(
�m,‖·, . . . , ·‖).

Hence, C∞(�m,‖·, . . . , ·‖) is complete and as such is an n-Banach space. �

Corollary . The spaces Cp(�m,‖·, . . . , ·‖), Op(�m,‖·, . . . , ·‖), �p(�m,‖·, . . . , ·‖), C∞(�m,
‖·, . . . , ·‖) and O∞(�m,‖·, . . . , ·‖) for  ≤ p < ∞ are n-BK-spaces if the base space X is an
n-Banach space.

Proof The proof is obvious in view of the previous theorem. �

Theorem . Z(�m–,‖·, . . . , ·‖) ⊂ Z(�m,‖·, . . . , ·‖) (in general Z(�i,‖·, . . . , ·‖) ⊂ Z(�m,
‖·, . . . , ·‖), for i = , , . . . ,m – ) for Z = Cp, Op, �p, C∞ and O∞.
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Proof Here, we prove the result for Z = Cp and for the other results, it will follow on ap-
plying similar arguments.
Let x = (xk) ∈ Cp(�m–,‖·, . . . , ·‖), ≤ p <∞. Then for every non zero z, . . . , zn– ∈ X,

∞∑
i=

(∥∥∥∥∥i
i∑

k=

�m–xk , z, . . . , zn–

∥∥∥∥∥
)p

< ∞. (..)

Now, we have for every non zero z, . . . , zn– ∈ X,

(∥∥∥∥∥i
i∑

k=

�mxk , z, . . . , zn–

∥∥∥∥∥
)

≤
(∥∥∥∥∥i

i∑
k=

�m–xk , z, . . . , zn–

∥∥∥∥∥
)
+

(∥∥∥∥∥i
i∑

k=

�m–xk+, z, . . . , zn–

∥∥∥∥∥
)
.

It is known that for  ≤ p <∞,

|a + b|p ≤ p
(|a|p + |b|p).

Hence, for  ≤ p < ∞,

(∥∥∥∥∥i
i∑

k=

�mxk , z, . . . , zn–

∥∥∥∥∥
)p

≤ p
{(∥∥∥∥∥i

i∑
k=

�m–xk , z, . . . , zn–

∥∥∥∥∥
)p

+

(∥∥∥∥∥i
i∑

k=

�m–xk+, z, . . . , zn–

∥∥∥∥∥
)p}

.

Then for each positive integer r, we get

r∑
i=

(∥∥∥∥∥i
i∑

k=

�mxk , z, . . . , zn–

∥∥∥∥∥
)p

≤ p
{ r∑

i=

(∥∥∥∥∥i
i∑

k=

�m–xk , z, . . . , zn–

∥∥∥∥∥
)p

+
r∑
i=

(∥∥∥∥∥i
i∑

k=

�m–xk+, z, . . . , zn–

∥∥∥∥∥
)p}

.

Now, as r → ∞ and using (..), we have

∞∑
i=

(∥∥∥∥∥i
i∑

k=

�mxk , z, . . . , zn–

∥∥∥∥∥
)p

<∞.

Thus, Cp(�m–,‖·, . . . , ·‖) ⊂ Cp(�m,‖·, . . . , ·‖) for  ≤ p < ∞. The inclusion is strict, and it
follows from the following example. �

Example . Let X = R be a real linear space. Define ‖·, ·‖ : X × X → R by ‖x, y‖ =
max{|xy – xy|, |xy – xy|, |xy – xy|}, where x = (x,x,x), y = (y, y, y) are in
R. Then (X,‖·, ·‖) is a -normed linear space. Consider sequence x = {xk} = {(k,k,k)}
for all k ∈ N . Then �xk = (, , ) for all k ∈ N . Hence, (xk) ∈ Cp(�,‖·, ·‖). We have
�xk = (–,–,–) for all k ∈N . Hence, (xk) /∈ Cp(�,‖·, ·‖). Thus, the inclusion is strict.

http://www.advancesindifferenceequations.com/content/2013/1/286


Dutta Advances in Difference Equations 2013, 2013:286 Page 10 of 13
http://www.advancesindifferenceequations.com/content/2013/1/286

Theorem .
(a) Op(�m,‖·, . . . , ·‖) ⊂ Cp(�m,‖·, . . . , ·‖) ⊂ C∞(�m,‖·, . . . , ·‖), and the inclusions are

strict.
(b) Op(�m,‖·, . . . , ·‖) ⊂O∞(�m,‖·, . . . , ·‖) ⊂ C∞(�m,‖·, . . . , ·‖), and the inclusions are

strict.

Proof The proof is easy, so it is omitted. �

Remark . �p(�m,‖·, . . . , ·‖) ⊂ Op(�m,‖·, . . . , ·‖). For this, consider the following exam-
ple.

Example . Let p =  and a -norm ‖·, ·‖ on X = R as in Example .. Let m =  and
consider sequence {xk} = {(, , ), (, , ), (, , ), (, , ), . . .). Then�xk = (, , ) for k =
 and �xk = (, , ) for all k > . Then (xk) ∈ �(�,‖·, ·‖) but (xk) /∈O(�,‖·, ·‖).

Theorem . If ≤ p < q, then
(i) Cp(�m,‖·, . . . , ·‖) ⊂ Cq(�m,‖·, . . . , ·‖).
(ii) �p(�m,‖·, . . . , ·‖) ⊂ �q(�m,‖·, . . . , ·‖).
(iii) Op(�m,‖·, . . . , ·‖) ⊂Oq(�m,‖·, . . . , ·‖).

Proof The proof is easy, so it is omitted. �

4 Computation of the Köthe-Toeplitz duals
In order to compute Köthe-Toeplitz dual, we first define the following. An n-functional is
a real-valued mapping with domain A × · · · × An, where A, . . . ,An are linear manifolds
of a linear n-normed space.
Let F be an n-functional with domain A × · · · × An. F is called a linear n-functional

whenever for all a, a, . . . , an ∈ A, a, a, . . . , an ∈ A, . . . , na, na, . . . , nan ∈ An and
all α, . . . ,αn ∈ R, we have

(i) F(a + a + · · · + an, a + a + · · · + an, . . . , na + na + · · · + nan) =∑
≤i,i,...,in≤n F(ai , ai , . . . , nain ) and

(ii) F(αa, . . . ,αnan) = α · · ·αnF(a, . . . ,an).
Let F be an n-functional with domain D(F). F is called bounded if there is a real constant
K ≥  such that |F(a, . . . ,an)| ≤ K‖a, . . . ,an‖ for all (a, . . . ,an) ∈ D(F). If F is bounded,
we define the norm of F , ‖F‖ by

‖F‖ = glb
{
K :

∣∣F(a, . . . ,an)∣∣ ≤ K‖a, . . . ,an‖ for all (a, . . . ,an) ∈D(F)
}
.

If F is not bounded, we define‖F‖ = +∞.
It is easy to check the following two results. In this context, one may refer to George

[].

Proposition . A linear n-functional F is continuous if and only if it is bounded.

Proposition . Let B∗ be the set of bounded linear n-functionals with domain B × · · ·×
Bn. Then B∗ is an n-Banach space up to linear dependence.
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For any n (> )-normed space E, we denote by E∗ the continuous dual of E. There is a
need to explore in detail on this notion of continuous duality for n-normed spaces.
We have the definition of Köthe-Toeplitz dual of sequence spaces with base space an

n-normed space as follows.
Let E be an n-normed linear space, normed by ‖·, . . . , ·‖E . Then we define the Köthe-

Toeplitz dual of the sequence space Z(E) whose base space is E as

[
Z(E)

]α =
{
(yk) : yk ∈ E∗,k ∈N and

(‖xk ,u, . . . ,un‖E‖yk , v, . . . , vn‖E∗
) ∈ �

for every v, . . . , vn ∈ E∗,u, . . . ,un ∈ E, (xk) ∈ Z(E)
}
.

It is easy to check that φ ⊂ Xα . If X ⊂ Y , then Y α ⊂ Xα .
Let us consider

SCp
(
�m,‖·, . . . , ·‖) = {

x = (xk) : x ∈ Cp
(
�m,‖·, . . . , ·‖),x = · · · = xm = 

}
.

Then SCp(�m,‖·, . . . , ·‖) is a subspace of Cp(�m,‖·, . . . , ·‖) for  ≤ p < ∞. We can have
similar subspaces for other spaces as well.
Now, we procure the following results which will be helpful in establishing our result.

Lemma . (M. Et []) x ∈ SC∞(�m) implies that supk k–m|xk| < ∞.

Lemma . x ∈ SC∞(�m,‖·, . . . , ·‖) implies that supk k–m‖xk ,u, . . . ,un‖ < ∞ for every
u, . . . ,un ∈ X.

Proof The proof follows using similar techniques as applied in the proof of Lemma ..
Let us set

U =

{
a = (ak) :

∞∑
k=

km‖ak , z, . . . , zn‖X∗ < ∞ for every z, . . . , zn ∈ X∗
}
. �

Theorem . The Köthe-Toeplitz dual of the space SCp(�m,‖·, . . . , ·‖) is U, i.e., [SC∞(�m,
‖·, . . . , ·‖)]α =U .

Proof If a ∈U , then

∞∑
k=

‖ak , z, . . . , zn‖X∗‖xk ,u, . . . ,un‖X

=
∞∑
k=

km‖ak , z, . . . , zn‖X∗
(
k–m‖xk ,u, . . . ,un‖X

)

< ∞,

for each x ∈ SC∞(�m,‖·, . . . , ·‖) (by Lemma .). Hence, x ∈ [SC∞(�m,‖·, . . . , ·‖)]α .
Next, let a ∈ [SC∞(�m,‖·, . . . , ·‖)]α . Then∑∞

k= ‖ak , z, . . . , zn‖X∗‖xk ,u, . . . ,un‖X <∞ for
each x ∈ SC∞(�m,‖·, . . . , ·‖). We define sequence x = (xk) by

xk =

{
, k ≤m,
km, k >m,
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and choose u, . . . ,un ∈ X such that

∥∥km,u, . . . ,un∥∥X = km‖,u, . . . ,un‖X =

{
, k ≤m,
km, k >m.

We may write for every z, . . . , zn ∈ X∗,

∞∑
k=

km‖ak , z, . . . , zn‖X∗

=
∞∑
k=

∥∥km,u, . . . ,un∥∥X‖ak , z, . . . , zn‖X∗

=
m∑
k=

∥∥km,u, . . . ,un∥∥X‖ak , z, . . . , zn‖X∗ +
∞∑
k=

∥∥km,u, . . . ,un∥∥X‖ak , z, . . . , zn‖X∗

< ∞.

This implies that a ∈U . �

Theorem . [SC∞(�m,‖·, . . . , ·‖)]α = [C∞(�m,‖·, . . . , ·‖)]α .

Proof Since SC∞(�m,‖·, . . . , ·‖) ⊂ C∞(�m,‖·, . . . , ·‖), we have
[
C∞

(
�m,‖·, . . . , ·‖)]α ⊂ [

SC∞
(
�m,‖·, . . . , ·‖)]α .

Let a ∈ [SC∞(�m,‖·, . . . , ·‖)]α and x ∈ C∞(�m,‖·, . . . , ·‖). If we take sequence x = (xk) as
follows

xk =

{
xk , k ≤m,
x′
k , k >m,

where x′ = (x′
k) ∈ SC∞(�m,‖·, . . . , ·‖). Then we may write

∞∑
k=

‖ak , z, . . . , zn‖X∗‖xk ,u, . . . ,un‖X

=
m∑
k=

‖ak , z, . . . , zn‖X∗‖xk ,u, . . . ,un‖X +
∞∑
k=

‖ak , z, . . . , zn‖X∗
∥∥x′

k ,u, . . . ,un
∥∥
X

< ∞.

This implies that a ∈ [C∞(�m,‖·, . . . , ·‖)]α . �

Theorem . [O∞(�m,‖·, . . . , ·‖)]α = [C∞(�m,‖·, . . . , ·‖)]α .

Proof The proof is trivial. �
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