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Abstract
For any sequence recurrence formula, the Smarandache-Pascal derived sequence {Tn}
of {bn} is defined by Tn+1 =

∑n
k=0

(n
k

) · bk+1 for all n ≥ 2, where
(n
k

)
= n!

k!(n–k)! denotes the
combination number. The recurrence formula of {Tn} is obtained by the properties of
the third-order linear recurrence sequence.
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1 Introduction
For any sequence {bn}, a new sequence {Tn} is defined by the following method: T = b,
T = b + b, T = b + b + b, generally, Tn+ =

∑n
k=

(n
k
) · bk+ for all n ≥ , where(n

k
)
= n!

k!(n–k)! is the combination number. This sequence is called the Smarandache-Pascal
derived sequence of {bn}. It was introduced by professor Smarandache in [] and studied
by some authors. For example,Murthy andAshbacher [] proposed a series of conjectures
related to Fibonacci numbers and the Smarandache-Pascal derived sequence, one of them
is as follows.

Conjecture Let {bn} = {Fn+} = {F,F,F,F, . . .}, {Tn} be the Smarandache-Pascal de-
rived sequence of {bn}, then we have the recurrence formula

Tn+ =  · (Tn – Tn–), n ≥ .

Li and Han [] studied these problems and proved a generalized conclusion as follows.

Proposition Let {Xn} be a second-order linear recurrence sequence with X = u, X = v,
Xn+ = aXn + bXn– for all n ≥ , where a + b > . For any positive integer d ≥ , we define
the Smarandache-Pascal derived sequence of {Xdn+} as

Tn+ =
n∑

k=

(
n
k

)
·Xdk+.

Then we have the recurrence formula

Tn+ = ( +Ad + b ·Ad–) · Tn –
(
 +Ad + b ·Ad– + (–b)d

) · Tn–,

where the sequence {An} is defined as A = , A = a, An+ = a ·An + b ·An– for all n ≥ .
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It is clear that if we take b = , then Xn is the Fibonacci polynomials, see [–].
The main purpose of this paper is, using the elementary method and the properties

of the third-order linear recurrence sequence, to unify the above results by proving the
following theorem.

Theorem Let {Xn} be a third-order linear recurrence sequence Xn+ = a · Xn+ + b ·Xn+ +
c · Xn with the initial values X = u, X = v and X = w for all n ≥ , where a, b and c are
positive integers. For any positive integer d ≥ , we define the Smarandache-Pascal derived
sequence of {Xdn+} as

Tn+ =
n∑

k=

(
n
k

)
·Xdk+.

Then we have the recurrence formula

Tn+ =
gg – gg + g

g – g
· Tn +

gg – gg – gg
g – g

· Tn– +
gg – gg
g – g

· Tn–,

where

g = f + f + c ·Adf, g = fAd+ – ff + c ·Adf,

g = c ·A
d+ – c ·Adf + c ·Adf, g = fAd+ – ff + c ·Ad(f + f),

g = c ·Adf, g = c · (Ad+ –Adf +Adf –Ad), g = c ·Adf

and

f = b ·Ad + c ·Ad– + , f =  +Ad+,

f = b ·Ad– + c ·Ad, f =  + c ·Ad– –
c ·A

d
Ad+

,

f =
Ad

Ad+
, f = b ·Ad– + c ·Ad– –

b ·A
d + c ·Ad–Ad +Ad

Ad+
,

the sequence {An} is defined by An+ = a ·An+ +b ·An+ +c ·An with the initial values A = ,
A =  and A = a for all n ≥ .

From our theorem we know that if {bn} is a third-order linear recurrence sequence,
then its Smarandache-Pascal derived sequence {Tn} is also a third-order linear recurrence
sequence.

2 Proof of the theorem
To complete the proof of our theorem, we need the following lemma.

Lemma Let integers m ≥  and n ≥ . If the sequence {Xn} satisfies the recurrence relations
Xn+ = a ·Xn+ + b ·Xn+ + c ·Xn, n≥ , then we have the identity

Xm+n = An ·Xm+ + (b ·An– + c ·An–) ·Xm+ + c ·An– ·Xm,
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where An is defined by An+ = a ·An+ + b ·An+ + c ·An with the initial values A = , A = 
and A = a for all n ≥ .

Proof Now we prove this lemma by mathematical induction. Note that the recurrence
formula Xm+ = a ·Xm+ + b ·Xm+ + c ·Xm = A ·Xm+ + (b ·A + c ·A) ·Xm+ + c ·A ·Xm

for all n ≥ . That is, the lemma holds for n =  since

Xm+ = a · (a ·Xm+ + b ·Xm+ + c ·Xm) + b ·Xm+ + c ·Xm+

=
(
a + b

) ·Xm+ + (ab + c) ·Xm+ + ac ·Xm

= A ·Xm+ + (b ·A + c ·A) ·Xm+ + c ·A ·Xm.

That is, the lemma holds for n = . Suppose that for all integers  ≤ n≤ k, we have Xm+n =
An ·Xm+ + (b ·An– + c ·An–) ·Xm+ + c ·An– ·Xm. Then, for n = k + , from the recurrence
relations for Xm and the inductive hypothesis, we have

Xm+k+ = a ·Xm+k + b ·Xm+k– + c ·Xm+k–

= a · (Ak ·Xm+ + (b ·Ak– + c ·Ak–) ·Xm+ + c ·Ak– ·Xm
)

+ b · (Ak– ·Xm+ + (b ·Ak– + c ·Ak–) ·Xm+ + c ·Ak– ·Xm
)

+ c · (Ak– ·Xm+ + (b ·Ak– + c ·Ak–) ·Xm+ + c ·Ak– ·Xm
)

= (a ·Ak + b ·Ak– + c ·Ak–) ·Xm+ +
(
ab ·Ak– +

(
ac + b

) ·Ak–

+ bc ·Ak– + c ·Ak–
) ·Xm+ + c(a ·Ak– + b ·Ak– + c ·Ak–) ·Xm

= Ak+ ·Xm+ +
(
ab ·Ak– + b ·Ak– + bc ·Ak– + c ·Ak–

) ·Xm+ + c ·Ak ·Xm

= Ak+ ·Xm+ + (b ·Ak + c ·Ak–) ·Xm+ + c ·Ak ·Xm.

That is, the lemma also holds for n = k + . This completes the proof of our lemma by
mathematical induction. �

Now we use this lemma to complete the proof of our theorem. From the properties of
the binomial coefficient

(n
k
)
, we have

(
n – 
k

)
+

(
n – 
k – 

)
=

(n – )!
k!(n –  – k)!

+
(n – )!

(k – )!(n – k)!

=
(n – )!

(k – )!(n – k – )!

(

k
+


n – k

)
=

(
n
k

)
. ()

For any positive integer d, from the lemma we have Xdk+d+ = Ad+ · Xdk+ + (b · Ad + c ·
Ad–) ·Xdk+ + c ·Ad ·Xdk . By the definition of Tn, we may deduce that

Tn+ =
n∑

k=

(
n
k

)
·Xdk+

= X +Xdn+ +
n–∑
k=

((
n – 
k

)
+

(
n – 
k – 

))
·Xdk+
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=
n–∑
k=

(
n – 
k

)
·Xdk+ +

n–∑
k=

(
n – 
k

)
·Xdk+d+ +Xdn+

= Tn +
n–∑
k=

(
n – 
k

)
·Xdk+d+

= Tn +
n–∑
k=

(
n – 
k

)
· (Ad+ ·Xdk+ + (b ·Ad + c ·Ad–) ·Xdk+ + c ·Ad ·Xdk

)

= (b ·Ad + c ·Ad– + ) · Tn +Ad+

n–∑
k=

(
n – 
k

)
·Xdk+

+ c ·Ad

n–∑
k=

(
n – 
k

)
·Xdk .

For convenience, we let f(Ak) = b · Ad + c · Ad– +  (briefly f), then the above identity
implies that

Tn+ = f · Tn +Ad+

n–∑
k=

(
n – 
k

)
·Xdk+ + c ·Ad

n–∑
k=

(
n – 
k

)
·Xdk . ()

From this identity, we can also deduce

Tn = f · Tn– +Ad+

n–∑
k=

(
n – 
k

)
·Xdk+ + c ·Ad

n–∑
k=

(
n – 
k

)
·Xdk

and

Tn– = f · Tn– +Ad+

n–∑
k=

(
n – 
k

)
·Xdk+ + c ·Ad

n–∑
k=

(
n – 
k

)
·Xdk .

They are equivalent to

n–∑
k=

(
n – 
k

)
·Xdk+ =


Ad+

(
Tn – f · Tn– – c ·Ad

n–∑
k=

(
n – 
k

)
·Xdk

)
()

and

n–∑
k=

(
n – 
k

)
·Xdk+ =


Ad+

(
Tn– – f · Tn– – c ·Ad

n–∑
k=

(
n – 
k

)
·Xdk

)
. ()

On the other hand, from the lemma we also deduce Xdk+d+ = Ad+ · Xdk+ + (b · Ad+ +
c ·Ad) ·Xdk+ + c ·Ad+ ·Xdk . Then we have

n–∑
k=

(
n – 
k

)
·Xdk+

= X +Xdn–d+ +
n–∑
k=

(
n – 
k

)
·Xdk+
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= X +Xdn–d+ +
n–∑
k=

((
n – 
k

)
+

(
n – 
k – 

))
·Xdk+

=
n–∑
k=

(
n – 
k

)
·Xdk+d+ +

n–∑
k=

(
n – 
k

)
·Xdk+

=
n–∑
k=

(
n – 
k

)
· (Ad+ ·Xdk+ + (b ·Ad+ + c ·Ad) ·Xdk+ + c ·Ad+ ·Xdk

)

+
n–∑
k=

(
n – 
k

)
·Xdk+

= ( +Ad+) ·
n–∑
k=

(
n – 
k

)
·Xdk+ + c ·Ad+

n–∑
k=

(
n – 
k

)
·Xdk

+ (b ·Ad+ + c ·Ad) · Tn–. ()

Similarly, applying formula () and identity (), we have

n–∑
k=

(
n – 
k

)
·Xdk

= X +Xdn–d +
n–∑
k=

(
n – 
k

)
·Xdk

= X +Xdn–d +
n–∑
k=

((
n – 
k

)
+

(
n – 
k – 

))
·Xdk

=
n–∑
k=

(
n – 
k

)
· (Ad ·Xdk+ + (b ·Ad– + c ·Ad–) ·Xdk+ + c ·Ad– ·Xdk

)

+
n–∑
k=

(
n – 
k

)
·Xdk

= Ad ·
n–∑
k=

(
n – 
k

)
·Xdk+ + ( + c ·Ad–)

n–∑
k=

(
n – 
k

)
·Xdk

+ (b ·Ad– + c ·Ad–) · Tn–

=
Ad

Ad+

(
Tn – (b ·Ad + c ·Ad– + ) · Tn– – c ·Ad

n–∑
k=

(
n – 
k

)
·Xdk

)

+ ( + c ·Ad–)
n–∑
k=

(
n – 
k

)
·Xdk

+ (b ·Ad– + c ·Ad–) · Tn–

=
Ad

Ad+
· Tn +

(
b ·Ad– + c ·Ad– –

b ·A
d + c ·Ad–Ad +Ad

Ad+

)
· Tn–

+
(
 + c ·Ad– –

c ·A
d

Ad+

) n–∑
k=

(
n – 
k

)
·Xdk . ()
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For convenience, we let

f =  +Ad+, f = b ·Ad+ + c ·Ad, f =  + c ·Ad– –
c ·A

d
Ad+

,

f =
Ad

Ad+
, f = b ·Ad– + c ·Ad– –

b ·A
d + c ·Ad–Ad +Ad

Ad+
,

then identities () and () imply that

n–∑
k=

(
n – 
k

)
·Xdk+

= f ·
n–∑
k=

(
n – 
k

)
·Xdk+ + c ·Ad+

n–∑
k=

(
n – 
k

)
·Xdk + f · Tn–, ()

n–∑
k=

(
n – 
k

)
·Xdk = f

n–∑
k=

(
n – 
k

)
·Xdk + fTn + fTn–. ()

Combining (), (), () and (), we deduce

Tn+ = (f + f + c ·Adf) · Tn + (fAd+ – ff + c ·Adf) · Tn–

+
(
c ·A

d+ – c ·Adf + c ·Adf
) ·

n–∑
k=

(
n – 
k

)
·Xdk . ()

Applying formula (), we deduce

(
n
k

)
=

(
n – 
k

)
+

(
n – 
k – 

)
=

(
n – 
k

)
+

(
n – 
k – 

)
+

(
n – 
k – 

)
. ()

From this and identities () and (), note that Xdk+d = Ad · Xdk+ + (b · Ad– + c · Ad–) ·
Xdk+ + c ·Ad– ·Xdk , we have

n–∑
k=

(
n – 
k

)
·Xdk

= X +Xdn–d +
(
n – 
n – 

)
·Xdn–d +

n–∑
k=

(
n – 
k

)
·Xdk

= X +Xdn–d + (n – ) ·Xdn–d +
n–∑
k=

((
n – 
k

)
+

(
n – 
k – 

)
+

(
n – 
k – 

))
·Xdk

= X +Xdn–d + (n – ) ·Xdn–d +
n–∑
k=

(
n – 
k

)
·Xdk –X

+
n–∑
k=

(
n – 
k

)
·Xdk+d –Xdn–d +

n–∑
k=

(
n – 
k

)
·Xdk+d – (n – ) ·Xdn–d –Xdn–d

=
n–∑
k=

(
n – 
k

)
·Xdk +

n–∑
k=

(
n – 
k

)
·Xdk+d +

n–∑
k=

(
n – 
k

)
·Xdk+d
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= Ad

n–∑
k=

(
n – 
k

)
·Xdk+ +Ad

n–∑
k=

(
n – 
k

)
·Xdk+ + c ·Ad–

n–∑
k=

(
n – 
k

)
·Xdk

+ (c ·Ad– + )
n–∑
k=

(
n – 
k

)
·Xdk + (b ·Ad– + c ·Ad–) · (Tn– + Tn–)

=
Ad

Ad+
Tn +

(
b ·Ad– + c ·Ad– –

b ·A
d + c ·Ad–Ad

Ad+

)
· Tn–

+
(
b ·Ad– + c ·Ad– –

b ·A
d + c ·Ad–Ad +Ad

Ad+

)
· Tn–

+
(
c ·Ad– –

c ·A
d

Ad+

) n–∑
k=

(
n – 
k

)
·Xdk

+
(
c ·Ad– +  –

c ·A
d

Ad+

) n–∑
k=

(
n – 
k

)
·Xdk

= fTn + (f + f)Tn– + fTn–

+ (f – )
n–∑
k=

(
n – 
k

)
·Xdk + f

n–∑
k=

(
n – 
k

)
·Xdk . ()

Combining (), (), () and (), we deduce

Tn+ = (f + f + c ·Adf) · Tn +
(
fAd+ – ff + c ·Ad(f + f)

) · Tn– + c ·Adf · Tn–

+ c(Ad+ –Adf +Adf –Ad) ·
n–∑
k=

(
n – 
k

)
·Xdk

+ c ·Adf ·
n–∑
k=

(
n – 
k

)
·Xdk . ()

From identity () we can also deduce

Tn = (f + f + c ·Adf) · Tn– + (fAd+ – ff + c ·Adf) · Tn–

+
(
c ·A

d+ – c ·Adf + c ·Adf
) ·

n–∑
k=

(
n – 
k

)
·Xdk . ()

For convenience, we let

g = f + f + c ·Adf, g = fAd+ – ff + c ·Adf,

g = c ·A
d+ – c ·Adf + c ·Adf, g = fAd+ – ff + c ·Ad(f + f),

g = c ·Adf, g = c · (Ad+ –Adf +Adf –Ad), g = c ·Adf.

Inserting () and () into (), we deduce

Tn+ =
gg – gg + g

g – g
· Tn +

gg – gg – gg
g – g

· Tn– +
gg – gg
g – g

· Tn–. ()

This completes the proof of our theorem.

http://www.advancesindifferenceequations.com/content/2013/1/284


Wu et al. Advances in Difference Equations 2013, 2013:284 Page 8 of 8
http://www.advancesindifferenceequations.com/content/2013/1/284

Remark In fact, using the above formulas, we can also obtain the recurrence formula of
the Smarandache-Pascal derived sequence {Tn} of {un}, where {un} denotes themth-order
linear recursive sequences as follows:

un = aun– + aun– + · · · + am–un–m+ + amun–m,

with initial values ui ∈N for n >m and  ≤ i <m.
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