On the Smarandache-Pascal derived sequences of generalized Tribonacci numbers

Zhengang Wu ${ }^{1 *}$, Jianghua Li ${ }^{2}$ and Han Zhang ${ }^{1}$

"Correspondence:
sky.wzgfff@163.com
${ }^{1}$ Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R. China

Full list of author information is available at the end of the article

Abstract

For any sequence recurrence formula, the Smarandache-Pascal derived sequence $\left\{T_{n}\right\}$ of $\left\{b_{n}\right\}$ is defined by $T_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot b_{k+1}$ for all $n \geq 2$, where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ denotes the combination number. The recurrence formula of $\left\{T_{n}\right\}$ is obtained by the properties of the third-order linear recurrence sequence.

Keywords: Smarandache-Pascal derived sequence; Tribonacci numbers; combination number; elementary method

1 Introduction

For any sequence $\left\{b_{n}\right\}$, a new sequence $\left\{T_{n}\right\}$ is defined by the following method: $T_{1}=b_{1}$, $T_{2}=b_{1}+b_{2}, T_{3}=b_{1}+2 b_{2}+b_{3}$, generally, $T_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot b_{k+1}$ for all $n \geq 2$, where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the combination number. This sequence is called the Smarandache-Pascal derived sequence of $\left\{b_{n}\right\}$. It was introduced by professor Smarandache in [1] and studied by some authors. For example, Murthy and Ashbacher [2] proposed a series of conjectures related to Fibonacci numbers and the Smarandache-Pascal derived sequence, one of them is as follows.

Conjecture Let $\left\{b_{n}\right\}=\left\{F_{8 n+1}\right\}=\left\{F_{1}, F_{9}, F_{17}, F_{25}, \ldots\right\},\left\{T_{n}\right\}$ be the Smarandache-Pascal derived sequence of $\left\{b_{n}\right\}$, then we have the recurrence formula

$$
T_{n+1}=49 \cdot\left(T_{n}-T_{n-1}\right), \quad n \geq 2 .
$$

Li and Han [3] studied these problems and proved a generalized conclusion as follows.

Proposition Let $\left\{X_{n}\right\}$ be a second-order linear recurrence sequence with $X_{0}=u, X_{1}=v$, $X_{n+1}=a X_{n}+b X_{n-1}$ for all $n \geq 1$, where $a^{2}+4 b>0$. For any positive integer $d \geq 2$, we define the Smarandache-Pascal derived sequence of $\left\{X_{d n+1}\right\}$ as

$$
T_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot X_{d k+1} .
$$

Then we have the recurrence formula

$$
T_{n+1}=\left(2+A_{d}+b \cdot A_{d-2}\right) \cdot T_{n}-\left(1+A_{d}+b \cdot A_{d-2}+(-b)^{d}\right) \cdot T_{n-1},
$$

where the sequence $\left\{A_{n}\right\}$ is defined as $A_{0}=1, A_{1}=a, A_{n+1}=a \cdot A_{n}+b \cdot A_{n-1}$ for all $n \geq 1$.

It is clear that if we take $b=1$, then X_{n} is the Fibonacci polynomials, see [4-7].
The main purpose of this paper is, using the elementary method and the properties of the third-order linear recurrence sequence, to unify the above results by proving the following theorem.

Theorem Let $\left\{X_{n}\right\}$ be a third-order linear recurrence sequence $X_{n+3}=a \cdot X_{n+2}+b \cdot X_{n+1}+$ $c \cdot X_{n}$ with the initial values $X_{0}=u, X_{1}=v$ and $X_{2}=w$ for all $n \geq 1$, where a, b and c are positive integers. For any positive integer $d \geq 2$, we define the Smarandache-Pascal derived sequence of $\left\{X_{d n+1}\right\}$ as

$$
T_{n+1}=\sum_{k=0}^{n}\binom{n}{k} \cdot X_{d k+1} .
$$

Then we have the recurrence formula

$$
T_{n+1}=\frac{g_{1} g_{3}-g_{1} g_{6}+g_{7}}{g_{3}-g_{6}} \cdot T_{n}+\frac{g_{3} g_{4}-g_{2} g_{6}-g_{1} g_{7}}{g_{3}-g_{6}} \cdot T_{n-1}+\frac{g_{3} g_{5}-g_{2} g_{7}}{g_{3}-g_{6}} \cdot T_{n-2},
$$

where

$$
\begin{aligned}
& g_{1}=f_{1}+f_{2}+c \cdot A_{d} f_{5}, \quad g_{2}=f_{3} A_{d+1}-f_{1} f_{2}+c \cdot A_{d} f_{6}, \\
& g_{3}=c \cdot A_{d+1}^{2}-c \cdot A_{d} f_{2}+c \cdot A_{d} f_{4}, \quad g_{4}=f_{3} A_{d+1}-f_{1} f_{2}+c \cdot A_{d}\left(f_{5}+f_{6}\right), \\
& g_{5}=c \cdot A_{d} f_{6}, \quad g_{6}=c \cdot\left(A_{d+1}-A_{d} f_{2}+A_{d} f_{4}-A_{d}\right), \quad g_{7}=c \cdot A_{d} f_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{1}=b \cdot A_{d}+c \cdot A_{d-1}+1, \quad f_{2}=1+A_{d+2} \\
& f_{3}=b \cdot A_{d-1}+c \cdot A_{d}, \quad f_{4}=1+c \cdot A_{d-1}-\frac{c \cdot A_{d}^{2}}{A_{d+1}}, \\
& f_{5}=\frac{A_{d}}{A_{d+1}}, \quad f_{6}=b \cdot A_{d-1}+c \cdot A_{d-2}-\frac{b \cdot A_{d}^{2}+c \cdot A_{d-1} A_{d}+A_{d}}{A_{d+1}},
\end{aligned}
$$

the sequence $\left\{A_{n}\right\}$ is defined by $A_{n+3}=a \cdot A_{n+2}+b \cdot A_{n+1}+c \cdot A_{n}$ with the initial values $A_{1}=0$, $A_{2}=1$ and $A_{3}=a$ for all $n \geq 1$.

From our theorem we know that if $\left\{b_{n}\right\}$ is a third-order linear recurrence sequence, then its Smarandache-Pascal derived sequence $\left\{T_{n}\right\}$ is also a third-order linear recurrence sequence.

2 Proof of the theorem

To complete the proof of our theorem, we need the following lemma.

Lemma Let integers $m \geq 0$ and $n \geq 3$. If the sequence $\left\{X_{n}\right\}$ satisfies the recurrence relations $X_{n+3}=a \cdot X_{n+2}+b \cdot X_{n+1}+c \cdot X_{n}, n \geq 0$, then we have the identity

$$
X_{m+n}=A_{n} \cdot X_{m+2}+\left(b \cdot A_{n-1}+c \cdot A_{n-2}\right) \cdot X_{m+1}+c \cdot A_{n-1} \cdot X_{m},
$$

where A_{n} is defined by $A_{n+3}=a \cdot A_{n+2}+b \cdot A_{n+1}+c \cdot A_{n}$ with the initial values $A_{1}=0, A_{2}=1$ and $A_{3}=$ a for all $n \geq 1$.

Proof Now we prove this lemma by mathematical induction. Note that the recurrence formula $X_{m+3}=a \cdot X_{m+2}+b \cdot X_{m+1}+c \cdot X_{m}=A_{3} \cdot X_{m+2}+\left(b \cdot A_{2}+c \cdot A_{1}\right) \cdot X_{m+1}+c \cdot A_{2} \cdot X_{m}$ for all $n \geq 1$. That is, the lemma holds for $n=3$ since

$$
\begin{aligned}
X_{m+4} & =a \cdot\left(a \cdot X_{m+2}+b \cdot X_{m+1}+c \cdot X_{m}\right)+b \cdot X_{m+2}+c \cdot X_{m+1} \\
& =\left(a^{2}+b\right) \cdot X_{m+2}+(a b+c) \cdot X_{m+1}+a c \cdot X_{m} \\
& =A_{4} \cdot X_{m+2}+\left(b \cdot A_{3}+c \cdot A_{2}\right) \cdot X_{m+1}+c \cdot A_{3} \cdot X_{m} .
\end{aligned}
$$

That is, the lemma holds for $n=4$. Suppose that for all integers $2 \leq n \leq k$, we have $X_{m+n}=$ $A_{n} \cdot X_{m+2}+\left(b \cdot A_{n-1}+c \cdot A_{n-2}\right) \cdot X_{m+1}+c \cdot A_{n-1} \cdot X_{m}$. Then, for $n=k+1$, from the recurrence relations for X_{m} and the inductive hypothesis, we have

$$
\begin{aligned}
X_{m+k+1}= & a \cdot X_{m+k}+b \cdot X_{m+k-1}+c \cdot X_{m+k-2} \\
= & a \cdot\left(A_{k} \cdot X_{m+2}+\left(b \cdot A_{k-1}+c \cdot A_{k-2}\right) \cdot X_{m+1}+c \cdot A_{k-1} \cdot X_{m}\right) \\
& +b \cdot\left(A_{k-1} \cdot X_{m+2}+\left(b \cdot A_{k-2}+c \cdot A_{k-3}\right) \cdot X_{m+1}+c \cdot A_{k-2} \cdot X_{m}\right) \\
& +c \cdot\left(A_{k-2} \cdot X_{m+2}+\left(b \cdot A_{k-3}+c \cdot A_{k-4}\right) \cdot X_{m+1}+c \cdot A_{k-3} \cdot X_{m}\right) \\
= & \left(a \cdot A_{k}+b \cdot A_{k-1}+c \cdot A_{k-2}\right) \cdot X_{m+2}+\left(a b \cdot A_{k-1}+\left(a c+b^{2}\right) \cdot A_{k-2}\right. \\
& \left.+2 b c \cdot A_{k-3}+c^{2} \cdot A_{k-4}\right) \cdot X_{m+1}+c\left(a \cdot A_{k-1}+b \cdot A_{k-2}+c \cdot A_{k-3}\right) \cdot X_{m} \\
= & A_{k+1} \cdot X_{m+2}+\left(a b \cdot A_{k-1}+b^{2} \cdot A_{k-2}+b c \cdot A_{k-3}+c \cdot A_{k-1}\right) \cdot X_{m+1}+c \cdot A_{k} \cdot X_{m} \\
= & A_{k+1} \cdot X_{m+2}+\left(b \cdot A_{k}+c \cdot A_{k-1}\right) \cdot X_{m+1}+c \cdot A_{k} \cdot X_{m} .
\end{aligned}
$$

That is, the lemma also holds for $n=k+1$. This completes the proof of our lemma by mathematical induction.

Now we use this lemma to complete the proof of our theorem. From the properties of the binomial coefficient $\binom{n}{k}$, we have

$$
\begin{align*}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{(k-1)!(n-k-1)!}\left(\frac{1}{k}+\frac{1}{n-k}\right)=\binom{n}{k} . \tag{1}
\end{align*}
$$

For any positive integer d, from the lemma we have $X_{d k+d+1}=A_{d+1} \cdot X_{d k+2}+\left(b \cdot A_{d}+c\right.$. $\left.A_{d-1}\right) \cdot X_{d k+1}+c \cdot A_{d} \cdot X_{d k}$. By the definition of T_{n}, we may deduce that

$$
\begin{aligned}
T_{n+1} & =\sum_{k=0}^{n}\binom{n}{k} \cdot X_{d k+1} \\
& =X_{1}+X_{d n+1}+\sum_{k=1}^{n-1}\left(\binom{n-1}{k}+\binom{n-1}{k-1}\right) \cdot X_{d k+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k+1}+\sum_{k=0}^{n-2}\binom{n-1}{k} \cdot X_{d k+d+1}+X_{d n+1} \\
& =T_{n}+\sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k+d+1} \\
& =T_{n}+\sum_{k=0}^{n-1}\binom{n-1}{k} \cdot\left(A_{d+1} \cdot X_{d k+2}+\left(b \cdot A_{d}+c \cdot A_{d-1}\right) \cdot X_{d k+1}+c \cdot A_{d} \cdot X_{d k}\right) \\
& =\left(b \cdot A_{d}+c \cdot A_{d-1}+1\right) \cdot T_{n}+A_{d+1} \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k+2} \\
& \quad+c \cdot A_{d} \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k} .
\end{aligned}
$$

For convenience, we let $f_{1}\left(A_{k}\right)=b \cdot A_{d}+c \cdot A_{d-1}+1$ (briefly f_{1}), then the above identity implies that

$$
\begin{equation*}
T_{n+1}=f_{1} \cdot T_{n}+A_{d+1} \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k+2}+c \cdot A_{d} \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k} . \tag{2}
\end{equation*}
$$

From this identity, we can also deduce

$$
T_{n}=f_{1} \cdot T_{n-1}+A_{d+1} \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+2}+c \cdot A_{d} \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k}
$$

and

$$
T_{n-1}=f_{1} \cdot T_{n-2}+A_{d+1} \sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k+2}+c \cdot A_{d} \sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k}
$$

They are equivalent to

$$
\begin{equation*}
\sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+2}=\frac{1}{A_{d+1}}\left(T_{n}-f_{1} \cdot T_{n-1}-c \cdot A_{d} \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k+2}=\frac{1}{A_{d+1}}\left(T_{n-1}-f_{1} \cdot T_{n-2}-c \cdot A_{d} \sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k}\right) \tag{4}
\end{equation*}
$$

On the other hand, from the lemma we also deduce $X_{d k+d+2}=A_{d+2} \cdot X_{d k+2}+\left(b \cdot A_{d+1}+\right.$ $\left.c \cdot A_{d}\right) \cdot X_{d k+1}+c \cdot A_{d+1} \cdot X_{d k}$. Then we have

$$
\begin{aligned}
& \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k+2} \\
& \quad=X_{2}+X_{d n-d+2}+\sum_{k=1}^{n-2}\binom{n-1}{k} \cdot X_{d k+2}
\end{aligned}
$$

$$
\begin{align*}
= & X_{2}+X_{d n-d+2}+\sum_{k=1}^{n-2}\left(\binom{n-2}{k}+\binom{n-2}{k-1}\right) \cdot X_{d k+2} \\
= & \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+d+2}+\sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+2} \\
= & \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot\left(A_{d+2} \cdot X_{d k+2}+\left(b \cdot A_{d+1}+c \cdot A_{d}\right) \cdot X_{d k+1}+c \cdot A_{d+1} \cdot X_{d k}\right) \\
& +\sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+2} \\
= & \left(1+A_{d+2}\right) \cdot \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+2}+c \cdot A_{d+1} \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k} \\
& +\left(b \cdot A_{d+1}+c \cdot A_{d}\right) \cdot T_{n-1} . \tag{5}
\end{align*}
$$

Similarly, applying formula (1) and identity (3), we have

$$
\begin{align*}
& \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k} \\
& =X_{0}+X_{d n-d}+\sum_{k=1}^{n-2}\binom{n-1}{k} \cdot X_{d k} \\
& =X_{0}+X_{d n-d}+\sum_{k=1}^{n-2}\left(\binom{n-2}{k}+\binom{n-2}{k-1}\right) \cdot X_{d k} \\
& =\sum_{k=0}^{n-2}\binom{n-2}{k} \cdot\left(A_{d} \cdot X_{d k+2}+\left(b \cdot A_{d-1}+c \cdot A_{d-2}\right) \cdot X_{d k+1}+c \cdot A_{d-1} \cdot X_{d k}\right) \\
& +\sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k} \\
& =A_{d} \cdot \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+2}+\left(1+c \cdot A_{d-1}\right) \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k} \\
& +\left(b \cdot A_{d-1}+c \cdot A_{d-2}\right) \cdot T_{n-1} \\
& =\frac{A_{d}}{A_{d+1}}\left(T_{n}-\left(b \cdot A_{d}+c \cdot A_{d-1}+1\right) \cdot T_{n-1}-c \cdot A_{d} \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k}\right) \\
& +\left(1+c \cdot A_{d-1}\right) \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k} \\
& +\left(b \cdot A_{d-1}+c \cdot A_{d-2}\right) \cdot T_{n-1} \\
& =\frac{A_{d}}{A_{d+1}} \cdot T_{n}+\left(b \cdot A_{d-1}+c \cdot A_{d-2}-\frac{b \cdot A_{d}^{2}+c \cdot A_{d-1} A_{d}+A_{d}}{A_{d+1}}\right) \cdot T_{n-1} \\
& +\left(1+c \cdot A_{d-1}-\frac{c \cdot A_{d}^{2}}{A_{d+1}}\right) \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k} . \tag{6}
\end{align*}
$$

For convenience, we let

$$
\begin{aligned}
& f_{2}=1+A_{d+2}, \quad f_{3}=b \cdot A_{d+1}+c \cdot A_{d}, \quad f_{4}=1+c \cdot A_{d-1}-\frac{c \cdot A_{d}^{2}}{A_{d+1}}, \\
& f_{5}=\frac{A_{d}}{A_{d+1}}, \quad f_{6}=b \cdot A_{d-1}+c \cdot A_{d-2}-\frac{b \cdot A_{d}^{2}+c \cdot A_{d-1} A_{d}+A_{d}}{A_{d+1}},
\end{aligned}
$$

then identities (5) and (6) imply that

$$
\begin{align*}
& \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k+2} \\
& \quad=f_{2} \cdot \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+2}+c \cdot A_{d+1} \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k}+f_{3} \cdot T_{n-1}, \tag{7}\\
& \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k}=f_{4} \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k}+f_{5} T_{n}+f_{6} T_{n-1} . \tag{8}
\end{align*}
$$

Combining (2), (3), (7) and (8), we deduce

$$
\begin{align*}
T_{n+1}= & \left(f_{1}+f_{2}+c \cdot A_{d} f_{5}\right) \cdot T_{n}+\left(f_{3} A_{d+1}-f_{1} f_{2}+c \cdot A_{d} f_{6}\right) \cdot T_{n-1} \\
& +\left(c \cdot A_{d+1}^{2}-c \cdot A_{d} f_{2}+c \cdot A_{d} f_{4}\right) \cdot \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k} . \tag{9}
\end{align*}
$$

Applying formula (1), we deduce

$$
\begin{equation*}
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}=\binom{n-2}{k}+\binom{n-2}{k-1}+\binom{n-1}{k-1} . \tag{10}
\end{equation*}
$$

From this and identities (3) and (4), note that $X_{d k+d}=A_{d} \cdot X_{d k+2}+\left(b \cdot A_{d-1}+c \cdot A_{d-2}\right)$. $X_{d k+1}+c \cdot A_{d-1} \cdot X_{d k}$, we have

$$
\begin{aligned}
& \sum_{k=0}^{n-1}\binom{n-1}{k} \cdot X_{d k} \\
&= X_{0}+X_{d n-d}+\binom{n-1}{n-2} \cdot X_{d n-2 d}+\sum_{k=1}^{n-3}\binom{n-1}{k} \cdot X_{d k} \\
&= X_{0}+X_{d n-d}+(n-1) \cdot X_{d n-2 d}+\sum_{k=1}^{n-3}\left(\binom{n-3}{k}+\binom{n-3}{k-1}+\binom{n-2}{k-1}\right) \cdot X_{d k} \\
&= X_{0}+X_{d n-d}+(n-1) \cdot X_{d n-2 d}+\sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k}-X_{0} \\
& \quad+\sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k+d}-X_{d n-2 d}+\sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+d}-(n-2) \cdot X_{d n-2 d}-X_{d n-d} \\
&= \sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k}+\sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k+d}+\sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+d}
\end{aligned}
$$

$$
\begin{align*}
= & A_{d} \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k+2}+A_{d} \sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k+2}+c \cdot A_{d-1} \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k} \\
& +\left(c \cdot A_{d-1}+1\right) \sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k}+\left(b \cdot A_{d-1}+c \cdot A_{d-2}\right) \cdot\left(T_{n-1}+T_{n-2}\right) \\
= & \frac{A_{d}}{A_{d+1}} T_{n}+\left(b \cdot A_{d-1}+c \cdot A_{d-2}-\frac{b \cdot A_{d}^{2}+c \cdot A_{d-1} A_{d}}{A_{d+1}}\right) \cdot T_{n-1} \\
& +\left(b \cdot A_{d-1}+c \cdot A_{d-2}-\frac{b \cdot A_{d}^{2}+c \cdot A_{d-1} A_{d}+A_{d}}{A_{d+1}}\right) \cdot T_{n-2} \\
& +\left(c \cdot A_{d-1}-\frac{c \cdot A_{d}^{2}}{A_{d+1}}\right) \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k} \\
& +\left(c \cdot A_{d-1}+1-\frac{c \cdot A_{d}^{2}}{A_{d+1}}\right) \sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k} \\
= & f_{5} T_{n}+\left(f_{5}+f_{6}\right) T_{n-1}+f_{6} T_{n-2} \\
& +\left(f_{4}-1\right) \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k}+f_{4} \sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k} . \tag{11}
\end{align*}
$$

Combining (2), (3), (7) and (11), we deduce

$$
\begin{align*}
T_{n+1}= & \left(f_{1}+f_{2}+c \cdot A_{d} f_{5}\right) \cdot T_{n}+\left(f_{3} A_{d+1}-f_{1} f_{2}+c \cdot A_{d}\left(f_{5}+f_{6}\right)\right) \cdot T_{n-1}+c \cdot A_{d} f_{6} \cdot T_{n-2} \\
& +c\left(A_{d+1}-A_{d} f_{2}+A_{d} f_{4}-A_{d}\right) \cdot \sum_{k=0}^{n-2}\binom{n-2}{k} \cdot X_{d k} \\
& +c \cdot A_{d} f_{4} \cdot \sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k} . \tag{12}
\end{align*}
$$

From identity (9) we can also deduce

$$
\begin{align*}
T_{n}= & \left(f_{1}+f_{2}+c \cdot A_{d} f_{5}\right) \cdot T_{n-1}+\left(f_{3} A_{d+1}-f_{1} f_{2}+c \cdot A_{d} f_{6}\right) \cdot T_{n-2} \\
& +\left(c \cdot A_{d+1}^{2}-c \cdot A_{d} f_{2}+c \cdot A_{d} f_{4}\right) \cdot \sum_{k=0}^{n-3}\binom{n-3}{k} \cdot X_{d k} . \tag{13}
\end{align*}
$$

For convenience, we let

$$
\begin{aligned}
& g_{1}=f_{1}+f_{2}+c \cdot A_{d} f_{5}, \quad g_{2}=f_{3} A_{d+1}-f_{1} f_{2}+c \cdot A_{d} f_{6}, \\
& g_{3}=c \cdot A_{d+1}^{2}-c \cdot A_{d} f_{2}+c \cdot A_{d} f_{4}, \quad g_{4}=f_{3} A_{d+1}-f_{1} f_{2}+c \cdot A_{d}\left(f_{5}+f_{6}\right), \\
& g_{5}=c \cdot A_{d} f_{6}, \quad g_{6}=c \cdot\left(A_{d+1}-A_{d} f_{2}+A_{d} f_{4}-A_{d}\right), \quad g_{7}=c \cdot A_{d} f_{4} .
\end{aligned}
$$

Inserting (9) and (13) into (12), we deduce

$$
\begin{equation*}
T_{n+1}=\frac{g_{1} g_{3}-g_{1} g_{6}+g_{7}}{g_{3}-g_{6}} \cdot T_{n}+\frac{g_{3} g_{4}-g_{2} g_{6}-g_{1} g_{7}}{g_{3}-g_{6}} \cdot T_{n-1}+\frac{g_{3} g_{5}-g_{2} g_{7}}{g_{3}-g_{6}} \cdot T_{n-2} \tag{14}
\end{equation*}
$$

This completes the proof of our theorem.

Remark In fact, using the above formulas, we can also obtain the recurrence formula of the Smarandache-Pascal derived sequence $\left\{T_{n}\right\}$ of $\left\{u_{n}\right\}$, where $\left\{u_{n}\right\}$ denotes the m th-order linear recursive sequences as follows:

$$
u_{n}=a_{1} u_{n-1}+a_{2} u_{n-2}+\cdots+a_{m-1} u_{n-m+1}+a_{m} u_{n-m},
$$

with initial values $u_{i} \in \mathbb{N}$ for $n>m$ and $0 \leq i<m$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ZW obtained the theorems and completed the proof. JL and HZ corrected and improved the final version. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R. China. ${ }^{2}$ College of Science, Xi'an University of Technology, Xi'an, Shaanxi, P.R. China.

Acknowledgements

The authors express their gratitude to the referee for very helpful and detailed comments. This work is supported by the N.S.F. $(11071194,11001218)$ of P.R. China and the G.I.C.F. (YZZ12062) of NWU.

Received: 8 August 2013 Accepted: 29 August 2013 Published: 07 Nov 2013

References

1. Smarandache, F: Only Problems, Not Solutions. Xiquan Publishing House, Chicago (1993)
2. Murthy, A, Ashbacher, C: Generalized Partitions and New Ideas on Number Theory and Smarandache Sequences. Hexis, Phoenix (2005)
3. Li, X, Han, D: On the Smarandache-Pascal derived sequences and some of their conjectures. Adv. Differ. Equ. 2013, 240 (2013)
4. Ma, R, Zhang, W: Several identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q. 45, 164-170 (2007)
5. Yi, Y, Zhang, W: Some identities involving the Fibonacci polynomials. Fibonacci Q. 40, 314-318 (2002)
6. Wang, T, Zhang, W: Some identities involving Fibonacci, Lucas polynomials and their applications. Bull. Math. Soc. Sci. Math. Roum. 55, 95-103 (2012)
7. Riordan, J: Combinatorial Identities. Wiley, New York (1968)
```
10.1186/1687-1847-2013-284
Cite this article as: Wu et al.: On the Smarandache-Pascal derived sequences of generalized Tribonacci numbers.
Advances in Difference Equations 2013, 2013:284
```


Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```

