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Abstract
In this paper, a nonlinear differential equation x′ = A(t, x) + f (t) is considered. Some
new sufficient conditions for the existence of a bounded solution and an
asymptotically almost periodic solution, which generalize and improve the previously
known results, are established by using a dissipative-type condition for A(t, x). Finally,
an example is presented to illustrate the feasibility and effectiveness of the new
results.

1 Introduction
In recent years, almost periodic solutions and their various generalizations have attracted
the attention of many researchers (see [–] and the references therein). The existence
of a bounded solution and an asymptotically almost periodic solution are two important
properties which have a close relation to the applications of neural networks, epidemiol-
ogy, etc., so they have been widely studied. For example, Medvedev [] gave a sufficient
condition to guarantee the existence of a bounded solution of the following equation:

x′ = A(t,x) + f (t), (.)

whereA(t,x) ∈ C(R×R
n,Rn), f (t) ∈ C(R,Rn) andR = (–∞, +∞),Rn denotes an Euclidean

n-space, for x ∈ R
n, ‖x‖ is any convenient norm of x. Using this result, he also proved the

existence of periodic and almost periodic solutions when A(t,x) and f (t) are periodic or
almost periodic in t uniformly for x in a bounded subset of Rn. Shigeo and Masato []
extended the existence result in [] by using a dissipative-type condition forA(t,x). Thanh
and Nguyen Truong [] considered the following difference equation:

x(n + ) =Ax(n) + f (n), n ∈N, (.)

where N is a natural number and A is a bounded linear operator on a Banach space, the
sequences {x(n)}n∈N are totally ergodic, σ� := σ (A) ∩ � is countable and the sequence
{f (n)}n∈N is asymptotically almost periodic, then the sequence {x(n)}n∈N is asymptotically
almost periodic. As an application, they studied a similar problem for an evolution equa-
tion of the form

x′ = A(t)x + f (t), t ∈R
+, (.)
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whereR+ = [,+∞) and A(t) is a linear operator on a Banach space, which is periodic, and
f (t) is asymptotically almost periodic. They showed a bounded mild solution x is asymp-
totically almost periodic.
Motivated by the aforementioned discussion, in this paper, we consider the following

system:

x′ = A(t,x) + f (t), (.)

where A(t,x) ∈ C(R+ × R
n,Rn) and f (t) ∈ C(R+,Rn). By employing the dissipative-type

condition for A(t,x), when A(t,x) and f (t) are asymptotically almost periodic functions,
we present some new criteria ensuring the existence of a bounded solution and an asymp-
totically almost periodic solution of Eq. (.). The remaining part is organized as follows.
In the next section, we introduce some definitions and lemmas. In Section , we obtain
two theories, which guarantee the existence of a bounded solution and an asymptotically
almost solution of Eq. (.). In Section , a numerical simulation is carried out to illustrate
the main results.

2 Preliminaries
Firstly, to establish our main results, it is necessary to make the following assumptions:

(C) f (t) ∈ C(R+;Rn) and

∥∥f (t) +A(t, )
∥∥ ≤ N (for all t ∈R

+),
where N is a positive constant;

(C) p(t) ∈ C(R+,R). Suppose that there exist positive constants δ, γ , T such that

p(t) ≤ –δ
(
t ∈ [,T]

)
and

lim
t→+∞


t – s

∫ t

s
p(σ )dσ = –γ (uniformly for s≥ T).

And for all (t,x), (t, y) ∈ R
+ ×R

n,

[
x – y,A(t,x) –A(t, y)

] ≤ p(t)‖x – y‖,

where [ , ] is defined as follows (see Definition .).

We now give some definitions which can be found in [] and [].

Definition . If for any ε > , there exists a positive number L(ε) such that any interval
of length L(ε) contains a τ for which

∥∥f (t + τ ) – f (t)
∥∥ ≤ ε

for all t ∈ R, then f (t) is said to be an almost periodic function.
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Definition . If for any ε >  and any compact set S inR
n, there exists a positive number

L(ε,S) such that any interval of length L(ε,S) contains a τ for which

∥∥A(t + τ ,x) –A(t,x)
∥∥ ≤ ε

for all t ∈R and all x ∈ S, thenA(t,x) is said to be almost periodic in t uniformly for x ∈R
n.

Definition . If f ∈ C(R+,R) and f (t) = g(t) +α(t) in R
+, g(t) is an almost periodic func-

tion in R and α(t) is continuous in R
+, limt→+∞α(t) = , then f (t) is called an asymptoti-

cally almost periodic function on R
+.

Definition . If A(t,x) ∈ C(R+ × R
n,Rn) and A(t,x) = B(t,x) + β(t,x) in R

+ × R
n, and

B(t,x) is an almost periodic function in t uniformly on x ∈R
n and β(t,x) is continuous in

R
+ ×R

n, limt→+∞β(t,x) =  uniformly on x ∈H ⊂ 
, where 
 is an open set onR
n andH

is a compact set, then A(t,x) is said to be an asymptotically almost periodic function in t.

Definition . Functional [ , ] :Rn ×R
n –→R:

[x, y] = lim
h→+

h–
(‖x + hy‖ – ‖x‖).

The following lemma on the functional [ , ] is well known (see []).

Lemma. [] Let x, y and z be inRn.Then the functional [ , ] has the following properties:
() [x, y] = infh> h–(‖x + hy‖ – ‖x‖);
() |[x, y]| ≤ ‖y‖;
() [x, y + z] ≤ [x, y] + [x, z];
() Let u be a function from a real interval J into Rn such that u′(t) exists for an interior

point of J . Then D+‖u(t)‖ exists and

D+
∥∥u(t)∥∥ =

[
u(t),u′(t)

]
,

where D+‖u(t)‖ denotes the right derivative of ‖u(t)‖ at t.

Lemma . f (t) ∈ C(R+,Rn) is an asymptotically almost periodic function if and only if
for any ε > , there exist positive numbers L(ε) and T(ε) such that any interval of length
L(ε) contains an ω such that when t ≥ T(ε),

∥∥f (t +ω) – f (t)
∥∥ < ε.

Lemma . [] Suppose that (C) is satisfied. Let u(t) and v(t) be solutions of (.) on an
interval [a,b). Then

∥∥u(t) – v(t)
∥∥ ≤ ∥∥u(a) – v(a)

∥∥e∫ t
a p(σ )dσ

for all t ∈ [a,b).
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In order to obtain our main results, we should prove the following lemma.

Lemma . Suppose that (C) is satisfied. Then

∫ t

T
p(σ )dσ –→ –∞ as t –→ +∞

and

sup

{∫ t

T
e
∫ t
s p(σ )dσ ds; t ≥ T

}
< +∞.

Proof It follows from (C) that there exists a T > T such that

∣∣∣∣
∫ t
T

p(σ )dσ

t – T
+ γ

∣∣∣∣ < γ


(t ≥ T),

then

∫ t

T
p(σ )dσ < –

γ


(t – T) for all t ≥ T.

This means that

∫ t

T
p(σ )dσ ≤ –

γ


(t – T) –→ –∞ as t → +∞.

Since

∫ t

s
p(σ )dσ ≤ –

γ


(t – s) for t > s ≥ T,

for each t > T, we have

∫ t

T
e
∫ t
s p(σ )dσ ds =

∫ T

T
e
∫ T
s p(σ )dσ e

∫ t
T

p(σ )dσ ds +
∫ t

T
e
∫ t
s p(σ )dσ ds

≤
∫ T

T
e
∫ T
s p(σ )dσ ds +

∫ t

T
e–

γ
 (t–s) ds

=
∫ T

T
e
∫ T
s p(σ )dσ ds +


γ

[
 – e–

γ
 (t–T)

]
.

Therefore,

∫ t

T
e
∫ t
s p(σ )dσ ds ≤ 

γ
+

∫ T

T
ep(T–s) ds

=

p

(
ep(T–T) – e

)
+

γ

≤ 
p

ep(T–T) +

γ
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for all t ≥ T and p= sup{|p(t)|; t ∈ [T,T]}. Then

sup

{∫ t

T
e
∫ t
s p(σ )dσ ; t ≥ T

}
< +∞.

This completes the proof. �

3 Existence of bounded solutions and asymptotically periodic solutions
In this section, it will be shown that, under certain conditions, the system (.) has a
bounded solution and an asymptotically periodic solution.

Theorem . Suppose that conditions (C), (C) are satisfied. Let r be defined as

r = �(r +N), (.)

where

� =max

{
, sup

T≤s≤t
e
∫ t
s p(σ )dσ , sup

T≤t

∫ t

T
e
∫ t
s p(σ )dσ ds

}
, (.)

and

r =
N
δ
. (.)

Then Eq. (.) has a bounded solution u(t) on R
+ such that ‖u(t)‖ ≤ r for t ∈ R

+. Further-
more, if v(t) is any solution of Eq. (.), then ‖u(t) – v(t)‖ →  as t → +∞.

Proof If A(t, ) �≡  for t ∈ R
+, we replace A(t,x) and f (t) by A(t,x) – A(t, ) and f (t) +

A(t, ), respectively. We assume, henceforth, that A(t, )≡  and ‖f (t)‖ ≤ N for all t ∈R
+

and fix a vector u ∈ R
n with ‖u‖ = r. For each positive integer n with n > T > 

n , we
consider the following Cauchy problem:

x′ = A(t,x) + f (t), x
(

n

)
= u. (c.p)

We find that the conditions (V)-(V) and (K)-(K) in [] can be satisfied by (C), (C) in
the present paper, then Corollary . in [] can now be applied to guarantee the (c.p) has
a unique solution un on [ n ,n]. We first prove that

∥∥un(t)∥∥ ≤ r for all t ∈
[

n
,T

]
.

In fact, otherwise there exists some t such that ‖un(t)‖ = r, where r is an arbitrary
number such that r > r. Let τ = sup{t ∈ [ n , t];‖un(t)‖ ≤ r}, by the continuity of un(t),
it follows easily that 

n < τ ≤ T. Then τ < T implies ‖un(τ )‖ = r, and by Lemma . and

http://www.advancesindifferenceequations.com/content/2013/1/28
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(C), we have

D+
∥∥un(τ )∥∥ =

[
un(τ ),u′

n(τ )
]

=
[
un(τ ),A

(
τ ,un(τ )

)
+ f (τ )

]
≤ [

un(τ ),A
(
τ ,un(τ )

)]
+

[
un(τ ), f (τ )

]
≤ p(τ )

∥∥un(τ )∥∥ +
∥∥f (τ )∥∥

≤ p(τ )r +N .

For each ε > , there exists an h >  such that

∥∥un(τ + h)
∥∥ ≤ ∥∥un(τ )∥∥ + h

(
p(τ )r +N + ε

)
= r + h

(
p(τ )r +N + ε

)
for  < h ≤ h. Since r > r = N

δ
, p(τ )r ≤ –δr < –N , p(τ )r + N < . Thus, for ε with

 < ε < –(p(τ )r +N), there exists a sufficiently small h >  such that ‖un(τ + h)‖ < r. This
contradicts the definition of τ . Then ‖un(t)‖ ≤ r for all t ∈ [ n ,T].
On the other hand, using the following differential inequality:

D+
∥∥un(t)∥∥ ≤ p(t)

∥∥un(t)∥∥ +
∥∥f (t)∥∥ for t ∈ [T,n],

we have

∥∥un(t)∥∥ ≤ ∥∥un(T)
∥∥e∫ t

T
p(σ )dσ +

∫ t

T
Ne

∫ t
s p(σ )dσ ds

≤ �(r +N) = r.

It thus follows that ‖un(t)‖ ≤ r for all t ∈ [ n ,n]. Lemma . in [] can now be applied to
guarantee the existence on (,+∞) of a bounded solution u(t) of Eq. (.). By the conti-
nuity of u(t), u(t) is a bounded solution on R

+ which also satisfies ‖u(t)‖ ≤ r. If v(t) is any
solution of Eq. (.) on R

+, by Lemma ., we have

∥∥u(t) – v(t)
∥∥ ≤ ∥∥u() – v()

∥∥e∫ t
 p(σ )dσ

=
∥∥u() – v()

∥∥e∫ T
 p(σ )dσ · e

∫ t
T

p(σ )dσ .

By Lemma ., we obtain e
∫ t
T

p(σ )dσ → , when t → +∞,
∫ t
T

p(σ )dσ → –∞, and then
‖u(t) – v(t)‖ →  as t → +∞. This completes the proof. �

Theorem . Suppose that A(t,x) is asymptotically almost periodic in t uniformly for x ∈
Sr(), where r is a positive number defined by Eq. (.) and Sr() = {x ∈ R

n;‖x‖ ≤ r}, and
f (t) is an asymptotically almost periodic function. Suppose, furthermore, that the condition
(C) is satisfied. Then Eq. (.) has an asymptotically almost periodic solution on R

+.

Proof First, we prove that f (t) is bounded. f (t) = g(t) + α(t) in R
+, and g(t) is an almost

periodic function in R. For any ε ≤ , there is an l(ε) > , when t ∈ [, l(ε)], there is anM >
, ‖g(t)‖ ≤ M. For any t ∈ R, choose τ ∈ [–t, –t + l(ε)], then t + τ ∈ [, l(ε)], ‖g(t + τ )‖ <M
and ‖g(t + τ ) – g(t)‖ < , so for any t, ‖g(t)‖ <M + . While α(t) →  (t → ∞), we have a
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positiveN >  such that ‖f (t)‖ <N , then the condition (C) is satisfied. Conditions (C) and
(C) are satisfied, let u(t) be a bounded solution of (.) on R

+ obtained in Theorem ..
Note that ‖u(t)‖ ≤ r for all t ∈R

+, where r is a number defined by Eq. (.).
Notice that B(t,x) + g(t) is also an almost periodic function in t uniformly for x ∈ Sr().

For each ε > , there exist a positive number t(ε,Sr()) and a positive number L(ε,Sr())
such that any interval of length L(ε,Sr()) contains an ω,

∥∥A(t +ω,x) –A(t,x) + f (t +ω) – f (t)
∥∥

≤ ∥∥B(t +ω,x) + g(t +ω) – B(t,x) – g(t)
∥∥

+
∥∥β(t +ω,x) – β(t,x)

∥∥ +
∥∥α(t +ω) – α(t)

∥∥
≤ ε for all t > t

(
ε,Sr()

)
and x ∈ Sr(). (.)

By Lemma ., (C) and Eq. (.), we have

D+
∥∥u(t +ω) – u(t)

∥∥
=

[
u(t +ω) – u(t),A

(
t +ω,u(t +ω)

)
+ f (t +ω) –

(
A

(
t,u(t)

)
+ f (t)

)]
≤ [

u(t +ω) – u(t),A
(
t,u(t +ω)

)
–A

(
t,u(t)

)]
+

∥∥A(
t +ω,u(t +ω)

)
–A

(
t,u(t +ω)

)
+ f (t +ω) – f (t)

∥∥
≤ p(t)

∥∥u(t +ω) – u(t)
∥∥ + ε (.)

for all t > t. Solving this differential inequality, we have

∥∥u(t +ω) – u(t)
∥∥ ≤ ∥∥u(t – η +ω) – u(t – η)

∥∥e∫ t
t–η p(σ )dσ + ε

∫ t

t–η

e
∫ t
s p(σ )dσ ds

≤ re
∫ t
t–η p(σ )dσ + ε

∫ t

t–η

e
∫ t
s p(σ )dσ ds, (.)

where η is a positive number to be chosen later appropriately, and t –η ≥ .We show that

K = sup

{∫ t

t–η

e
∫ t
s p(σ )dσ ds; t ≥ t, t – η ≥ 

}
(.)

is finite. In fact, this follows from the following estimates:

∫ t

t–η

e
∫ t
s p(σ )dσ ds≤

{
( + 

δ
)�, t ≥ T, t – η ≤ T;

�, t ≥ T, t – η ≥ T.
(.)

Let T > T be a number such that

∫ t

s
p(σ )dσ ≤ –

γ


(t – s) (t ≥ T, s≥ T) (.)

and

e–γT <
ε

�
.

We will show that ‖u(t +ω) – u(t)‖ ≤ Kε, where K is a positive constant independent of
ε and ω.

http://www.advancesindifferenceequations.com/content/2013/1/28
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Wemust estimate e
∫ t
t–η p(σ )dσ for t large enough.

Since e
∫ t
t–T

p(σ )dσ ≤ e–
γ
 (t–t+T) = e–γT (when t –T ≥ T), if t –η ≥ T, t –T ≥ t –η,

t ≥ T, t – T ≥ T, then

e
∫ t
t–η p(σ )dσ = e

∫ t–T
t–η p(σ )dσ e

∫ t
t–T

p(σ )dσ

≤ �e–γT .

When we choose η = T and t–T ≥ T, that is, t ≥ T +T, then, for any ε > , there
exists a positive number L(ε,Sr()) such that any interval of length L(ε,Sr()) contains an
ω, when t ≥ T =max{t(ε,Sr()), T + T}, η = T, K = γ +K ,

∥∥u(t +ω) – u(t)
∥∥ ≤ r · �e–γT + εK

≤ rε +Kε = (r +K)ε = Kε.

From Lemma ., u(t) is an asymptotically almost periodic solution of Eq. (.). This com-
pletes the proof. �

Remark . In [], employing the dissipative-type condition for A(t,x), the authors gave
some sufficient conditions to prove the existence of a bounded solution, a periodic or al-
most periodic solution of the equation x′ = A(t,x) + f (t). Extension of this result has been
obtained in one direction: from periodic and almost periodic to asymptotically almost pe-
riodic forcing. The equation can bemore widely used with asymptotically almost periodic
functions.

Remark . The condition (C) implies the following hypothesis.

(C′
) Suppose that there exist p(t) ∈ (R+,R) and positive constants δ, δ, T and T such

that

p(t) ≤ –δ
(
t ∈ [,T]

)
,

p(t) ≤ –δ
(
t ∈ [T, +∞]

)
.

And for all (t,x), (t, y) ∈ R
+ ×R

n,

[
x – y,A(t,x) –A(t, y)

] ≤ p(t)‖x – y‖.

We know that (C′
) can also be used to prove the lemmas in Section  and the theorems

in Section  leaving the conclusion unchanged. (C′
) as well as (C) yields the existence of a

bounded solution, and the process of the proof is similar to the proof before, and we need
not necessarily do it again.

4 The example
In this section, we give a numerical example to illustrate the conditions required in our
theorems. We construct the following differential equation:

x′ = –x(sin t + sin
√
t + ) + sin


( + t)

– (sin t + sin
√
t + ) + sin


( + t)

, (.)

http://www.advancesindifferenceequations.com/content/2013/1/28
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Figure 1 Trajectory graphs of the system (4.1) with initial value x(0) = –0.1. (a), (b) are the trajectory
graphs of the simulation time 0-150 and 150-300, respectively.

where A(t,x) = –x(sin t + sin
√
t +) + sin 

(+t) is an asymptotically almost periodic func-
tion in t ∈R

+ uniformly on x which belongs to a compact set and f (t) = –(sin t + sin
√
t +

) + sin 
(+t) is an asymptotically almost periodic function on R

+.
First,

∥∥f (t) +A(t, )
∥∥ =

∥∥∥∥–(sin t + sin
√
t + ) +  sin


(t + )

∥∥∥∥ ≤ ,

we know that (C) is satisfied.
On the other hand, there exists p(t) = – such that

[
x – y,A(t,x) –A(t, y)

]
= lim

h→+

‖(x – y) + h(A(t,x) –A(t, y))‖ – ‖x – y‖
h

= lim
h→+

‖(x – y) – h[(x – y)(sin t + sin
√
t + )]‖ – ‖x – y‖

h

= ‖x – y‖ lim
h→+

 – h(sin t + sin
√
t + ) – 

h
= –(sin t + sin

√
t + )‖x – y‖ ≤ –‖x – y‖ = p(t)‖x – y‖

and

lim
t→+∞


t – s

∫ t

s
p(σ )dσ = lim

t→+∞(–) · t – s
t – s

= – (uniformly for s ≥ T),

(C) is satisfied too.
Then, from Theorem . and Theorem ., we get a bounded solution and an asymp-

totically almost periodic solution on R
+ of Eq. (.) as follows:

x(t) = ecos t+
√

cos

√
t–t

(

∫ t


sin


(s + )

es–cos s–
√

cos

√
s ds + c

)
– . (.)

We show the semiflow in Figure .
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