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Abstract
In this paper, we show that if a C1-generic diffeomorphism has the weak limit
shadowing property on the chain recurrent set, then the diffemorphism satisfies
Axiom A and the no-cycle condition.
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1 Introduction
LetM be a closed C∞ manifold, and letDiff(M) be the space of diffeomorphisms ofM en-
dowed with the C-topology. Denote by d the distance onM induced from a Riemannian
metric ‖ · ‖ on the tangent bundle TM. Let f ∈ Diff(M) and � be a closed f -invariant set.
For δ > , a sequence of points {xi}bi=a (–∞ ≤ a < b ≤ ∞) inM is called a δ-pseudo orbit of
f if d(f (xi),xi+) < δ for all a≤ i ≤ b – .
We say that f has the shadowing property on � if for every ε > , there is δ >  such that

for any δ-pseudo orbit {xi}bi=a ⊂ � of f (–∞ ≤ a < b≤ ∞), there is a point y ∈M such that
d(f i(y),xi) < ε for all a≤ i≤ b–. In the dynamical systems, the shadowing theory is a very
useful notion. In fact, it dealswith the stability theorem (see []). For instance, Robinson []
proved that if a diffeomorphism f is structurally stable, then it has the shadowing property.
In [] Sakai showed that f belongs to the C-interior of the shadowing property if and only
if f is structurally stable. In this paper, we deal with another shadowing property, that is,
the weak limit shadowing property which was studied by [].
We say that f has theweak limit shadowing property on� (or� isweak limit shadowable

for f ) if there exists a δ >  with the following property: if a sequence {xi}i∈Z ⊂ � is a δ-
pseudo orbit of f , for which relations d(f (xi),xi+) →  as i→ +∞ and d(f –(xi+),xi) → 
as i → –∞ hold, then there is a point y ∈ M such that d(f i(y),xi) →  as i → ±∞. Note
that if f has the limit shadowing property, then f has the weak limit shadowing property.
But the converse is not true (see [, Example ]). Denote by P(f ) the set of periodic points
of f . Then P(f ) ⊂ �(f ) ⊂ R(f ), where �(f ) is the set of non-wandering points of f , and
R(f ) is the set of chain recurrent points of f . Note that if f satisfies Axiom A and the no-
cycle condition, then�(f ) =R(f ).We say that f has the s-limit shadowing property on� if
for any ε > , there is a δ >  such that for any δ-limit pseudo orbit ξ = {xi}i∈Z ⊂ �, there is
a point y ∈M such that d(f i(y),xi) < ε for all i ∈ Z, and d(f i(y),xi) →  as i → ±∞. Clearly,
the weak limit shadowing property is a weak notion of the s-limit shadowing property.We
say that � is hyperbolic if the tangent bundle T�M has a Df -invariant splitting Es ⊕ Eu
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and there exist constants C >  and  < λ <  such that

∥∥Dxf n|Esx
∥∥ ≤ Cλn and

∥∥Dxf –n|Eux
∥∥ ≤ Cλn

for all x ∈ � and n≥ . If� =M, then f is Anosov. Very recently, Sakai [] showed that if a
C-generic diffeomorphism f has the s-limit shadowing property onR(f ), then f satisfies
Axiom A and the no-cycle condition. The result is motivation for this study. The main
theorem of the paper is as follows.

Theorem . For C-generic f , if f has the weak limit shadowing property onR(f ), then f
satisfies Axiom A and the no-cycle condition.

2 Proof of Theorem 1.1
Let M be as before and f ∈ Diff(M). Let p ∈ P(f ) be a hyperbolic saddle with period
π (p) > . The stable manifold Ws(p) and the unstable manifold Wu(p) are defined as fol-
lows. It is well known that if p is a hyperbolic periodic point of f with a period k, then the
sets

Ws(p) =
{
x ∈M : f kn(x)→ p as n→ ∞}

and

Wu(p) =
{
x ∈M : f –kn(x)→ p as n→ ∞}

are C-injectively immersed submanifolds ofM. Let p,q ∈ P(f ) be saddles. Let P(f ) be the
set of periodic points of f . Denote by Of (p) the periodic f -orbit of p ∈ P(f ). We denote
p ∼ q if the intersections Ws(Of (p)) � Wu(Of (q)) �= ∅ and Wu(Of (p)) � Ws(Of (q)) �= ∅.
Then we know that if p ∼ q, then index(p) = index(q). Here index(p) is the dimension of
the stable manifold of p, that is, dimWs(p).

Proposition . There is a residual set G ⊂ Diff(M) such that for any f ∈ G , if f |R(f ) has
the weak limit shadowing property, then for any saddles p,q ∈ P(f ), index(p) = index(q).

To prove Proposition ., we need the following lemma.

Lemma . Let p,q ∈ P(f ) be saddles. If f has the weak limit shadowing property onR(f ),
then Ws(Of (p))∩Wu(Of (q)) �= ∅.

Proof Suppose that f has the weak limit shadowing property on R(f ). For any saddles
p,q ∈ P(f ), we show that Wu(Of (p)) ∩ Ws(Of (q)) �= ∅. For the sake of simplicity, we may
assume that f (p) = p and f (q) = q. Let δ >  be the number of the weak limit shadowing
property of f such that d(p,q) < δ. We construct δ-limit pseudo orbit ξ = {xi}i∈Z ⊂R(f ) as
follows. (i) x = p, (ii) x–i = f –i(p) for all i > , (iii) xi = f i(q) for all i ≥ . Then the δ-limit
pseudo orbit

ξ =
{
. . . ,x–,p = (x),q(= x),x, . . .

}
= {. . . ,p,p,q,q, . . .},

and it is clear that ξ ⊂ R(f ). Since f has the weak shadowing property on R(f ), there
is a point y ∈ M such that d(f i(y),xi) →  as i → ±∞. Then f i(y) → p as i → –∞ and
f +i(y) → q as i→ ∞. Hence, y ∈Ws(p) and f (y) ∈ Ws(q). Thus,Wu(p)∩Ws(q) �= ∅. �
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The following is called the Kupka-Smale theorem.

Lemma . There is a residual set G ⊂ Diff(M) such that for any f ∈ G , every periodic
point is hyperbolic, and the stable manifolds and the unstable manifolds of periodic points
are all transverse.

Proof of Proposition . Let f ∈ G, and let p,q ∈ P(f ) be saddles. Suppose that f has the
weak limit shadowing property on R(f ). Let δ >  be the number of the weak limit shad-
owing property of f such that d(p,q) < δ. Then we will drive a contradiction, we may
assume that index(p) �= index(q). Then we know that dimWs(p) + dimWu(q) < dimM or
dimWu(p) + dimWs(q) < dimM. In this proof, we consider that dimWs(p) + dimWu(q) <
dimM (the other case is similar). Since f ∈ G, Ws(p) ∩ Wu(q) = ∅. Since f has the weak
limit shadowing property onR(f ), by Lemma .,Ws(p)∩Wu(q) �= ∅. This is a contradic-
tion. �

Let p ∈ P(f ) be a hyperbolic saddle with a period π (p) > . Then there are the local stable
manifold Ws

ε (p) and the unstable manifold Wu
ε (p) of p for some ε = ε(p) > . It is easily

seen that if d(f n(x), f n(p)) ≤ ε for all n ≥ , then x ∈ Ws
ε (p), and if d(f n(x), f n(p)) ≤ ε for

all n ≤ , then x ∈ Wu
ε (p). The following lemma shows that if f has the s-limit shadowing

property on R(f ), then the numbers of sinks and sources are finite (see [, Lemma ]).
From the above facts, we show that if f has the weak limit shadowing property on R(f ),
then the numbers of sinks and sources are finite.

Lemma . Let f have the weak limit shadowing property on R(f ), and let δ >  be the
number of the weak limit shadowing property of f . For any saddle q ∈ P(f ), if p ∈ P(f ) is a
sink or a source, then d(p,q) ≥ δ.

Proof We will derive a contradiction. Suppose that q ∈ P(f ) is a saddle and p ∈ P(f ) is a
sink with d(p,q) < δ. For the sake of simplicity, wemay assume that f (p) = p, f (q) = q. Since
q is a saddle, there is ε(q) >  such that if for any x ∈M, d(f i(x), f i(q)) ≤ ε(q) as i→ ∞, then
x ∈Ws

ε(q)(q), and if x ∈M, d(f i(x), f i(q)) ≤ ε(q) as i → –∞, then x ∈Wu
ε(q)(q). Then wemay

assume that d(p,q) > ε(q). Then we construct a δ-limit pseudo orbit ξ = {xi}i∈Z ⊂ R(f ) as
follows. Put x–i = f –i(p) for i≥  and xi = f i(q) for i ≥ . Then ξ = {xi}i∈Z is clearly a δ-limit
pseudo orbit of f , and ξ = {xi}i∈Z ⊂ R(f ). Since f has the weak limit shadowing property
on R(f ), there is a point y ∈ M such that d(f i(y),xi) →  as i → ±∞. Since p is a sink,
d(f –i(y),x–i) = d(f –i(y),p) →  as i → ∞. Then y = p. Since d(f i(y),xi) = d(f i(y),q) → 
as i → ∞, there is k >  such that d(f k+i(y), f k+i(q)) = d(f k+i(y),q) ≤ ε(q) for i ≥ . Then
f k(y) ∈Ws

ε(q)(q). Since y = p, we know that d(p,q) ≤ ε(q). This is a contradiction. �

Let p be a periodic point of f , and let  < δ < .We say p has a δ-weak eigenvalue provided
Dpf π (p) has an eigenvalue λ such that ( – δ)π (p) < |λ| < ( + δ)π (p). We say that the periodic
point has a real spectrum if all of its eigenvalues are real and a simple spectrum if all of
its eigenvalues have multiplicity one. The following lemma will play a crucial role in our
proof.

Lemma . [, Lemma .] There is a residual set G ⊂Diff(M) such that for any f ∈ G,
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(a) for any η > , if for any C-neighborhood U (f ) of f , there exist g ∈ U (f ) and
pg ,qg ∈ P(g) with the same period such that d(pg ,qg) < η, then there exist p,q ∈ P(f )
with the same period such that d(p,q) < η;

(b) for any η > , if for any C-neighborhood U (f ) of f , there exist g ∈ U (f ) and pg ∈ P(g)
with an η-weak eigenvalue, then there exist p ∈ P(f ) with a η-weak eigenvalue;

(c) for any η > , if q ∈ P(f ) with an η-weak eigenvalue and a real spectrum, then there
exists p ∈ P(f ) with an η-weak eigenvalue with a simple real spectrum.

Lemma . [, Lemma .] There is a residual set G ⊂ Diff(M) such that for any f ∈ G,
for any η > , if for any C-neighborhoodU (f ) of f , there exist g ∈ U (f ) and pg ,qg ∈ P(g)with
the same period such that d(pg ,qg) < ηwith different indices, then there exist p,q ∈ P(f )with
the same period such that d(p,q) < η with different indices.

The following so-called Franks lemma will play an essential role in our proof.

Lemma . Let U (f ) be any given C-neighborhood of f . Then there exists ε >  and a
C-neighborhood U(f ) ⊂ U (f ) of f such that for given g ∈ U(f ), a finite set {x,x, . . . ,xN },
a neighborhood U of {x,x, . . . ,xN } and linear maps Li : TxiM → Tg(xi)M satisfying ‖Li –
Dxig‖ ≤ ε for all  ≤ i≤ N , there exists g ′ ∈ U (f ) such that g ′(x) = g(x) if x ∈ {x,x, . . . ,xN }∪
(M \U) and Dxig ′ = Li for all  ≤ i≤ N .

If p ∈ P(f ) is hyperbolic, then for any g ∈ U (f ), there is a unique hyperbolic periodic
point pg ∈ P(g) nearby p such that π (pg) = π (p) and index(pg) = index(p), where index =
dimWs(p). Such a pg is called the continuation of p.

Lemma . There is a residual set G ⊂Diff(M) such that for any f ∈ G, if f has the weak
limit shadowing property onR(f ), then there is η >  such that f has no η-weak eigenvalue.

Proof Let f ∈ G = G ∩ G. To derive a contradiction, we may assume that for any η > ,
there is a hyperbolic periodic point qg of g (C-nearby f ) such that qg has an η-weak eigen-
value and a simple real spectrum. Let δ >  be the number of the weak limit shadowing
property of f such that  < η < δ/. For the sake of simplicity, we assume that qg is a fixed
point. By Lemma ., there is h C-close to g and h C-nearby f such that qh has  as an
eigenvalue. By Lemma . and as in the proof of [, Lemma .], we can construct an hl

(l > )-invariant small arc Iqh of hl containing qh such that d(ph, rh) < η, where ph, rh are
the end points of Iqh , hl(ph) = ph, hl(rh) = rh and ph, rh are hyperbolic saddles and differ-
ent indices. Since f ∈ G, there exist p, r ∈ P(f ) with the same period such that d(p, r) < η

with different indices. Since f has the weak limit shadowing property on R(f ), and by
Lemma ., p, r ∈ P(f ) are saddles. Since d(p, r) < δ, by Proposition ., we know that
index(p) = index(r). But, since index(p) �= index(r), this is a contradiction. �

Denote by F (M) the C-interior of the set of diffeomorphisms of M whose periodic
points are all hyperbolic. In [], Hayashi showed that if f ∈F (M), then f satisfies AxiomA
and the no-cycle condition. To prove Theorem ., it is enough to show f ∈F (M).

End of proof of Theorem . Let f ∈ G, and let f have the weak limit shadowing property
on R(f ). If not, then f /∈ F (M). There is g C-closed to f and a non-hyperbolic periodic
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point pg such that the point pg has an η/ weak eigenvalue. Since f ∈ G, there is p ∈ P(f )
such that p has an η-weak eigenvalue. By Lemma ., this is a contradiction. �
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