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Abstract
In this study, we present a new procedure for the numerical solution of boundary
value problems. This approach is mainly founded on the Fibonacci polynomial
expansions, the so-called pseudospectral methods with the collocation method. The
applicability and effectiveness of our proposed approach is shown by some
illustrative examples. Then, the results indicate that this method is very effective and
highly promising for linear differential equations defined on any subinterval of the
real domain.
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1 Introduction
A lot of applications, which are of fundamental interest in numerical analysis, have been
made on the expansion of an analytic function f (x) in a series of the form

f (x) =
∞∑
k=

akϕk(x), (.)

where the set {ϕk(x)} is a special trial polynomial (or function) basis and ak ’s are constant
coefficients [–]. One of the main utilization areas of the expansions with different basis
can be seen in the solution methods for the differential equations. The idea of finding the
solution of a differential equation in form (.) goes back, at least, to Lanczos () [, ].
Then, three main techniques have been evolved from that idea, and each of these tech-
niques has its own advantages in the implementation (details and applications of those
can be seen in [–]). Here, we deal only with the pseudospectral (collocation) type
method. In the pseudospectral method, the solution of a differential equation is expressed
as a linear combination of the polynomials in the basis set. Therefore, the coefficients in
the combination are determined by the use of certain discrete points called collocation
points. Thus, the accuracy of the approximation and the efficiency of its implementation
are closely related to the choice of the grid points and the basis set. Determination of an
appropriate set of basis should be kept in view of some rules. The most common one of
those rules is that the geometry or the field of applicability determines the basis set. Then,
collocation points are chosen according to the basis (for details see []). For example,
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the well-known basis functions of the Fourier expansion {, cos(nx), sin(nx), . . .} are all pe-
riodic. Thus, Fourier expansion is good for the solutions of the problems with periodic
behaviors [–]. On the other hand, since the Chebyshev polynomials of the first kind
and Legendre polynomials are orthogonal in the interval [–, ], non-periodic problems
on the range of [–, ] can be solved by the collocation method, the matrix method or
the Tau method [–]. However, when the problem is posed on an unbounded interval,
alternative strategies are developed for the solution, such as domain truncation [] and
choosing a basis functions intrinsic to an infinite interval as Sinc [], Hermite [], and
exponential Chebyshev []) or to semi-infinite interval as rational Chebyshev [–],
and Laguerre [].
In this work, our aim is to develop a new type of collocation method for the boundary

value problems (BVPs) on any subinterval of the real axis requiring no domain translation.
For this reason, Fibonacci polynomials that have, so far, never been used as a basis for
the collocation are considered. Even though this new approach is mainly intended for the
BVPs, it can be successfully implemented on the initial value problems (IVPs).
Byrd [] has defined the set {ϕk(t)} (k = , , . . .) as Fibonacci polynomials that satisfy

the recurrence relation

ϕk+(t) – tϕk+(t) – ϕk(t) = , –∞ < t < ∞ (.)

with the initial conditions

ϕ(t) = , ϕ(t) = . (.)

He has also noted that in the special case of t = 
 , the relation above with the initial con-

ditions reduces to the recurrence equation of Fibonacci numbers denoted by ϕk(  ) or Fk .
However, equation (.) with conditions (.) has a wide use as the relation of Pell polyno-
mials []. Therefore, the well-known and common recurrence relation for the Fibonacci
polynomials {Fk(x)} (k = , , . . .) is given []

Fk+(x) – xFk+(x) – Fk(x) = 

with the initial conditions F(x) = , F(x) = . It is also noteworthy that the polynomial
ϕk(t) turns into Fk(x) when the variable change of t = x

 is used in equation (.).
Byrd [] has investigated some fundamental properties and certain applications for the

expansion of an analytic function in a series of basic set of Fibonacci polynomials. More-
over, many other important properties of those polynomials are also studied by Falcon and
Plaza in [, ] and references therein.

2 Properties of the Fibonacci polynomials
The k-Fibonacci numbers and polynomials have been defined as follows:

Definition  [] For any positive real number k, the k-Fibonacci sequence is defined
recurrently by

Fk,n+ = kFk,n + Fk,n–, n ≥  (.)
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with the initial conditions

Fk, = ; Fk, = .

Definition  [] If k is a real variable x in equation (.), then it is obvious that Fk,n = Fx,n.
Therefore, the corresponding Fibonacci polynomials are given by the following general
formula

Fn+(x) =

⎧⎪⎪⎨
⎪⎪⎩

, if n = ,

x, if n = ,

xFn(x) + Fn–(x), if n > ,

(.)

from which the first few Fibonacci polynomials can be deduced as

F(x) = ,

F(x) = x,

F(x) = x + ,

F(x) = x + x,

...

The next proposition indicates the relation between the derivatives of the Fibonacci
polynomials followed by the integral equation.

Proposition  [] The equality

Fn(x) =

n

[
F ′
n+(x) + F ′

n–(x)
]

(.)

holds for all natural numbers n. Thus, in view of (.), it is easy to verify the integral equa-
tion

∫ x


Fn(x)dx =


n

{
Fn+(x) + Fn–(x) – Fn+() – Fn–()

}
. (.)

If n is even, it can be seen that Fn+() = Fn–() =  and, for odd n’s, we write Fn+() =
Fn–() = .

Function approximation
Now, suppose that f (x) is a continuous function that can be expressed in terms of the
Fibonacci polynomials

f (x) =
∞∑
r=

arFr(x). (.)

Then, a truncated expansion of N Fibonacci polynomials can be written

f (x)∼=
N∑
r=

arFr(x) = F(x)A, (.)
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where the Fibonacci row vector F(x) and the Fibonacci coefficient column vector A are
given, respectively, by

F(x) =
[
F(x) F(x) · · · FN (x)

]
, (.)

A = [a a · · · aN ]T . (.)

Matrix relations of the derivatives of approximation
The kth order derivative of the function (.) can be written as

f (k)(x) =
∞∑
r=

a(k)r Fr(x).

When the infinite sum is truncated to N terms, we get the approximation

f (k)(x) ∼=
N∑
r=

a(k)r Fr(x) = F(x)A(k), k = , , . . . ,n, (.)

where a()r = ar , f ()(x) = f (x) and

A(k) =
[
a(k) a(k) · · · a(k)N

]
(.)

shows the coefficient vector of the polynomial approximation of kth order derivative.

Proposition  Let f (x) and kth order derivative be the functions given by (.) and (.),
respectively. Then, there exists a relation between the Fibonacci coefficient matrices as

A(k+) =DkA, k = , , . . . ,n, (.)

where D is N ×N operational matrix for the derivative defined by

D = [di,j] =

⎧⎨
⎩
i · sin (j–i)π

 , j > i,

, j ≤ i.
(.)

Proof By using the integral relation (.), the Fibonacci coefficients a(k)r and a(k+)r hold the
equality,

a(k)r =
a(k+)r–
r – 

+
a(k+)r+
r + 

. (.)

Therefore, it is easy to see the following recursive relations

a(k)r+ =
a(k+)r

r
+
a(k+)r+
r + 

,

–a(k)r+ = –
a(k+)r+
r + 

–
a(k+)r+
r + 

,
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a(k)r+ =
a(k+)r+
r + 

+
a(k+)r+
r + 

,

...

Then, summing the terms on both sides gives

a(k+)r

r
= a(k)r+ – a(k)r+ + a(k)r+ – a(k)r+ + · · ·

or, equivalently,

a(k+)r = r
∞∑
i=

(–)ia(k)r+i+, r = , , . . . ,N . (.)

Now, when we assume a(k)r =  for r > N , the system (.) can be transformed into the
matrix form,

A(k+) =DA(k), k = , , . . . ,n. (.)

Thus, using equality (.) allows us to write

A() =DA,

A() =DA() =DA,

A() =DA() =DA,

...

A(k) =DkA,

where A() =A. �

Corollary From equations (.) and (.), it is clear that the kth order derivative of the
function can be expressed in terms of the Fibonacci coefficients as follows

f (k)(x) = F(x)DkA, k = , , . . . ,n. (.)

3 Solution procedure for the ODE’s
Consider the general linear homogeneous differential equation of nth order,

n∑
k=

qk(x)y(k)(x) = g(x). (.)

To apply our proposed procedure to the problem, we assumed that the unknown function
y(x) and its derivatives have similar forms as given in (.). Then,we define the collocation
points so that

xi = a +
b – a
N – 

(i – ), i = , , . . . ,N ,a≤ xi ≤ b. (.)
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Substituting these points (.) into the problem (.) gives

n∑
k=

qk(xi)y(k)(xi) = g(xi), i = , , . . . ,N . (.)

The system (.) can be, alternatively, written in the matrix form

n∑
k=

QkY(k) =G, n≤ N , (.)

where

Qk =

⎡
⎢⎢⎢⎢⎣

Qk(x)  · · · 
 Qk(x) · · · 
...

...
. . .

...
  · · · Qk(xN )

⎤
⎥⎥⎥⎥⎦ and G =

[
g(x) g(x) · · · g(xN )

]T .

Therefore, kth order derivatives of the unknown function at the collocation points can be
written in the matrix form as

[
y(k)(xi)

]
= F(xi)DkA, i = , , . . . ,N

or, equivalently,

Y (k) =

⎡
⎢⎢⎢⎢⎣

y(k)(x)
y(k)(x)

...
y(k)(xN )

⎤
⎥⎥⎥⎥⎦ = FDkA. (.)

Consequently, substituting (.) in equation (.), yields the fundamental matrix equation
for problem (.),

n∑
k=

(
QkFDk)A =G, n≤ N , (.)

which corresponds to a system of (N) algebraic equations for the unknown Fibonacci co-
efficients ar , r = , , . . . ,N . In other words, when we denote the expression in the sum by
W = [wr,s] for r = , , . . . ,N and s = , , . . . ,N , we get

WA =G. (.)

Thus, the augmented matrix of equation (.) becomes

[W :G]. (.)

http://www.advancesindifferenceequations.com/content/2013/1/262
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When the initial or boundary conditions are considered to be

y(l)(cj) = λj,
j = , , . . . ,n – 
l = , , . . . ,n – 

,a≤ cj ≤ b, (.)

it is seen from the relation (.), that

Uj =
[
y(l)(cj)

]
= [λj], (.)

where

Uj = [uρ,σ ] = FcjD
lA and

Fcj =
[
F(cj) F(cj) · · · FN (cj)

]
.

(.)

Therefore, the augmented matrix of the specified conditions is

[Uj : λj] = [uj uj · · · ujN : λj]. (.)

Consequently, (.) together with (.) can be written in the new augmentedmatrix form

[
W∗ :G∗]. (.)

This form can also be achieved by replacing some rows of the matrix (.) by the rows
of (.) or adding those rows to the matrix (.), provided that det(W∗) �= . Finally, the
vector A (thereby vector of the coefficients ar) is determined by applying some numerical
methods designed especially to solve the system of linear equations. On the other hand,
when the singular case det(W∗) =  appears, the least square methods are inevitably avail-
able to reach the best possible approximation. Therefore, the approximated solution can
be obtained. This would be the Fibonacci series expansion of the solution to the problem
(.) with specified conditions.

4 Numerical results
In this part, three illustrative examples have been shown in order to clarify the findings of
the previous section. Then, the solutions ya(x) of the proposedmethod are compared with
the exact solutions ye(x) in the tables and in the corresponding figures. It is noted here that
the number of collocation points in the examples is indicated by the capital letter N .

Example  Consider the linear nonhomogeneous IVP [],

y′′(x) + xy′(x) – y(x) = x cosx –  sinx (.)

with the initial conditions

y() =  and y′() = 

for which the exact solution is ye(x) = sinx.
Table  shows the absolute errors of the proposed method for N =  and N = . The

approximation for N =  and the exact solution are also plotted in Figure .
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Table 1 Absolute errors of Example 1 at different points

x N = 7 N = 9

–1 0.361E–04 0.231E–06
–0.8 0.123E–05 0.229E–07
–0.6 0.232E–05 0.25E–08
–0.4 0.227E–05 0.43E–08
–0.2 0.462E–06 0.9E–09
0 0.305E–11 0.762E–09
0.2 0.462E–06 0.25E–08
0.4 0.227E–05 0.58E–08
0.6 0.232E–05 0.41E–08
0.8 0.123E–05 0.245E–07
1 0.361E–04 0.23E–06

Figure 1 The proposedmethod solution for
N = 6 and the exact solutions of Example 1.

Table 2 L∞ Errors of Example 2 for different N values

N Present method Haar wavelet based
algorithm [37]

B-spline wavelet
algorithm [38]

L∞ L∞ L∞
9 9.715E–05 - -
16 5.728E–07 2.9051E–04 -
32 3.454E–08 7.4812E–05 -
64 1.010E–08 1.8956E–05 2.5E–05

Example  Consider now a linear homogeneous BVP

–y′′ =
(
 – x

)
y (.)

with Neumann boundary conditions

y′() =  and y′() = –/e,

which is known to have the exact solution ye(x) = e–x .
Table  shows the comparison of the L∞ errors of the proposed approach, B-spline

wavelet based algorithm [] andHaar wavelet based algorithm []. The graphical repre-
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Figure 2 The proposedmethod solution for
N = 9 and exact solution of Example 2.

Table 3 L∞ Errors of Example 3

N Present method B-spline wavelet
algorithm [38]

L∞ L∞
8 2.58E–06 -
16 8.94E–09 -
32 4.04E–09 9.4E–05
64 2.09E–09 2.0E–05

sentation of the approximation ya with the exact solution ye is also presented in Figure .
It is very promising to note that although L∞ errors of the solutions to the problem (.)
for N =  in [, ] are given .E– and .E–, respectively, almost the same level
of error has been achieved by the Fibonacci approach as .E– only for N = .

Example  Consider a linear nonhomogeneous BVP

y′′(x) + y(x) = , x ∈ [, ] (.)

with boundary conditions

y′() = , y′() = sin(),

whose exact solution is ye(x) = sin(x). A comparison of L∞ errors of our approach and
B-spline wavelet algorithm [] has been shown in Table  for different values of N . The
exact and the approximate solutions of Example  for N =  are plotted in Figure .

5 Conclusion
In this study, our aim is to propose a novel matrix method, based on the Fibonacci polyno-
mials. Therefore, the operational matrices of derivative D and Fibonacci coefficient ma-
trix F are introduced in the main body of the study. The matrix D is computationally
very attractive, since it has few nonzeros above the main diagonal. Additionally, unlike the

http://www.advancesindifferenceequations.com/content/2013/1/262
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Figure 3 The proposedmethod solution for
N = 9 and exact solution of Example 3.

Chebyshev polynomial method, the Fibonacci approach does not require interval trans-
lation of the problem to an appropriate domain. Then, the reliability and efficiency of the
method are verified by some illustrative examples of the boundary value problems. When
the results are comparedwith some existingmethods, the proposedmethod demonstrates
its power in accuracy.
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