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Abstract

In this paper, we consider higher-order Frobenius-Euler polynomials, associated
with poly-Bernoulli polynomials, which are derived from polylogarithmic function.
These polynomials are called higher-order Frobenius-Euler and poly-Bernoulli
mixed-type polynomials. The purpose of this paper is to give various identities of
those polynomials arising from umbral calculus.

1 Introduction
For A € C with A #1, the Frobenius-Euler polynomials of order « (o € R) are defined by
the generating function to be

1-A
el -\
When x = 0, H,Sa)()\) = H,(f)(OM) are called the Frobenius-Euler numbers of order «. As

is well known, the Bernoulli polynomials of order « are defined by the generating function
to be

)e’“:ZHfI")(xM)% (see [1-5]). (1.1)
n=0

o]

( t1>ae"t=ZB§f‘)(x);—r; (see [6-8]). (12)

2
e [
n=0

When x = 0, IB%(,,O‘) = IB%S,‘Y)(x) is called the nth Bernoulli number of order «. In the special
case, a =1, IB%S) (%) = B,(x) is called the nth Bernoulli polynomial. When x = 0, B, = B,,(0)
is called the nth ordinary Bernoulli number. Finally, we recall that the Euler polynomials

of order « are given by

( 2 )aext:;Eﬁl")(x);—y; (see [9-13]). (1.3)

el +1

When x =0, Eﬁ,“) = EE,“)(O) is called the nth Euler number of order «. In the special case,
a =1, EP(x) = E,(x) is called the nth ordinary Euler polynomial. The classical polyloga-
rithmic function Li(x) is defined by

Li(x) = % (k € Z) (see [7]). (1.4)

M

I
—

n
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As is known, poly-Bernoulli polynomials are defined by the generating function to be

le(l —e t) > t
et 20: ; (cf [7]). (1.5)

Let C be the complex number field, and let F be the set of all formal power series in the
variable ¢ over C with

]—':{f(t):Z%tk‘akeC}. (1.6)
k=0 °

Now, we use the notation P = C[x]. In this paper, P* will be denoted by the vector space of
all linear functionals on P. Let us assume that (L|p(x)) be the action of the linear functional
L on the polynomial p(x), and we remind that the vector space operations on P* are defined
by (L + M|p(x)) = (L|p(x)) + (M|p(x)), (cL|p(x)) = c{L|p(x)), where c is a complex constant
in C. The formal power series

o0

=32 Ft eF (1.7)
k=0

defines a linear functional on P by setting
(f(t)|x") =a,, foralln>0 (see[l4,15]). (1.8)
From (1.7) and (1.8), we note that
(12" = m18, i (see [14, 15]), (1.9)
where §,,x is the Kronecker symbol.

Let us consider f;,(£) = Y oy <L‘xn) tX. Then we see that (f; (¢)|x") = (L|x"), and so L = f; ()
as linear functionals. The map L — f1(¢) is a vector space isomorphism from P* onto F.

Henceforth, F will denote both the algebra of formal power series in ¢ and the vector
space of all linear functionals on PP, and so an element f(¢) of 7 will be thought of as
both a formal power series and a linear functional (see [14]). We shall call F the umbral
algebra. The umbral calculus is the study of umbral algebra. The order o(f(£)) of a nonzero
power series f(t) is the smallest integer k, for which the coefficient of t* does not vanish.
A series f(¢) is called a delta series if o(f(t)) = 1, and an invertible series if o(f(£)) = 0. Let
f(¢),g(¢) € F. Then we have

{f(e@®)p()) = [fB)lg)p(x)) = (gOIf Op(x))  (see [14]). (1.10)

For f(t),g(t) € F with o(f(¢)) = 1, o(g(¢)) = 0, there exists a unique sequence S,(x)
(deg S,,(x) = n) such that (g(£)f (£)¥|S,(x)) = n!8,,x for n,k > 0. The sequence S, (x) is called
the Sheffer sequence for (g(¢),f(¢)), which is denoted by S,(x) ~ (g(£),f(2)) (see [14, 15]).
Let f(¢) € F and p(t) € P. Then we have

o0

0 k k
FO=Y[OR) 5 )= Y (@) (L11)
2 . ]

k=0
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From (1.11), we note that
P0) = (¢ 1p@)) = (11p® ().
By (1.12), we get

_dpW)
dxk

Fp(x) = p® (x) (see [14, 15]).

From (1.13), we easily derive the following equation

'p(x) =plx+y), (epx))=p©).

For p(x) € P, f(¢) € F, it is known that

{f@lxp()) = (3 (D) |p@)) = {f Olp(x))  (see [14]).

Let S, (x) ~ (g(¢),f(2)). Then we have

) £
— 0 -N"5 (y)— forallyeC,
) 20: O)y forally

where f (¢) is the compositional inverse of f(£) with f (f(t)) =t, and

f@)S,y(x) =nS,1(x) (see [14, 15]).

(112)

(1.13)

(1.14)

(1.15)

(1.16)

1.17)

The Stirling number of the second kind is defined by the generating function to be

m C "
(¢ 1) :m!ZSz(l,m)% (m € Zs).

l=m

For S,(x) ~ (g(t),t), it is well known that

R4
g(®)

Spnx) = <x )Sn(x) (n>0) (see [14, 15]).

Let S,(x) ~ (g(t),f (1)), ry(x) ~ (h(2), [(t)). Then we have

Sn (x) = Z Cn,mrm (?C),
m=0

where

1 [h(f®) 2 m
Cn,m = = l t
m’<g(f(t)) re)

xn> (see [14, 15]).

(1.18)

(1.19)

(1.20)

(1.21)

In this paper, we study higher-order Frobeniuns-Euler polynomials associated with poly-

Bernoulli polynomials, which are called higher-order Frobenius-Euler and poly-Beroulli

mixed-type polynomials. The purpose of this paper is to give various identities of those

polynomials arising from umbral calculus.
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2 Higher-order Frobenius-Euler polynomials, associated poly-Bernoulli
polynomials
Let us consider the polynomials T (x[1), called higher-order Frobenius-Euler and poly-

Bernoulli mixed-type polynomials, as follows:

Lix(1 —e) = ) "
(et_)\) p=m D DL Gl (21)

n=0

where A e Cwith A #1,r,k € Z.

When x = 0, TVP (1) = TY®(0]2) is called the nth higher-order Frobenius-Euler and
poly-Bernoulli mixed type number.

From (1.16) and (2.1), we note that

T (x] 1) ~ <grk(t) (1 _i”> Likl(l_—e_ef)’t) (2:2)

By (1.17) and (2.2), we get

(TR (x| n) = nTN (] 0). (2.3)

From (2.1), we can easily derive the following equation
n

Ty =Y (?)HL’J,(A)B}“(x)

1=0
n n .
=3 (Z)qu_)l(xmng’. (2.4)
1=0

By (1.16) and (2.2), we get

1 1-2\ Liy(1-e*
TR (x|A) = — 4" = wl=e) (2.5)
gr,k(t) et — A 1-et
In [7], it is known that
Lix(1—e™) - 1
—x" 1 ", 2.
et Z(m+1)k Z( )1 (=) (2:6)

Thus, by (2.5) and (2.6), we get

(x]2) = < = )ruku SN

el -\ 1-¢t
e N AY 2 Ty A .
v ,Zo(_ly(/)(ef—x) w=

DI ) Z( 1y(’”> (=10, 27)

J
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By (1.1), we easily see that

n

HP@(2) =) (’l’)H;”l(x)x’. (2.8)

1=0
Therefore, by (2.7) and (2.8), we obtain the following theorem.

Theorem 2.1 Forr,k € Z,n > 0, we have

rk)"'”‘z( )kZ /(; >Z<>HU’(X =)
1=0

IR FEATREIAS S U SR S VNTLLAN P

-2{(1)’1"—1“%(%1% 2 W(/‘)}(’C -

1=0

In [7], it is known that

Jj=0

Ligl—et) . [ (-1 (n
e :Z[ZWOMZ‘” wm} 2.9
By (2.5) and (2.9), we get

)] = <: x)’uk(l—ef)xn

f—A 1-¢*
n n—j _ -
(=1 . 1-A i
10{2 T (j)MISZ(n_]’m)}(ef—)\)XJ
n " l)n m—j '
0 (m+1)k ( >Wl So(n—j,m) tH (xl)») (2.10)
j=0 Um=

Therefore, by (2.8) and (2.10), we obtain the following theorem.

Theorem 2.2 Forr,k € Z, n € Z>o, we have

T09 al2) = Z[ZZ( 0 () () St |

1=0 U j=l m=0

From (1.19) and (2.2), we have

T (¢t
TR (x |x)_( ?ZES)T’Y’M(MM' (2.11)
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Now, we note that

g ()
gr,k(t)

= (loggri(®)’

= (rlog(e’ — 1) —rlog(1 - 1) +log(1—e™*) —log Lix(1- e’))/

A t Lit(1-e*) - Liz1(1—et
Sy bl =)~ Ligall =€) 2.12)
et el -1 tLip(1-et)

By (2.11) and (2.12), we get

T (1) = xT0 (x[3) = r T (x]3) —

A (1—A)”1Lik(1—ef) .,
X

1-A\ef-A 1-¢
1-2\ LigQ—et) - Ligy(l-€et) [ ¢\,
— X
el — A t(1-e) et -1
A
= (= NTYP ) = T TP )

_Z< ) ( A) L ‘e;()l‘_Le‘;"t‘)l(l_e_ ) (2.13)

It is easy to show that

Lit( —e™) = Lix_,(1 — ™) (- e—t)" (1-et)
=
T1- e‘t —~ nk

1-e -1
n
l1-et 1-¢*
B AR

1 1
=g —5 )+ (2.14)

For any delta series f(t), we have

@xn :f(t) ﬁx;ﬁl’ (215)

Thus, by (2.13), (2.14) and (2.15), we get

O(ala) = =N T I) - T el)

" (n 1 (1-2\ Lix(-e?) = Liga(1-€) ,,
S (Npeing .
l [+1\ef - 1-et

=0

n+1

rA
= (=) TP (x|r) - Ty T 10 (x|

_Zl 1 By l:lk)( 1A) - 1+rlk )(x|k)}

rA
= (x—r) TP (x|2) - Ty T80 (x| )
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n+l

1 n+l -
-—> ( )Bml_z{ ;"0 @) - 1777 @l n))

n+1 )
I=1

A
= (=) TP (x|r) - Ty T 10 (x|

n+l

1 n+1 -
- ( )Bm,{ ;"0 (x12) = T, (x12))
0

n+ll= /

rA
= (x—r) TP (x2) - Ty TR (x| )

n+l

- Z("}l) { T @) - TR @in).

n+1
=0

Therefore, by (2.16), we obtain the following theorem.

Theorem 2.3 Forr,k € Z, n € Z>q, we have

rk) (r,k) rA r+1k
T (®14) = (6 = ) TN (x]0) — 15 J(x|2)

n+1 n+1
(r,k-1)
(7 i)
Remark 1 If r = 0, then we have

> a’ D iT )
> B

n=

n

Thus, by (2.17), we get B® (x) = TR (x2).
From (2.4), we have

BT = t(xZ () <x>)
=0

n

(’l’ )Hfj),(x){le;k} (%) + B\ (%)}
1=0

n-1

= nx (” ; 1) DLBP@ + > ( l>H<’ J0)BY (%)

1=0 =0

= nxT" (x|2) + TOP (x| 0).
Applying ¢ on both sides of Theorem 2.3, we get

(n+1) TP (x|2)

= mx Ty (x]2) + TO9 (x]3) — rnTyy) (x]0) - —— (’jf'k)(xm

n+l

1 Z(”+1>Bl{(n+1—1)T,§’_'§>(x|x) (n+1- DT D).

n+1l l

=0

(2.16)

(2.17)

(2.18)

(2.19)
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Thus, by (2.19), we have

1 2
(l’l + I)T}ir,k)(xp\.) + }’l(l" - 5 —x) T}Y_’]l()(xl)\) + Z (l)Banl(r’k)(xp")
1=0
FAR (ri1k)  (n (rk=1)
== LAy + () )BT T ), (2.20)

1=0

Therefore, by (2.20), we obtain the following theorem.

Theorem 2.4 Forr,k € Z, n € Z with n > 2, we have

1 n-2
(n+ )T (x|n) + n(r -3 —x) T (x)0) + Z (7)By,_;Tl(r'k)(x|A)
1=0
ran (r+1,k) - n (r,k-1)
= T i) + > Bt TV 1),
1=0
From (1.14) and (2.5), we note that
1-A\ Lig(1-e)
T, (1) = <<e‘ - A) e
1-A\ Liy(1-e*
= *lL=€7) e 1) (2.21)
el -\ 1-¢t

By (1.15) and (2.21), we get

1-2\"Liy(1-e)
(r,k) _ k t
- (1) )
B 1-2\"\LikQl-e") ,
(=) )k
_ r . _ —t
+<<1t A) <3:le(1 e )>th
el — A 1-et
_ rr. _ -t
+<<lt A) Lii(l1-e )ate”
el —A 1-et

Therefore, by (2.22), we obtain the following theorem.

n-1

)
)
-

x”-1>. (2.22)

Theorem 2.5 Forr,k € Z, n > 1, we have

rA
T (ld) = (6= DT @) = 5 T, 1)

n-1
- n-1-1( "~ 1 (2 m (m +1)! (r)
+> 11 ( ; ) > (1) s 2 21— lm) tH (=112,
=0 m=0

Now, we compute ((;[_kA "Lix(1 — e7) |y in two different ways.

Page 8 of 13
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On the one hand,
1 _ r
<(et _i) Lig(1-€™) x”+1>

(&) e

= <(elt _);\) lel(l_ — e X (- 1)n+1>

_ i <n+1)(_1)n_m<( 1-X )rLik(l—e_t) xm>
—~\ m et — A 1-et

) <n + 1) (11 T (*10))
m=0 m

_ (" + 1) (1 TER ), (223)
m=0 m

On the other hand, we get

(2 e
1-2 ’ n+l
<Ll (l e ) (ef—x) x >
< Ji (Liv(1- ) d] H(’l(x|x)>
0
t L s
:<v/0 6_% ‘ n+l x|)~>
(s (! Empten Y2 [ a0
= 2 (WZ; <m>(—1) By, >E</o s ds‘Hn+1(x|A)>

Ll B
=22 m>( D )

;) (';:11) (1) BEDHD (), (2.24)

Therefore, by (2.23) and (2.24), we obtain the following theorem.

Theorem 2.6 Forr,k € Z, n € Z~¢, we have

n

Z (}’l};: 1) (_l)n_m Tr(:k)()‘)

m=0

é !
= D D <m) ('Z: 11 )B DHD ().
=0 m=0

Page9of 13


http://www.advancesindifferenceequations.com/content/2013/1/251

Kim and Kim Advances in Difference Equations 2013, 2013:251
http://www.advancesindifferenceequations.com/content/2013/1/251

Now, we consider the following two Sheffer sequences:

¢ r —L
k) (€ > 1-e
LG ((1—)\) Li—en’t)

. . (2.25)
B(s) ~ e-1 s t s
t
where s € Z-g, 1,k € Z and A € C with A # 1. Let us assume that
Tr(lr,k)(xM) _ Z Cn-mBE:,)(x)' (2.26)
m=0
By (1.21) and (2.26), we get
1 (e =1\ (1-1\"Lig(l—e) | ,
=l () (55) Seel)
_ (¢ (1-hY Li-e), ,
m! t et — A 1-¢
(" e -1\ 1-2\ Lig(l-e?) -
m t el — A 1-¢t
n\ w s 1-2\ LikQ-e?) |, .
= So(l +s, tx""
(m) pn (L+s) 2 +SS)<(@‘—A> 1-e¢ *
— s (n-
_ (”) y 2 =mig s, T (1))
m) = (Z+s) I
- (”) ( L ) Syl +5,9T"0 (). (2.27)
m (S+ )
=0 \1
Therefore, by (2.26) and (2.27), we obtain the following theorem.
Theorem 2.7 Forr,k € Z, s € Zg, we have
T @) = 3 (”) ( L ) Syl +5,9)T0 () 1BY (x).
S\ T )
m= =0 1
From (1.3) and (2.1), we note that
Lo\ 1-et
TR (x| 1) ~ ¢ ,t ),
w12 (( 1-1 ) Ligl—e)
(2.28)

e +1\°
EU)(x) ~ it
ow((5)

where r,k € Z, s € Z>y.
By the same method, we get

T @) = Zi Z{ (:1) 2. C) T;S"fi(i)}Eﬁ? (%) (229)
m=0 j=0

Page 10 0of 13
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From (1.1) and (2.1), we note that
t_ A r 1- —t
TR @) ~ ( (£ 1),
1-A sz(l—e‘t)
et —u\°*
H(S) ~ ,t ,
w () (<l—u>

where r,k € Z,and A, u € Cwith A #1, u #1,s € Zsg
Let us assume that

n
TP I1) = Y ComH) (] ).

m=0

By (1.21) and (2.31), we get

Co = l<<et - ,u)s< 1-2 )’Lik(l —7e‘t)tm x”>
mi\\ 1-p el — A 1-et
G e (1= =€),
-<1_u>s<<e-“) (=) )

<,) ) | T (x] 1)
<,) I TR (1),

Therefore, by (2.31) and (2.32), we obtain the following theorem

Theorem 2.8 Forr,k € Z, s € Z>o, we have

(r,k) _ 1 s—j (r,k)
T = [( )Z()( Wy om} ey

It is known that

t r —t
k) (€ > 1-e
T Gh) <(1—A) Lii-en'')

@)~ (L€ - 1).

Let

TP @IN) =D Com®)m

Then, by (1.21) and (2.34), we get
1/(1=-2\ Li(l=e?) ,,  m| ,
Cn,m—%<<et_k> 1_ ot (6 —1) X
Sz(l+m,m) —A rLik(l—e_t) il n
-3 o
(I + m)! e’—k

1-et

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)
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SRSl emm) i|(2=2 L) o

- (I + m)! A e = et
=0

(0 Ystrmmrit o 235)
o +m

Therefore, by (2.34) and (2.35), we obtain the following theorem.

Theorem 2.9 Forr,k € Z, we have

TR (x|2) = n [n_m( i )S (U +mm)T,") ()L)}(x)m'
r; Z l+m)”* !

=0

Finally, we consider the following two Sheffer sequences:

t_ A r 1-— —t
T @) ~ ( (S ——° 1),
1-1 ) Lip(1-e™) (2.36)

~(L1-¢7),

where 2" = x(x +1)--- (x + 1 —1).
Let us assume that

TR (|0 = ZC,,,,,x (2.37)

Then, by (1.21) and (2.37), we get

1 (1-2\ Lic—€") . _pom
Cn'm:%<<€t—)\> 1_e,t (1—@ )

(=1)! S5 (1 + m, m) A\ LicU=e™) | it n
Z (I +m)! <(et—)‘) l-e ‘t x>

=0
n-m l r . —t
1)!Sy (I + m, m) 1-2\'Lig(l-e) .

—— . T()ull n—m
Z Gomr l<‘<et—k) l—et
1=0
n-m n

(-1) ( )sz(um,m):r,g’_'f;_,(x). (2.38)
=0

Therefore, by (2.37) and (2.38), we obtain the following theorem.

Theorem 2.10 Forr,k € Z, n > 0, we have

"0 (x|) = Z{ ( " )Sg(l+m,m)Ty_']2_l(k) £

1=0
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