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Abstract
This paper deals with the reliable L1 control problem of positive switched systems
with time-varying delays. Under the case where both stable and unstable subsystems
coexist, sufficient conditions are proposed to guarantee the exponential stability of
positive switched systems with time-varying delays, and the average dwell time
approach is utilized for the stability analysis. The result is also extended to solve the
reliable L1 control problem. All the results are formulated in a set of linear matrix
inequalities (LMIs), which can be easily verified or implemented. The obtained
theoretical results are demonstrated by a numerical example.
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1 Introduction
Switched systems, a type of hybrid dynamical systems, are composed of a number of sub-
systems and a switching signal which defines a specific subsystem being activated during a
certain interval. Many real-world systems such as mechanical systems, automotive indus-
try, aircraft and air traffic control systems as well as chemical processes can be modeled
as such systems [–].
Very recently, positive switched systems, whose states and outputs are nonnegative

whenever the initial conditions and inputs are nonnegative, have been highlighted and
investigated by many researchers due to their broad applications in communication sys-
tems [, ], viral mutation dynamics under drug treatment [], formation flying [] and
system theory [–], to mention a few. So far, many useful results for positive switched
systems have been obtained in the literature, particularly with respect to the stability anal-
ysis [–]. However, it should be noted that, although many recent control engineering
and mathematics works on switched systems have appeared [, ], there are still many
open questions relating to positive switched systems.
In practice, time delay phenomenon is frequently encountered in engineering and social

systems, and the existence of it may cause undesirable performance in feedback systems
such as chaos [, ]. Therefore, many results have been reported for time-delay systems
[–] over the past years, but not until recently have the positive switched systems with
time delays become a topic of major interest.
On the other hand, the popularity of studying a reliable control problem is raised for the

growing demands of system reliability in aerospace and industrial process.When control-
ling a real plant with failures of control components, classical control methods may not
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achieve satisfactory performance. To overcome this problem, reliable control has made
great progress recently. Among the existing studies, the problem of robust reliable con-
trol for uncertain switched nonlinear systems with time delays is addressed in [], and
a reliable control method for uncertain switched systems with time-varying delays and
actuators faults is presented in []. It should be pointed out that the aforementioned re-
sults are based on a basic assumption that the subsystems are all stable. Due to the fact
that unstable subsystems cannot be avoided in many applications, the reliable stabiliza-
tion problems for switched systems with faulty actuators are solved in [–] under the
restrictions that not all subsystems are stable. However, to the best of our knowledge, the
issue of reliable L control for positive switched systems with stable and unstable subsys-
tems has not been fully investigated, which motivates us to carry out the present work.
In this paper, we focus our attention on the reliable L control problem of positive

switched delayed systems with both stable and unstable subsystems. The main contri-
bution of this paper lies in three aspects. Firstly, by using the average dwell time approach,
stability conditions are proposed for positive switched delayed systems with both stable
and unstable subsystems. Secondly, L-gain performance analysis for the underlying sys-
tems is developed. Thirdly, a reliable controller is derived to guarantee the exponential
stability with L-gain property of the resulting closed-loop systems.
The remainder of this paper is organized as follows. In Section , the necessary defini-

tions and lemmas are reviewed. Section  is devoted to deriving the results on stability,
L-gain property analysis and controller design. An example is provided to illustrate the
feasibility of the obtained results in Section . Concluding remarks are given in Section .

Notations In this paper, A �  (�) means that all entries of matrix A are non-negative
(non-positive);A�  (≺)means that all entries ofA are positive (negative);A � B (A� B)
means that A – B �  (A – B � ); AT denotes the transpose of matrix A; R (R+) is the set
of all real (positive real) scalars; Rn (Rn

+) is an n-dimensional real (positive) vector space.
The notation ‖x‖ = ∑n

l= |xl|, where xl is the lth element of x ∈ Rn.

2 Problem statements and preliminaries
Consider the following switched linear systems with time-varying delays:

⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) = Aσ (t)x(t) +Adσ (t)x(t – d(t)) + Eσ (t)w(t),

x(t + θ ) = ϕ(θ ), θ ∈ [–τ , ],

z(t) = Cσ (t)x(t) +Dσ (t)w(t),

()

where x(t) ∈ Rn and z(t) ∈ Rp denote the state and controlled output, respectively; w(t) ∈
Rq is the disturbance input; σ (t) : [,∞) →N = {, , . . . ,N} is the switching signal with N
being the number of subsystems; Ai, Adi, Ci, Di and Ei, i ∈ N , are constant matrices with
appropriate dimensions; ϕ(θ ) is a vector-valued initial function defined on the interval
[–τ , ], τ > ; t is the initial time, and tk denotes the kth switching instant; d(t) denotes
the time-varying delay satisfying ≤ d(t) ≤ τ , ḋ(t)≤ d for known constants τ and d.

Assumption  The exogenous noise signal w(t) is time-varying and w(t) ∈ L[t,∞),
that is,

∫ ∞

t

∥∥w(t)∥∥dt <� , � ≥ .
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Next, we will give the positive definition for switched system ().

Definition  System () is said to be positive if, for any initial conditions ϕ(θ ) � , θ ∈
[–τ , ],w(t) �  and any switching signals σ (t), the corresponding state trajectory x(t)� 
and controlled output z(t) �  hold for all t ≥ .

Definition  [] A is called a Metzler matrix, if the off-diagonal entries of matrix A are
non-negative.

The following lemma can be obtained from Lemma  in [] and Proposition  in [].

Lemma  System () is positive if and only if Ai, i ∈ N , are Metzler matrices and Adi � ,
Ei � , Ci � , Di � , i ∈N .

Definition  [] System () is said to be exponentially stable under a switching signal
σ (t) if for the initial condition x(t + θ ) = ϕ(θ ), θ ∈ [–τ , ], there exist constants κ > ,
ε >  such that the solution of the system satisfies ‖x(t)‖ ≤ κ‖xt‖ce–ε(t–t), ∀t ≥ t, where
‖xt‖c = supt–τ≤δ≤t ‖x(δ)‖.

Definition  [] For a switching signal σ (t) and T > T ≥ , let Nσ (T,T) denote the
switching number of σ (t) over the interval [T,T). For given Ta > , N ≥ , if the in-
equality

Nσ (T,T) ≤ N + (T – T)/Ta

holds, then Ta is called the average dwell time and N is the chattering bound.

As commonly used in the literature, we choose N =  in this paper.

Definition  [] System () is said to have L-gain performance index γ under a switch-
ing signal σ (t), if the following conditions are satisfied:

(i) System () is exponentially stable when w(t) ≡ ;
(ii) Under zero initial conditions, i.e., x(t) = , t ∈ [t – τ , t], the following inequality

holds for all nonzero w(t) ∈ L[t,∞):∫ ∞

t
e–α(t–t)

∥∥z(t)∥∥dt ≤ γ
∫ ∞

t

∥∥w(t)∥∥dt. ()

Remark  In Definition , index γ characterizes the disturbance attenuation perfor-
mance. The smaller γ is, the better the performance is.

When the control input with actuator failures is considered, system () can be written as
⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) = Aσ (t)x(t) +Adσ (t)x(t – d(t)) + Bσ (t)uf (t) + Eσ (t)w(t),

x(t + θ ) = ϕ(θ ), θ ∈ [–τ , ],

z(t) = Cσ (t)x(t) +Dσ (t)w(t),

()

where x(t) ∈ Rn, w(t) ∈ Rq, z(t) ∈ Rp; uf (t) ∈ Rm is the control input with actuator failures.
Actuator failures are assumed to occurwithin a prescribed subset of control input channel.
We classify actuators of system () into two groups. One is a set of actuators susceptible
to failures, denoted by M ⊆ {, , . . . ,m}. The other is a set of actuators robust to failures,
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denoted by M, i.e., the complementary set of M. Ai, Adi, Bi, Ci, Di and Ei, i ∈ N , are con-
stant matrices with appropriate dimensions. According to the classification of actuators,
we have the decomposition Bi = [BiM BiM], i ∈ N , where BiM and BiM are formed from Bi

corresponding toM andM, respectively.
Assume that the actuator faults are modeled as uM(t) whose elements correspond to the

set of faulty actuatorsM. Denote w̄(t) = [wT (t) uTM(t)]T , where w̄(t) can be considered as a
new disturbance input vector. System () with the following state feedback control law:

u(t) = Kσ (t)x(t), Ki =

(
KiM

KiM

)
, i ∈N , ()

becomes⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) = Aσ (t)x(t) +Adσ (t)x(t – d(t)) + Eσ (t)w̄(t),

x(t + θ ) = ϕ(θ ), θ ∈ [–τ , ],

z(t) = Cσ (t)x(t) +Dσ (t)w̄(t),

()

where Ai = Ai + BiMKiM , Ei = [Ei BiM], Di = [Di ], i ∈ N .
The purpose of this paper is: () to find a switching signal σ (t) under which positive

switched system () is exponentially stable with L-gain performance; () to design a state
feedback controller for positive switched system () such that resulting closed-loop system
() is exponentially stable and has L-gain performance index γ .

3 Main results
3.1 Stability analysis
In this section, two necessary lemmas are given firstly for the following non-switched pos-
itive system:⎧⎨

⎩ẋ(t) = Ax(t) +Adx(t – d(t)),

x(t + θ ) = ϕ(θ ), θ ∈ [–τ , ],
()

where A is a Metzler constant matrix and Ad �  is a constant matrix; d(t) denotes the
time-varying delay satisfying  ≤ d(t)≤ τ , ḋ(t) ≤ d; ϕ(θ )� .
Choose the co-positive type Lyapunov-Krasovskii functional candidate for system ()

as follows:

V
(
t,x(t)

)
= V

(
t,x(t)

)
+V

(
t,x(t)

)
+V

(
t,x(t)

)
, ()

where

V
(
t,x(t)

)
= xT (t)v,

V
(
t,x(t)

)
=

∫ t

t–d(t)
eα(–t+s)xT (s)υ ds,

V
(
t,x(t)

)
=

∫ 

–τ

∫ t

t+θ
eα(–t+s)xT (s)ϑ dsdθ ,

and v,υ,ϑ ∈ Rn
+, α > .

For the sake of simplicity, V (t,x(t)) is written as V (t) in this paper.
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Lemma  For a given positive constant α, if there exist vectors v,υ,ϑ ∈ Rn
+ and ς ∈ Rn such

that

�̂ = diag
{
ψ̂, ψ̂, . . . , ψ̂n, ψ̂ ′

, ψ̂ ′
, . . . , ψ̂ ′

n
} � , ()

�̂ = diag
{
π̂, π̂, . . . , π̂n, π̂ ′, π̂ ′, . . . , π̂ ′n

} � , ()

where

ψ̂r = aTr v + αvr + υr + τϑr + ςr , ψ̂ ′
r = aTdrv – ( – d)e–ατυr – ςr ,

π̂r = –aTr ς – e–ατϑr , π̂ ′r = –aTdrς , r ∈ n = {, , . . . ,n},

with ar (adr) represents the rth column vector of matrix A (Ad), and v = [v, v, . . . , vn]T ,
υ = [υ,υ, . . . ,υn]T , ϑ = [ϑ,ϑ, . . . ,ϑn]T , ς = [ς,ς, . . . ,ςn]T , vr(υr ,ϑr ,ςr) represents the
rth element of the vector v(υ,ϑ ,ς ). Then along the trajectory of system (), we have

V (t) ≤ e–α(t–t)V (t).

Proof Along the trajectory of system (), for the co-positive type Lyapunov-Krasovskii
functional (), we have

V̇(t) = ẋT (t)v = xT (t)ATv + xT
(
t – d(t)

)
AT
d v,

V̇(t) = –α
∫ t

t–d(t)
eα(–t+s)xT (s)υ ds + xT (t)υ –

(
 – ḋ(t)

)
e–ατxT

(
t – d(t)

)
υ

≤ –α
∫ t

t–d(t)
eα(–t+s)xT (s)υ ds + xT (t)υ – ( – d)e–ατxT

(
t – d(t)

)
υ,

V̇(t) = –α
∫ 

–τ

∫ t

t+θ
eα(–t+s)xT (s)ϑ dsdθ + τxT (t)ϑ –

∫ 

–τ
e–αθxT (t + θ )ϑ dθ

≤ –α
∫ 

–τ

∫ t

t+θ
eα(–t+s)xT (s)ϑ dsdθ + τxT (t)ϑ –

∫ t

t–d(t)
e–ατxT (s)ϑ ds,

V̇ (t) + αV (t) ≤ xT (t)
(
ATv + αv + υ + τϑ

)
+ xT

(
t – d(t)

)(
AT
d v – ( – d)e–ατυ

)
–

∫ t

t–d(t)
e–ατxT (s)ϑ ds. ()

Using the Leibniz-Newton formula, one has

∫ t

t–d(t)
ẋ(s)ds = x(t) – x

(
t – d(t)

)
. ()

Considering that

∫ t

t–d(t)
ẋ(s)ds =

∫ t

t–d(t)

(
Ax(s) +Adx

(
s – d(s)

))
ds, ()

the following relationship can be obtained for any vector ς ∈ Rn:

(
x(t) – x

(
t – d(t)

)
–

∫ t

t–d(t)

(
Ax(s) +Adx

(
s – d(s)

))
ds

)T

ς = . ()
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From () and (), we have

V̇ (t) + αV (t) ≤ xT (t)
(
ATv + αv + υ + τϑ

)
+ ς

+ xT
(
t – d(t)

)(
AT
d v – ( – d)e–ατυ – ς

)

–
∫ t

t–d(t)

[
x(s)

x(s – d(s))

]T ([
ATς

AT
d ς

]
+

[
e–ατϑ


])
ds. ()

One can obtain from () and () that

ATv + αv + υ + τϑ + ς � , ()

AT
d v – ( – d)e–ατυ – ς � , ()

–ATς – e–ατϑ � , ()

–AT
d ς � . ()

It follows that

V̇ (t)≤ –αV (t).

Then, along the trajectory of system (), we have

V (t) ≤ e–α(t–t)V (t). �

Lemma Consider system (), for a given positive constant β , if there exist vectors v,υ,ϑ ∈
Rn
+ and ς ∈ Rn such that

�

�= diag
{�
ψ ,

�

ψ, . . . ,
�

ψn,
�

ψ ′
,
�

ψ ′
, . . . ,

�

ψ ′
n
} � , ()

�

�= diag
{�
π ,

�
π, . . . ,

�
πn,

�
π ′

,
�
π ′
, . . . ,

�
π ′

n
} � , ()

where

�

ψ r= aTr v – βvr + υr + τϑr + ςr ,
�

ψ ′
r = aTdrv – ( – d)υr – ςr ,

�
π r= –aTr ς – ϑr ,

�
π ′

r = –aTdrς , r ∈ n = {, , . . . ,n}.

ar (adr) represents the rth column vector of matrix A (Ad); and v = [v, v, . . . , vn]T , υ =
[υ,υ, . . . ,υn]T , ϑ = [ϑ,ϑ, . . . ,ϑn]T , ς = [ς,ς, . . . ,ςn]T . Then, along the trajectory of sys-
tem (), we have

V (t) ≤ eβ(t–t)V (t).

Proof Choose the following co-positive type Lyapunov-Krasovskii functional candidate
for system ():

V (t) = V(t) +V(t) +V(t),

http://www.advancesindifferenceequations.com/content/2013/1/25
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where

V(t) = xT (t)v,

V(t) =
∫ t

t–d(t)
eβ(t–s)xT (s)υ ds,

V(t) =
∫ 

–τ

∫ t

t+θ
eβ(t–s)xT (s)ϑ dsdθ ,

and v,υ,ϑ ∈ Rn
+, β > .

The rest of the proof of this lemma is similar to that of Lemma , and thus is omitted
here. �

Now we are in a position to provide the stability conditions for the following positive
switched system:

⎧⎨
⎩ẋ(t) = Aσ (t)x(t) +Adσ (t)x(t – d(t)),

x(t + θ ) = ϕ(θ ), θ ∈ [–τ , ],
()

where Ai, i ∈ N , are Metzler constant matrices and Adi � , i ∈ N , are constant matrices;
d(t) denotes the time-varying delay satisfying  ≤ d(t) ≤ τ , ḋ(t)≤ d; ϕ(θ )� .
LetQ denote the index set of all stable subsystems, which is a nonempty subset ofN , and

Q denote the index set of all unstable subsystems. Let T+(t, t) denote the total activation
time of the unstable subsystems during [t, t), let T–(t, t) denote the total activation time
of the stable subsystems during [t, t), then we have the following result.

Theorem Given positive constants α and β , if there exist vi,υi,ϑi ∈ Rn
+ and ςi ∈ Rn, i ∈N ,

such that

�i = diag
{
ζi, ζi, . . . , ζin, ζ ′

i, ζ
′
i, . . . , ζ

′
in
} � , ∀i ∈Q, ()

�ij = diag
{
φij,φij, . . . ,φijn,φ′

ij,φ
′
ij, . . . ,φ

′
ijn

} � , ∀i ∈Q,∀j ∈N , ()

�̃i = diag
{
ζ̃i, ζ̃i, . . . , ζ̃in, ζ̃ ′

i, ζ̃
′
i, . . . , ζ̃

′
in
} � , ∀i ∈Q, ()

�̃ij = diag
{
φ̃ij, φ̃ij, . . . , φ̃ijn, φ̃′

ij, φ̃
′
ij, . . . , φ̃

′
ijn

} � , ∀i ∈Q,∀j ∈N , ()

where

ζir = aTirvi + αvir + υir + τϑir + ςir , ζ ′
ir = aTdirvi – ( – d)e–ατυir – ςir ,

φijr = –aTjrςi – e–ατϑir , φ̃ijr = –aTdjrςi,

ζ̃ir = aTirvi – βvir + υir + τϑir + ςir , ζ̃ ′
ir = aTdirvi – ( – d)υir – ςir ,

φ̃ijr = –aTjrςi – ϑir , φ̃′
ijr = –aTdjrςi, r ∈ n = {, , . . . ,n},

air (adir) represents the rth columnvector ofmatrix Ai (Adi), i ∈N ;and vi = [vi, vi, . . . , vin]T ,
υi = [υi,υi, . . . ,υin]T , ϑi = [ϑi,ϑi, . . . ,ϑin]T , ςi = [ςi,ςi, . . . ,ςin]T . Then system () is ex-
ponentially stable for any switching signals σ (t) with the average dwell time

inf
t>t

T–(t, t)
T+(t, t)

≥ β + λ
α – λ

, Ta > T *
a =

ln(μη)
λ

, ()

http://www.advancesindifferenceequations.com/content/2013/1/25
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where η = e(α+β)τ ,  < λ < α and μ≥  satisfies

vi � μvj, υi � μυj, ϑi � μϑj, ∀(i, j) ∈N ×N . ()

Proof Choose the following piecewise co-positive type Lyapunov-Krasovskii functional
candidate:

V (t) = Vσ (t)(t).

Let t < · · · < tl denote the switching instants of σ (t) over the interval [t, t). By Lemmas 
and , one can obtain from ()-() that

Vσ (t)(t)≤
⎧⎨
⎩e–α(t–tk )Vσ (tk )(tk) if σ (t) ∈Q, t ∈ [tk , tk+),

eβ(t–tk )Vσ (tk )(tk) if σ (t) ∈Q, t ∈ [tk , tk+).
()

From () and the co-positive type Lyapunov-Krasovskii functional, at the switching
instants tk , k = , , . . . , l, it is obtained that

Vi(tk) ≤ μηVj
(
t–k

)
, ∀(i, j) ∈ N ×N , ()

where η = e(α+β)τ .
By (), (), () and Definition , for t ∈ [tl, tl+), it is not hard to get

Vσ (t)(t) ≤ e–αT
–(tl ,t)+βT+(tl ,t)Vσ (tl)(tl)

≤ μηe–αT–(tl ,t)+βT+(tl ,t)Vσ (t–l )
(
t–l

)
≤ μηe–αT–(tl–,t)+βT+(tl–,t)Vσ (tl–)(tl–)

≤ · · ·
≤ (μη)Nσ (t,t)e–αT

–(t,t)+βT+(t,t)Vσ (t)(t)

≤ e–αT
–(t,t)+βT+(t,t)e(t–t) ln(μη)/TaVσ (t)(t)

≤ e–(λ–ln(μη)/Ta)(t–t)Vσ (t)(t). ()

Denoting ε =min(r,i)∈n×N {vir} yields

Vσ (t)(t)≥ ε
∥∥x(t)∥∥. ()

Denote

a = max
(r,i)∈n×Q

{vir} + τ max
(r,i)∈n×Q

{υir} + τ  max
(r,i)∈n×Q

{ϑir},

a = max
(r,i)∈n×Q

{vir} + τeβτ max
(r,i)∈n×Q

{υir} + τ eβτ max
(r,i)∈n×Q

{ϑir},

and a =max{a,a}, then

Vσ (t)(t) ≤ a sup
t–τ≤δ≤t

∥∥x(δ)∥∥. ()

http://www.advancesindifferenceequations.com/content/2013/1/25
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From ()-(), we obtain

∥∥x(t)∥∥ ≤ a
ε
e
–(λ– ln(μη)

Ta
)(t–t)

sup
t–τ≤δ≤t

∥∥x(δ)∥∥. ()

Thus, by denoting κ = a/ε, ε = λ – ln(μη)
Ta > , it can be seen from () that ‖x(t)‖ ≤

κ‖xt‖ce–ε(t–t), ∀t ≥ t, where ‖xt‖c = supt–τ≤δ≤t ‖x(δ)‖. Therefore, we can conclude
that system () is exponentially stable for any switching signal with average dwell
time (). �

Remark InTheorem , sufficient conditions for the existence of the exponential stability
for positive switched system () with both stable and unstable subsystems are presented
via the average dwell time approach. It is shown by () that when the average dwell time
is sufficiently large and the total activation time of unstable subsystems is relatively small
compared with that of stable subsystems, the stability of the system can be guaranteed.

3.2 L1-gain property analysis
Theorem  Given positive constants α, β and γ , if there exist vi,υi,ϑi ∈ Rn

+ and ςi ∈ Rn,
i ∈ N , such that

Xi = diag
{
χi,χi, . . . ,χin,χ ′

i,χ
′
i, . . . ,χ

′
in,χ

′′
i,χ

′′
i, . . . ,χ

′′
in
}

� , ∀i ∈Q, ()

�ij = diag
{
θij, θij, . . . , θijn, θ ′

ij, θ
′
ij, . . . , θ

′
ijn, θ

′′
ij, θ

′′
ij, . . . , θ

′′
ijn

}
� , ∀i ∈Q,∀j ∈N , ()

X̃i = diag
{
χ̃i, χ̃i, . . . , χ̃in, χ̃ ′

i, χ̃
′
i, . . . , χ̃

′
in, χ̃

′′
i, χ̃

′′
i, . . . , χ̃

′′
in
}

� , ∀i ∈Q, ()

�̃ij = diag
{
θ̃ij, θ̃ij, . . . , θ̃ijn, θ̃ ′

ij, θ̃
′
ij, . . . , θ̃

′
ijn, θ̃

′′
ij, θ̃

′′
ij, . . . , θ̃

′′
ijn

}
� , ∀i ∈Q,∀j ∈N , ()

where

χir = aTirvi + αvir + υir + τϑir + ςir + ‖cir‖, χ ′
ir = aTdirvi – ( – d)e–ατυir – ςir ,

χ ′′
ir = χ̃

′′
ir = eTirvi + ‖dir‖ – γ , θijr = –aTjrςi – e–ατϑir , θ ′

ijr = θ̃
′
ijr = –aTdjrςi,

θ ′′
ijr = θ̃

′′
ijr = –eTjrςi, χ̃ir = aTirvi – βvir + υir + τϑir + ςir + ‖cir‖, θ̃ijr = –aTjrςi – ϑir ,

χ̃ ′
ir = aTdirvi – ( – d)υir – ςir , r ∈ n = {, , . . . ,n},

eir represents the rth column vector of matrix Ei, i ∈ N . Then system () is exponentially
stable and has L-gain performance index γ for any switching signal σ (t) with the average
dwell time ().

Proof It is easy to get that ()-() can be deduced from ()-(). According to Theo-
rem , system () with w(t) =  is exponentially stable. In the sequel, we will prove that the
L-gain performance of system () is guaranteed.
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Let t < · · · < tl denote the switching instants of σ (t) over the interval [t, t). Following
the proof line of Theorem , one can obtain from ()-() that

Vσ (t)(t)≤
⎧⎨
⎩e–α(t–tk )Vσ (tk )(tk) –

∫ t
tk
e–α(t–s)�(s)ds if σ (t) ∈Q, t ∈ [tk , tk+),

eβ(t–tk )Vσ (tk )(tk) –
∫ t
tk
eβ(t–s)�(s)ds if σ (t) ∈Q, t ∈ [tk , tk+),

()

where �(s) = ‖z(s)‖ – γ ‖w(s)‖.
Then, for t ∈ [tl, tl+), we have

Vσ (t)(t) ≤ e–αT
–(tl ,t)+βT+(tl ,t)Vσ (tl)(tl) –

∫ t

tl
e–αT

–(s,t)+βT+(s,t)�(s)ds

≤ μηe–αT–(tl ,t)+βT+(tl ,t)Vσ (t–l )
(
t–l

)
–

∫ t

tl
e–αT

–(s,t)+βT+(s,t)�(s)ds

≤ μηe–αT–(tl–,t)+βT+(tl–,t)Vσ (tl–)(tl–) –
∫ t

tl
e–αT

–(s,t)+βT+(s,t)�(s)ds

–μη
∫ tl

tl–
e–αT

–(s,tl–)+βT+(s,tl–)�(s)ds

≤ · · ·

≤ (μη)Nσ (t,t)e–αT
–(t,t)+βT+(t,t)Vσ (t)(t) –

∫ t

t
(μη)Nσ (s,t)e–αT

–(s,t)+βT+(s,t)�(s)ds

≤ e–αT
–(t,t)+βT+(t,t)e(t–t) ln(μη)/TaVσ (t)(t)

–
∫ t

t
(μη)Nσ (s,t)e–αT

–(s,t)+βT+(s,t)�(s)ds. ()

Under the zero initial condition, we have Vσ (t)(t) = , then () becomes

 ≤ –
∫ t

t
(μη)Nσ (s,t)e–αT

–(s,t)+βT+(s,t)�(s)ds.

From the condition (), it is obvious that

–αT–(t, t) + βT+(t, t) ≤ –λ(t – t),

then
∫ t

t
e–λ(t–s)(μη)Nσ (s,t)�(s)ds≤ .

That is,

∫ t

t
e–λ(t–s)(μη)Nσ (s,t)

∥∥z(s)∥∥ds≤ γ
∫ t

t
e–λ(t–s)(μη)Nσ (s,t)

∥∥w(s)∥∥ds. ()

Multiplying both sides of () by e–Nσ (t,t) ln(μη) yields

∫ t

t
e–λ(t–s)e–Nσ (t,s) ln(μη)

∥∥z(s)∥∥ds≤ γ
∫ t

t
e–λ(t–s)e–Nσ (t,s) ln(μη)

∥∥w(s)∥∥ds. ()

http://www.advancesindifferenceequations.com/content/2013/1/25
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By Definition  and condition (), one can obtain

∫ t

t
e–λ(t–s)e–λ(s–t)

∥∥z(s)∥∥ds≤ γ
∫ t

t
e–λ(t–s)

∥∥w(s)∥∥ds. ()

Integrating both sides of () from t = t to ∞ leads to

∫ ∞

t
e–λ(t–t)

∥∥z(s)∥∥ds≤ γ
∫ ∞

t

∥∥w(s)∥∥ds.
This means that system () achieves L-gain performance index γ .
The proof is completed. �

3.3 Reliable L1 control
In what follows, we design a state feedback controller for positive switched system ()
such that resulting closed-loop system () is exponentially stablewith L-gain performance
index γ .

Theorem  Consider system (), for given positive constants α, β and γ , if there exist
vi,υi,ϑi ∈ Rn

+ and ςi,hi ∈ Rn, i ∈N , such that

�i = diag
{
ξi, ξi, . . . , ξin, ξ ′

i, ξ
′
i, . . . , ξ

′
in, ξ

′′
i, ξ

′′
i, . . . , ξ

′′
in, ξ

′′′
i , ξ

′′′
i , . . . , ξ

′′′
in

}
� , ∀i ∈Q, ()

 ij = diag
{
ηij,ηij, . . . ,ηijn,η′

ij,η
′
ij, . . . ,η

′
ijn,η

′′
ij,η

′′
ij, . . . ,η

′′
ijn,η

′′′
ij,η

′′′
ij, . . . ,η

′′′
ijn

}
� , ∀i ∈Q,∀j ∈N , ()

�̃i = diag
{
ξ̃i, ξ̃i, . . . , ξ̃in, ξ̃ ′

i, ξ̃
′
i, . . . , ξ̃

′
in, ξ̃

′′
i, ξ̃

′′
i, . . . , ξ̃

′′
in, ξ̃

′′′
i , ξ̃

′′′
i , . . . , ξ̃

′′′
in

}
� , ∀i ∈Q, ()

 ̃ij = diag
{
η̃ij, η̃ij, . . . , η̃ijn, η̃′

ij, η̃
′
ij, . . . , η̃

′
ijn, η̃

′′
ij, η̃

′′
ij, . . . , η̃

′′
ijn, η̃

′′′
ij, η̃

′′′
ij, . . . , η̃

′′′
ijn

}
� , ∀i ∈Q,∀j ∈N , ()

where

ξir = aTirvi + αvir + hir + υir + τϑir + ςir + ‖cir‖, ξ ′
ir = aTdirvi – ( – d)e–ατυir – ςir ,

ξ ′′
ir = ξ̃

′′
ir = eTirvi + ‖dir‖ – γ , ξ ′′′

ir = ξ̃ ′′′
ir = bTiMrvi – γ , ηijr = –aTjrςi – fir – e–ατϑir ,

η′
ijr = η̃

′
ijr = –aTdjrςi, η′′

ijr = η̃
′′
ijr = –eTjrςi, η′′′

ijr = η̃
′′′
ijr = –bTjMrςi,

ξ̃ir = aTirvi – βvir + hir + υir + τϑir + ςir + ‖cir‖, ξ̃ ′
ir = aTdirvi – ( – d)υir – ςir ,

η̃ijr = –aTjrςi – fir – ϑir , hi = KT
iMB

T
iMvi, fi = KT

iMBT
iMςi, r ∈ n = {, , . . . ,n},

cir (dir) represents the rth column vector of matrix Ci (Di), i ∈N ; biMr (biMr) represents the
rth column vector of matrix BiM (BiMi ); hi = [hi,hi, . . . ,hin]T , fi = [fi, fi, . . . , fin]T .
Then, under the controller (), resulting closed-loop system () is exponentially stable

and has L-gain performance index γ for any switching signals σ (t) with the average dwell
time ().
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Proof Under the controller (), the resulting closed-loop system can be written as ().
DenoteAi = Ai+BiMKiM , Ei = [Ei BiM],Di = [Di ] and hi = KT

iMB
T
iMvi, fi = KT

iMBT
iMςi, then

by Theorem , one can obtain from ()-() that closed-loop system () is exponentially
stable and has L-gain performance index γ . This completes the proof. �

We now present the following algorithm for the construction of the reliable L state
feedback controller.

Algorithm 
Step . Input the matrices Ai, Adi, Bi, Ci, Di and Ei, i ∈ N ;
Step . By adjusting parameters α and β , we can find the solutions of vi, υi, ϑi, ςi, hi such

that () and () hold;
Step . From hi = KT

iMBT
iMvi and hi = KT

iMBT
iMvi, one can obtain the gain matrices Ki =

[KT
iM KT

iM]T , and then substitute Ki into () and (). If inequalities () and () hold
and Ai = Ai +BMiKMi areMetzler matrices, then go to Step ; otherwise, go back to Step ;
Step . With vi, υi, ϑi, the switching signal σ (t) can be obtained by () and ();
Step . Construct the feedback controller (), where Ki are gain matrices obtained in

Step .

4 Numerical example
Consider positive switched system () with the following parameters:

A =

[
 
 

]
, Ad =

[
. 
 

]
, BM =

[
.
.

]
, BM =

[
.
.

]
,

C = [. .], D = [.], E =

[
.
.

]
,

A =

[
– 
 –

]
, Ad =

[
. 
 

]
, BM =

[
.
.

]
, BM =

[
.
.

]
,

C = [. .], D = [.], E =

[
.
.

]
.

By Lemma , the trajectories of such a systemwill remain positive if ϕ(θ ) � , θ ∈ [–τ , ].
From Lemma  in [], it is easy to verify that the first subsystem is unstable. Taking α =
., β = ., λ = ., γ = . and solving thematrix inequalities () and () in Theorem 
gives rise to

v =

[
.
.

]
, v =

[
.
.

]
, υ =

[
.
.

]
, υ =

[
.
.

]
,

ϑ =

[
.
.

]
, ϑ =

[
.
.

]
, ς =

[
.
.

]
, ς =

[
.
.

]
.

Then, by Step  inAlgorithm , the state feedback gainmatrices can be obtained as follows:

KM = [–. –.], KM = [–. –.],

KM = [–. –.], KM = [–. –.].
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Figure 1 State responses of the system under the closed-loop case.

Figure 2 State responses of the system under the open-loop case.

By substituting them into () and (), it is not hard to find that inequalities () and
() are satisfied and Ai = Ai + BiMKiM , i = , , are Metzler matrices. Then, according
to () and (), we can get μ = ., η = . and T *

a = .. To illustrate the ef-
fectiveness of the proposed results, let us now generate the switching sequences by the
average dwell time Ta = .. We can obtain the state responses shown in Figures  and 
with the initial condition x() = [. .]T , x(θ ) = , θ ∈ [–τ , ), and the switching signal
shown in Figure . From Figures -, we can see that the state of the closed-loop system is
convergent.

5 Conclusions
In this paper, the reliable L control problem for positive switched systems with time-
varying delays has been discussed. The system studied in this paper consists of stable and
unstable subsystems with actuators failures. Using the average dwell time approach, we
have proposed a reliable feedback controller and a class of switching signals under which
the positive switched system is exponentially stable and has L-gain performance for all
admissible actuator failures. All the results are formulated in the set of LMIs which can

http://www.advancesindifferenceequations.com/content/2013/1/25
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Figure 3 Switching signal.

be easily verified or implemented. Our future work will focus on the reliable L control
problem for discrete-time positive switched systems with time-varying delays.
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