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Abstract
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polynomials and the application of certain computational number-theoretical results.
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1 Introduction
In the paper [], Fairlie and Veselov obtained a relation of the Bernoulli polynomials with
the theory of the Korteweg-de Vries (KdV) equation

ut – uux + uxxx = .

This equation has infinitely many conservation laws (that is, certain laws, which show
that a particular measurable property of an isolated physical system, like mass, energy,
momentum, etc., does not change as the system evolves) of the form

Im[u] =
∫ ∞

–∞
Pm(u,ux,uxx, . . . ,um)dx,

where Pm are some polynomials of the function u and its x-derivatives up to orderm, see
[]. For example,

I–[u] =
∫ ∞

–∞
udx, I[u] =

∫ ∞

–∞
u dx, I[u] =

∫ ∞

–∞

(
ux + u

)
dx

and

I[u] =
∫ ∞

–∞

(
uxx + uux + u

)
dx.

The KdV equation possesses a remarkable family of so-called n-soliton solutions corre-
sponding to the initial profile un(x, ) = –n(n+) sech x. For some recent generalizations
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and applications of the Korteweg-de Vries equation, we refer to [, ] and [] and the ref-
erences given therein.
Using the spectral theory of Schrödinger operators, see [], Fairlie and Veselov []

proved that there is a strong connection between the improver integrals related to the
functions un(x, ) above and the well-known discrete sums of power values, namely,

Ik[un] =
(–)kk+

k + 

n∑
i=

ik+

for k = –, , , . . . .
Now, let k �= l be fixed integers with k, l ∈ {–, , , , . . .}, and suppose that

∣∣Ik[un]∣∣ = ∣∣Il[um]∣∣.
One can ask how often can these integrals be equal for given k and l? In other words, what
is the cardinality of the set of solutionsm, n to the equation

k

k + 

n∑
i=

ik+ =
l

l + 

m∑
i=

il+, ()

where k and l are fixed distinct integers? Of course, one can consider the much more gen-
eral problem, when k and l are also unknown integers; however, in this case, the solution
of the corresponding equation seems beyond the reach of current techniques.
Applying some recent results by Rakaczki, see [] and [], it is not too hard to give some

ineffective and effective finiteness statements for the solutions m and n to equation ().
However, the purpose of this note is to resolve () for certain values ofm and n, including
an infinite family of the parameters.

Theorem  For k = – and l ∈ {, , , }, equation () has only one solution, namely,
(l,m,n) = (, , ).

Theorem  Assume that k =  and l is a positive integer such that l +  is prime. Then
() has no solution in positive integers m and n.

2 Auxiliary results
In our first lemma, we summarize some classical properties of Bernoulli polynomials. For
the proofs of these results, we refer to [].

Lemma  Let Bj(X) denote the jth Bernoulli polynomial and Bj = Bj(), j = , , . . . . Further,
let Dj be the denominator of Bj. Then we have
(A) Bj(X) = Xn +

∑j
i=

(j
i
)
BiXj–i,

(B) Sj(x) = j + j + · · · + (x – )j = 
j+ (Bj+(x) – Bj+),

(C) B = – 
 , Bj+ = , j = , , . . . ,

(D) (von Staudt-Clausen) Dj =
∏

p–|j,p prime p,
(E) X(X – )|Bj(X) – Bj (in Q[X]),
(F) Bj(X) = (–)jBj( –X).
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Consider the hyperelliptic curve

C : y = F(x) := x + bx + bx + bx + bx + b, ()

where bi ∈ Z. Let α be a root of F , and let J(Q) be the Jacobian of the curve C . We have
that

x – α = κξ ,

where κ , ξ ∈ K =Q(α) and κ comes from a finite set. By knowing the Mordell-Weil group
of the curve C , it is possible to provide amethod to compute such a finite set. To each coset
representative

∑m
i=(Pi –∞) of J(Q)/J(Q), we associate

κ =
m∏
i=

(
γi – αd

i
)
,

where the set {P, . . . ,Pm} is stable under the action of Galois, all y(Pi) are non-zero and
x(Pi) = γi/d

i , where γi is an algebraic integer and di ∈ Z≥. If Pi, Pj are conjugate, then
we may suppose that di = dj, and so, γi, γj are conjugate. We have the following lemma
(Lemma . in []).

Lemma  Let K be a set of κ values, associated as above to a complete set of coset repre-
sentatives of J(Q)/J(Q). ThenK is a finite subset ofOK , and if (x, y) is an integral point on
the curve (), then x – α = κξ  for some κ ∈K and ξ ∈ K .

As an application of his theory of lower bounds for linear forms in logarithms, Baker
[] gave an explicit upper bound for the size of integral solutions of hyperelliptic curves.
This result has been improved by many authors (see, e.g., [–] and []).
In [], an improved completely explicit upper boundwere proved combining ideas from

[, –].Nowwewill state the theorem,which gives the improved bound.We introduce
some notation. Let K be a number field of degree d, and let r be its unit rank, and let R be
its regulator. For α ∈ K , we denote by h(α) the logarithmic height of the element α. Let

∂K =

⎧⎨
⎩

log
d if d = , ,


 (

log logd
logd ) if d ≥ ,

and let

∂ ′
K =

(
 +

π

∂
K

)/

.

Define the constants

c(K) =
(r!)

r–dr , c(K) = c(K)
(

d
∂K

)r–

,

c(K) = c(K)
dr

∂K
, c(K) = rdc(K), c(K) =

rr+

∂r–
K

.
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Let

∂L/K =max

{
[L :Q], [K :Q]∂ ′

K ,
.[K :Q]

∂K

}
,

where K ⊆ L are number fields. Define

C(K ,n) :=  · n+ · (n + ).d( + logd).

The following result will be used to get an upper bound for the size of the integral solutions
of our equations. It is Theorem  in [].

Lemma  Let α be an algebraic integer of degree at least , and let κ be an integer belong-
ing to K . Denote by α, α, α distinct conjugates of α and by κ, κ, κ the corresponding
conjugates of κ . Let

K =Q(α,α,
√

κκ), K =Q(α,α,
√

κκ), K =Q(α,α,
√

κκ)

and

L =Q(α,α,α,
√

κκ,
√

κκ).

In what follows R stands for an upper bound for the regulators of K, K and K, and r
denotes the maximum of the unit ranks of K, K, K. Let

c∗j = max
≤i≤

cj(Ki),

and let

N = max
≤i,j≤

∣∣NormQ(αi ,αj)/Q
(
κi(αi – αj)

)∣∣,

and let

H∗ = c∗R +
logN

min≤i≤[Ki :Q]
+ h(κ).

Define

A∗
 = H∗ ·C(L, r + ) · (c∗)∂L/L ·

(
max
≤i≤

∂L/Ki

)r · R

and

A∗
 = H∗ +A∗

 +A∗
 log

{
(r + ) ·max

{
c∗, 

}}
.

If x ∈ Z\{} satisfies x – α = κξ  for some ξ ∈ K then

log|x| ≤ A∗
 log

(
A∗


)
+ A∗

 +H∗ +  log + h(κ) + h(α).
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To obtain a lower bound for the possible unknown integer solutions, we are going to use
the so-called Mordell-Weil sieve. TheMordell-Weil sieve has been successfully applied to
prove the non-existence of rational points on curves (see, e.g., [–] and []).
Let C/Q be a smooth projective curve (in our case a hyperelliptic curve) of genus g ≥ .

Let J be its Jacobian. We assume the knowledge of some rational point on C, so let D be a
fixed rational point on C, and let j be the corresponding Abel-Jacobi map

j : C → J , P �→ [P –D].

Let W be the image in J of the known rational points on C and D, . . . ,Dr generators for
the free part of J(Q). By using the Mordell-Weil sieve, we are going to obtain a very large
and smooth integer B such that

j
(
C(Q)

) ⊆W + BJ(Q).

Let

φ : Zr → J(Q), φ(a, . . . ,ar) =
∑

aiDi,

so that the image of φ is the free part of J(Q). The variant of the Mordell-Weil sieve ex-
plained in [] provides a method to obtain a very long decreasing sequence of lattices in
Zr

BZr = L � L � L � · · · � Lk

such that

j
(
C(Q)

) ⊂W + φ(Lj)

for j = , . . . ,k.
The next lemma [, Lemma .] gives a lower bound for the size of rational points,

whose images are not in the setW .

Lemma  Let W be a finite subset of J(Q), and let L be a sublattice of Zr . Suppose that
j (C(Q))⊂ W + φ(L). Let μ be a lower bound for h – ĥ and

μ =max
{√

ĥ(w) : w ∈ W
}
.

Denote by M the height-pairing matrix for the Mordell-Weil basis D, . . . ,Dr , and let
λ, . . . ,λr be its eigenvalues. Let

μ =min{√λj : j = , . . . , r},

and let m(L) be the Euclidean norm of the shortest non-zero vector of L. Then, for any P ∈
C(Q), either j (P) ∈W or

h
(
j (P)

) ≥ (
μm(L) –μ

) +μ.
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The following lemma plays a crucial role in the proof of Theorem .

Lemma  The integral solutions of the equation

C : Y  = X(X + )
(
X + X + 

)
+ , ()

are

(X,Y ) ∈ {
(,±), (–,±)

}
.

Proof of Lemma  Let J(Q) be the Jacobian of the genus two curve (). Using MAGMA,
we determine a Mordell-Weil basis, which is given by

D = (, ) –∞,

D = (–, ) –∞.

Let f = x(x + )(x + x + ) + ,, and let α be a root of f . We will choose for
coset representatives of J(Q)/J(Q) the linear combinations

∑
i= niDi, where ni ∈ {, }.

Then

x – α = κξ ,

where κ ∈ K, and K is constructed as described in Lemma . We have that K =
{,–α, – – α,α(α + )}. By local arguments, it is possible to restrict the set K further
(see, e.g., [, ]). In our case, one can eliminate

α(α + )

by local computations in Q. We apply Lemma  to get a large upper bound for log |x| in
the remaining cases. A MAGMA code was written to obtain the bounds that appeared in
[]; they can be found at http://www.warwick.ac.uk/~maseap/progs/intpoint/bounds.m.
We obtain that these bounds are as in Table .
The set of known rational points on the curve () is {∞, (,±), (–,±)}. LetW

be the image of this set in J(Q). Applying the Mordell-Weil sieve, implemented by Bruin
and Stoll and explained in [], we obtain that j (C(Q))⊆W + BJ(Q), where

B =  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  · 

that is

B = ,,,,,,,,,,.

Table 1 Bounds

κ Bound for log|x|
1 6.27 · 10307
–α 4.48 · 10668
–20 – α 1.89 · 10612

http://www.advancesindifferenceequations.com/content/2013/1/245
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Now, we use an extension of the Mordell-Weil sieve due to Samir Siksek to obtain a very
long decreasing sequence of lattices in Z. After that, we apply Lemma  to obtain a lower
bound for possible unknown rational points. We get that if (x, y) is an unknown integral
point, then

log |x| ≥ .× .

This contradicts the bound for log |x| that we obtained by Baker’s method. �

3 Proofs of the theorems

Proof of Theorem  For k = – and l ∈ {, , , }, we have the Diophantine equations

n(n + )


=
m(m + )


, ()

n(n + )


=



z(z – ) with z =m(m + ), ()

n(n + )


=



z
(
z – z + 

)
with z =m(m + ) ()

and




n∑
i=

i =



m∑
i=

i, ()

respectively. One can see that the first three equations are elliptic Diophantine equa-
tions, thus using the program package MAGMA, subroutines IntegralPoints or
IntegralQuarticPoints are just a straightforward calculation to solve them. In
these cases, the unique solution is (l,m,n) = (, , ). The forth equation can be written
as follows

(n + ) =



(
m +m – 

)(
m +m

)(m + m –m – m + 
)
+ .

So, we easily obtain a hyperelliptic curve

Y  = X(X + )
(
X + X + 

)
+ ,,

where Y = (n+) and X = m +m–. By Lemma , we have that X =  or –.
Therefore, we have that m ∈ {–, }, a contradiction and there is no solution in positive
integers of (). �

Proof of Theorem  Now k =  and p = l +  ≥  is a prime. From (), we get

p · n(n + ) =  · l+(p + p + · · · +mp).
Let m and n be an arbitrary but fixed solution. An elementary number theoretical argu-
ment and Lemma  yield that p|m(m + ) and

ordp

(
p + p + · · · +mp

m(m + )

)
= ordp

Bp+(m + ) – Bp+

m(m + )
�= .
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Suppose that p|m, and let d be the smallest positive integer such that Bp+(m + ) – Bp+ =

d f (m)m(m + ), and let f (X) ∈ Z[X]. Since

(p+
k

)
is divisible by p for k = , . . . ,p –  and

B = –/, we have that p is not a divisor of d. The constant term of the polynomial f (X)
is d

(p+
p–

)
Bp–, and, by von Staudt-Clausen theorem, it is not divisible by p. On the other

hand, p is a divisor ofm and f (m), we have a contradiction. If p|m + , then we can repeat
the previous argument using the fact f (X) = f (–X – ), cf. Lemma . �
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