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Abstract
This paper studies the problem of a guaranteed cost control for a class of stochastic
delayed neural networks. The time delay is a continuous function belonging to a
given interval, but it is not necessarily differentiable. A cost function is considered as a
nonlinear performance measure for the closed-loop system. The stabilizing controllers
to be designed must satisfy some mean square exponential stability constraints on
the closed-loop poles. By constructing a set of augmented Lyapunov-Krasovskii
functional, a guaranteed cost controller is designed via memory less state feedback
control, and new sufficient conditions for the existence of the guaranteed cost
state-feedback for the system are given in terms of linear matrix inequalities (LMIs).
A numerical example is given to illustrate the effectiveness of the obtained result.
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1 Introduction
Stability and control of neural networks with the time delay have attracted considerable
attention in recent years [–]. In many practical systems, it is desirable to design neural
networks, which are not only asymptotically or exponentially stable, but can also guar-
antee an adequate level of system performance. In the area of control, signal processing,
pattern recognition and image processing, and delayed neural networks have many use-
ful applications. Some of these applications require that the equilibrium points of the
designed network be stable. In both biological and artificial neural systems, time de-
lays due to integration and communication are ubiquitous and often become a source
of instability. The time delays in electronic neural networks are usually time-varying, and
sometimes vary violently with respect to time due to the finite switching speed of am-
plifiers and faults in the electrical circuitry. A guaranteed cost control problem [–]
has the advantage of providing an upper bound on a given system performance index,
and, thus, the system performance degradation, incurred by the uncertainties or time
delays, is guaranteed to be less than this bound. The Lyapunov-Krasovskii functional
technique has been among the popular and effective tools in the design of guaranteed
cost controls for neural networks with time delay. Nevertheless, despite such diversity
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of results available, most existing works either assumed that the time delays are con-
stant or are differentiable [–]. Although, in some cases, the delay-dependent guar-
anteed cost control for systems with time-varying delays was considered in [, , ],
the approach used there cannot be applied to the systems with interval, nondifferen-
tiable time-varying delays. To the best of our knowledge, the guaranteed cost control and
state feedback stabilization for stochastic neural networks with interval, nondifferentiable
time-varying delays have not been fully studied yet (see, e.g., [–] and the references
therein), which are important in both theories and applications. This motivates our re-
search.
In this paper, we investigate the guaranteed cost control for stochastic delayed neu-

ral networks problem. The novel features here are that the delayed neural network un-
der consideration is with various globally Lipschitz continuous activation functions, and
the time-varying delay function is interval, nondifferentiable. A nonlinear cost function
is considered as a performance measure for the closed-loop system. The stabilizing con-
trollers to be designed must satisfy somemean square exponential stability constraints on
the closed-loop poles. Based on constructing a set of augmented Lyapunov-Krasovskii
functional, new delay-dependent criteria for guaranteed cost control via memoryless
feedback control is established in terms of LMIs, which allow simultaneous compu-
tation of two bounds that characterize the mean square exponential stability rate of
the solution and can be easily determined by utilizing MATLABs LMI control tool-
box.
The outline of the paper is as follows. Section  presents definitions and some well-

known technical propositions, needed for the proof of the main result. LMI delay-
dependent criteria for the guaranteed cost control and a numerical example showing the
effectiveness of the result are presented in Section . The paper ends with the conclusions
and cited references.

2 Preliminaries
The following notationwill be used in this paper.R+ denotes the set of all real non-negative
numbers; Rn denotes the n-dimensional space with the scalar product 〈x, y〉 or xTy of two
vectors x, y, and the vector norm ‖ · ‖; Mn×r denotes the space of all matrices of (n × r)-
dimensions. AT denotes the transpose of matrixA;A is symmetric ifA = AT ; I denotes the
identity matrix; λ(A) denotes the set of all eigenvalues ofA; λmax(A) =max{Reλ;λ ∈ λ(A)}.
xt := {x(t + s) : s ∈ [–h, ]}, ‖xt‖ = sups∈[–h,] ‖x(t + s)‖; C([, t],Rn) denotes the set of all
R

n-valued continuously differentiable functions on [, t]; L([, t],Rm) denotes the set of
all the Rm-valued square integrable functions on [, t].
Matrix A is called semi-positive definite (A≥ ) if 〈Ax,x〉 ≥  for all x ∈R

n; A is positive
definite (A > ) if 〈Ax,x〉 >  for all x �= ; A > B means A – B > . The notation diag{· · · }
stands for a block-diagonal matrix. The symmetric term in a matrix is denoted by ∗.
Consider the following stochastic neural networks with interval time-varying delay:

dx(t) =
[
–Ax(t) +Wf

(
x(t)

)
+Wg

(
x
(
t – h(t)

))
+ Bu(t)

]
dt

+ σ
(
t,x(t),x

(
t – h(t)

))
dω(t), t ≥ ,

x(t) = φ(t), t ∈ [–h, ],

(.)
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where x(t) = [x(t),x(t), . . . ,xn(t)]T ∈ R
n is the state of the neurons, u(·) ∈ L([, t],Rm) is

the control; n is the number of neurons, and

f
(
x(t)

)
=
[
f
(
x(t)

)
, f
(
x(t)

)
, . . . , fn

(
xn(t)

)]T ,
g
(
x(t)

)
=
[
g
(
x(t)

)
, g

(
x(t)

)
, . . . , gn

(
xn(t)

)]T ,
are the activation functions; A = diag(a,a, . . . ,an), ai >  represents the self-feedback
term;B ∈ Rn×m is control inputmatrix;W,W denote the connectionweights, the delayed
connection weights.

ω(t) is a scalar Wiener process (Brownian motion) on (�,F ,P) with

E
{
ω(t)

}
= , E

{
ω(t)

}
= , E

{
ω(i)ω(j)

}
=  (i �= j), (.)

and σ : Rn × Rn × R → Rn is the continuous function, and is assumed to satisfy that

σT(t,x(t),x(t – h(t)
))

σ
(
t,x(t),x

(
t – h(t)

))≤ ρxT (t)x(t) + ρxT
(
t – h(t)

)
x
(
t – h(t)

)
,

x(t),x
(
t – h(t)

) ∈ Rn, (.)

where ρ >  and ρ >  are known constant scalars. For simplicity, we denote σ (t,x(t),x(t–
h(t))) by σ .
The time-varying delay function h(t) satisfies the condition

 ≤ h ≤ h(t)≤ h.

The initial functions φ(t) ∈ C([–h, ],Rn), with the norm

‖φ‖ = sup
t∈[–h,]

√∥∥φ(t)∥∥ + ∥∥φ̇(t)∥∥.
In this paper, we consider various activation functions and assume that the activation func-
tions f (·), g(·) are Lipschitzian with the Lipschitz constants fi, ei > :

∣∣fi(ξ) – fi(ξ)
∣∣≤ fi|ξ – ξ|, i = , , . . . ,n,∀ξ, ξ ∈R,∣∣gi(ξ) – gi(ξ)
∣∣≤ ei|ξ – ξ|, i = , , . . . ,n,∀ξ, ξ ∈R.

(.)

The performance index, associated with the system (.), is the following function

J =
∫ ∞


f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)
dt, (.)

where f (t,x(t),x(t – h(t)),u(t)) : R+ × Rn × Rn × Rm → R+ is a nonlinear cost function
satisfying

∃Q,Q,R : f (t,x, y,u) ≤ 〈Qx,x〉 + 〈Qy, y〉 + 〈Ru,u〉 (.)

for all (t,x, y,u) ∈ R+ × Rn × Rn × Rm and Q,Q ∈ Rn×n, R ∈ Rm×m are given symmet-
ric positive definite matrices. The objective of this paper is to design a memoryless state
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feedback controller u(t) = Kx(t) for system (.) and the cost function (.) such that the
resulting closed-loop system

dx(t) =
[
–(A – BK)x(t) +Wf

(
x(t)

)
+Wg

(
x
(
t – h(t)

))]
dt

+ σ
(
x(t),x

(
t – h(t)

)
, t
)
dω(t) (.)

is mean square exponentially stable, and the closed-loop value of the cost function (.) is
minimized.

Definition . Given α > . The zero solution of a closed-loop system (.) is α-
stabilizable in the mean square if there exists a positive number N >  such that every
solution x(t,φ) satisfies the following condition:

E
{∥∥x(t,φ)∥∥}≤ E

{
Ne–αt‖φ‖}, ∀t ≥ .

Definition . Consider the control system (.). If there exist a memoryless state feed-
back control law u∗(t) = Kx(t) and a positive number J∗ such that the zero solution of the
closed-loop system (.) is mean square exponentially stable and the cost function (.)
satisfies J ≤ J∗, then the value J∗ is a guaranteed constant and u∗(t) is a guaranteed cost
control law of the system and its corresponding cost function.

We introduce the following technical well-known propositions, which will be used in
the proof of our results.

Proposition . (Integral matrix inequality []) For any symmetric positive definite ma-
trix M > , scalar γ >  and vector function ω : [,γ ] → R

n such that the integrations
concerned are well defined, the following inequality holds

(∫ γ


ω(s)ds

)T

M
(∫ γ


ω(s)ds

)
≤ γ

(∫ γ


ωT (s)Mω(s)ds

)
.

3 Design of guaranteed cost controller
In this section, we give a design of memoryless guaranteed feedback cost control for
stochastic neural networks (.). Let us set

W = –AP – PAT – αP – BBT + .BRBT +
∑

i=

Gi –
∑

i=

e–αhiHi

+ PFD–
 FP + PQP + ρI,

W = P +AP + .BBT ,

W = e–αhH + .BBT +AP,

W = e–αhH + .BBT +AP,

W = P.BBT +AP,

W =
∑

i=

WiDiWT
i +

∑
i=

hi Hi + (h – h)U – P – BBT ,
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W = P, W = P, W = P,

W = –e–αhG – e–αhH – e–αhU +
∑

i=

WiDiWT
i ,

W = , W = e–αhU ,

W =
∑

i=

WiDiWT
i – e–αhU – e–αhG – e–αhH,

W = e–αhU ,

W = –e–αhU +
∑

i=

WiDiWT
i – e–αhU + PED–

 EP + PQP + ρI,

E = diag{ei, i = , . . . ,n}, F = diag{fi, i = , . . . ,n},
λ = λmin

(
P–),

λ = λmax
(
P–) + hλmax

[
P–

( ∑
i=

Gi

)
P–

]

+ hλmax

[
P–

( ∑
i=

Hi

)
P–

]
+ (h – h)λmax

(
P–UP–).

Theorem . Consider the control system (.) and the cost function (.). Given α > . If
there exist symmetric positive definite matrices P, U , G, G,H, H, and diagonal positive
definite matrices Di, i = , , satisfying the following LMIs

⎡
⎢⎢⎢⎢⎢⎢⎣

W W W W W

∗ W W W W

∗ ∗ W W W

∗ ∗ ∗ W W

∗ ∗ ∗ ∗ W

⎤
⎥⎥⎥⎥⎥⎥⎦
< , (.)

then

u(t) = –


BTP–x(t), t ≥  (.)

is a guaranteed cost control, and the guaranteed cost value is given by

J∗ = E
{
λ‖φ‖}.

Moreover, the solution x(t,φ) of the system satisfies

E
{∥∥x(t,φ)∥∥}≤ E

{√
λ

λ
e–αt‖φ‖

}
, ∀t ≥ .
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Proof Let Y = P–, y(t) = Yx(t). Using the feedback control (.), we consider the following
Lyapunov-Krasovskii functional taking the mathematical expectation

E
{
V (t,xt)

}
= E

{ ∑
i=

Vi(t,xt)

}
,

E{V} = E
{
xT (t)Yx(t)

}
,

E{V} = E
{∫ t

t–h
eα(s–t)xT (s)YGYx(s)ds

}
,

E{V} = E
{∫ t

t–h
eα(s–t)xT (s)YGYx(s)ds

}
,

E{V} = E
{
h

∫ 

–h

∫ t

t+s
eα(τ–t)ẋT (τ )YHY ẋ(τ )dτ ds

}
,

E{V} = E
{
h
∫ 

–h

∫ t

t+s
eα(τ–t)ẋT (τ )YHY ẋ(τ )dτ ds

}
,

E{V} = E
{
(h – h)

∫ t–h

t–h

∫ t

t+s
eα(τ–t)ẋT (τ )YUYẋ(τ )dτ ds

}
.

It easy to check that

E
{
λ
∥∥x(t)∥∥}≤ E

{
V (t,xt)

}≤ E
{
λ‖xt‖

}
, ∀t ≥ . (.)

Taking the derivative ofVi, i = , , . . . , , and taking themathematical expectation, we have

E{V̇} = E
{
xT (t)Y ẋ(t)

}
= E

{
yT (t)

[
–PAT –AP

]
y(t) – yT (t)BBTy(t)

}
+ E

{
yT (t)Wf (·) + yT (t)Wg(·) + yT (t)σω(t)

}
;

E{V̇} = E
{
E
{
yT (t)Gy(t) – e–αhyT (t – h)Gy(t – h) – αV

}}
;

E{V̇} = E
{
yT (t)Gy(t) – e–αhyT (t – h)Gy(t – h) – αV

}
;

E{V̇} = E
{
hẏ

T (t)Hẏ(t) – he–αh
∫ t

t–h
ẋT (s)Hẋ(s)ds – αV

}
;

E{V̇} = E
{
h ẏ

T (t)Hẏ(t) – he–αh
∫ t

t–h
ẏT (s)Hẏ(s)ds – αV

}
;

E{V̇} = E
{
(h – h)ẏT (t)Uẏ(t) – (h – h)e–αh

∫ t–h

t–h
ẏT (s)Uẏ(s)ds – αV

}
.

Applying Proposition . and
∫ t
s ẏ(τ )dτ = y(t) – y(s), we have for i, j = , ,

– E
{
hi
∫ t

t–hi
ẏT (s)Hjẏ(s)ds

}

≤ –E
{[∫ t

t–hi
ẏ(s)ds

]T
Hj

[∫ t

t–hi
ẏ(s)ds

]}

≤ –E
{[
y(t) – y

(
t – h(t)

)]THj
[
y(t) – y

(
t – h(t)

)]}
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= –E
{
yT (t)Hjy(t) + xT (t)Hjy

(
t – h(t)

)}
– E

{
yT (t – hi)Hjy(t – hi)

}
. (.)

Note that

E
{∫ t–h

t–h
ẏT (s)Uẏ(s)ds

}
= E

{∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds

}
+ E

{∫ t–h

t–h(t)
ẏT (s)Uẏ(s)ds

}
.

Applying Proposition . gives

E
{[

h – h(t)
] ∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds

}

≥ E
{[∫ t–h(t)

t–h
ẏ(s)ds

]T
U
[∫ t–h(t)

t–h
ẏ(s)ds

]}

≥ E
{[
y
(
t – h(t)

)
– y(t – h)

]TU[
y
(
t – h(t)

)
– y(t – h)

]}
.

Since h – h(t)≤ h – h, we have

E
{
[h – h]

∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds

}

≥ E
{[
y
(
t – h(t)

)
– y(t – h)

]TU[
y
(
t – h(t)

)
– y(t – h)

]}
,

then

–E
{
[h – h]

∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds

}

≤ –E
{[
y
(
t – h(t)

)
– y(t – h)

]TU[
y
(
t – h(t)

)
– y(t – h)

]}
.

Similarly, we have

–E
{
(h – h)

∫ t–h

t–h(t)
ẏT (s)Uẏ(s)ds

}

≤ –E
{[
y(t – h) – y

(
t – h(t)

)]TU[
y(t – h) – y

(
t – h(t)

)]}
.

Then, we have

E
{
V̇ (·) + αV (·)}
≤ E

{
yT (t)

[
–PAT –AP

]
y(t) – yT (t)BBTy(t) + yT (t)Wf (·)

}

+ E

{
yT (t)Wg(·) + yT (t)σω(t) + yT (t)

( ∑
i=

Gi

)
y(t) + α

〈
Py(t), y(t)

〉}

+ E

{
ẏT (t)

( ∑
i=

hi Hi

)
ẏ(t) + (h – h)ẏT (t)Uẏ(t)

}

– E

{ ∑
i=

e–αhiyT (t – hi)Giy(t – hi)

}

http://www.advancesindifferenceequations.com/content/2013/1/241
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– E
{
e–αh

[
y(t) – y(t – h)

]TH
[
y(t) – y(t – h)

]}
– E

{
e–αh

[
y(t) – y(t – h)

]TH
[
y(t) – y(t – h)

]}
– E

{
e–αh

[
y
(
t – h(t)

)
– y(t – h)

]TU[
y
(
t – h(t)

)
– y(t – h)

]}
– E

{
e–αh

[
y(t – h) – y

(
t – h(t)

)]TU[
y(t – h) – y

(
t – h(t)

)]}
. (.)

Using equation (.)

Pẏ(t) +APy(t) –Wf (·) –Wg(·) + .BBTy(t) – σω(t) = ,

multiplying both sides with [y(t), –ẏ(t), y(t – h), y(t – h), y(t – h(t)), σω(t)]T , and
taking the mathematical expectation, we have

E
{
yT (t)Pẏ(t) + yT (t)APy(t) – yT (t)Wf (·) – yT (t)Wg(·)

}
+ E

{
yT (t)BBTy(t) – yT (t)σω(t)

}
= ,

–E
{
ẏT (t)Pẏ(t) – ẏT (t)APy(t) + ẏT (t)Wf (·)

}
+ E

{
ẏT (t)Wg(·) – ẏT (t)BBTy(t) + ẏT (t)σω(t)

}
= ,

E
{
yT (t – h)Pẏ(t) + yT (t – h)APy(t) – yT (t – h)Wf (·)

}
– E

{
yT (t – h)Wg(·) + yT (t – h)BBTy(t) – yT (t – h)σω(t)

}
= ,

E
{
yT (t – h)Pẏ(t) + yT (t – h)APy(t) – yT (t – h)Wf (·)

}
– E

{
yT (t – h)Wg(·) + yT (t – h)BBTy(t) – yT (t – h)σω(t)

}
= ,

E
{
yT

(
t – h(t)

)
Pẏ(t) + yT

(
t – h(t)

)
APy(t) – yT

(
t – h(t)

)
Wf (·)

}
– E

{
yT

(
t – h(t)

)
Wg(·) + yT

(
t – h(t)

)
BBTy(t) – yT

(
t – h(t)

)
σω(t)

}
= ,

E
{
ωT (t)σTPẏ(t) + ωT (t)σTAPy(t) – ωT (t)σTWf (·)

}
– E

{
ωT (t)σTWg(·) +ωT (t)σTBBTy(t) – ωT (t)σTσω(t)

}
= .

(.)

Adding all the zero items of (.) and f (t,x(t),x(t – h(t)),u(t)) – f (t,x(t),x(t – h(t)),
u(t)) = , respectively into (.), applying assumptions (.), (.), using the condition (.)
for the following estimations, and taking the mathematical expectation

E
{
f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)}≤ E
{〈
Qx(t),x(t)

〉
+
〈
Qx

(
t – h(t)

)
,x
(
t – h(t)

)〉}
+ E

{〈
Ru(t),u(t)

〉}
= E

{〈
PQPy(t), y(t)

〉
+
〈
PQPy

(
t – h(t)

)
, y
(
t – h(t)

)〉}
+ E

{
.

〈
BRBTy(t), y(t)

〉}
,

E
{

〈
Wf (x), y

〉}≤ E
{〈
WDWT

 y, y
〉
+
〈
D–

 f (x), f (x)
〉}
,

E
{

〈
Wg(z), y

〉}≤ E
{〈
WDWT

 y, y
〉
+
〈
D–

 g(z), g(z)
〉}
,

E
{

〈
D–

 f (x), f (x)
〉}≤ E

{〈
FD–

 Fx,x
〉}
,

E
{

〈
D–

 g(z), g(z)
〉}≤ E

{〈
ED–

 Ez, z
〉}
,

http://www.advancesindifferenceequations.com/content/2013/1/241


Rajchakit Advances in Difference Equations 2013, 2013:241 Page 9 of 11
http://www.advancesindifferenceequations.com/content/2013/1/241

we obtain

E
{
V̇ (·) + αV (·)}≤ E

{
ζT (t)Eζ (t) – f 

(
t,x(t),x

(
t – h(t)

)
,u(t)

)}
, (.)

where ζ (t) = [y(t), ẏ(t), y(t – h), y(t – h), y(t – h(t))], and

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

W W W W W

∗ W W W W

∗ ∗ W W W

∗ ∗ ∗ W W

∗ ∗ ∗ ∗ W

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Therefore, by condition (.), we obtain from (.) that

E
{
V̇ (t,xt)

}≤ –E
{
αV (t,xt)

}
, ∀t ≥ . (.)

Integrating both sides of (.) from  to t, we obtain

E
{
V (t,xt)

}≤ E
{
V (φ)e–αt

}
, ∀t ≥ .

Furthermore, taking condition (.) into account, we have

E
{
λ
∥∥x(t,φ)∥∥}≤ E

{
V (xt)

}≤ E
{
V (φ)e–αt

}≤ E
{
λe–αt‖φ‖},

then

E
{∥∥x(t,φ)∥∥}≤ E

{√
λ

λ
e–αt‖φ‖

}
, t ≥ ,

which concludes the mean square exponential stability of the closed-loop system (.). To
prove the optimal level of the cost function (.), we derive from (.) and (.) that

E
{
V̇ (t, zt)

}≤ –E
{
f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)}
, t ≥ . (.)

Integration of both sides of (.) from  to t leads to

E
{∫ t


f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)
dt
}

≤ E
{
V (, z) –V (t, zt)

}≤ E
{
V (, z)

}
,

due to E{V (t, zt)} ≥ . Hence, letting t → +∞, we have

J = E
{∫ ∞


f 
(
t,x(t),x

(
t – h(t)

)
,u(t)

)
dt
}

≤ E
{
V (, z)

}≤ E
{
λ‖φ‖} = J∗.

This completes the proof of the theorem. �
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Example . Consider the stochastic neural networks with interval time-varying delays
(.), where

A =

[
. 
 .

]
, W =

[
–. .
. –.

]
, W =

[
–. .
. –.

]
,

B =

[
.
.

]
, E =

[
. 
 .

]
, F =

[
. 
 .

]
,

Q =

[
. .
. .

]
, Q =

[
. .
. .

]
, R =

[
. .
. .

]
,

⎧⎨
⎩h(t) = . + . sin t if t ∈ I =

⋃
k≥[kπ , (k + )π ],

h(t) =  if t ∈ R+ \ I .

Note that h(t) is nondifferentiable, therefore, the stability criteria proposed in [–, , ]
are not applicable to this system. Given α = ., ρ = ., ρ = ., h = ., h = ., by
using the Matlab LMI toolbox, we can solve for P, U , G, G, H, H, D, and D, which
satisfy the condition (.) in Theorem .. A set of solutions are

P =

[
. .
. .

]
, U =

[
. .
. .

]
,

G =

[
. .
. .

]
, G =

[
. .
. .

]
,

H =

[
. .
. .

]
, H =

[
. .
. .

]
,

D =

[
. 

 .

]
, D =

[
. 

 .

]
.

Then

u(t) = –.x(t) – .x(t), t ≥ 

is a guaranteed cost control law and the cost given by

J∗ = E
{
.‖φ‖}.

Moreover, the solution x(t,φ) of the system satisfies

E
{∥∥x(t,φ)∥∥}≤ E

{
.e–.t‖φ‖}, ∀t ≥ .

4 Conclusion
In this paper, the problem of guaranteed cost control for stochastic neural networks with
the interval nondifferentiable time-varying delay has been studied. A nonlinear quadratic
cost function is considered as a performance measure for the closed-loop system. The
stabilizing controllers to be designed must satisfy some mean square exponential stability
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constraints on the closed-loop poles. By constructing a set of time-varying Lyapunov-
Krasovskii functional, a memoryless state feedback guaranteed cost controller design has
been presented and sufficient conditions for the existence of the guaranteed cost state-
feedback for the system have been derived in terms of LMIs.
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