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Abstract
During the last three decades, the problem of evaluation of the determinants of the
Laplacians on Riemann manifolds has received considerable attention from many
authors. The functional determinant for the k-dimensional unit sphere Sk with the
standard metric has been computed in several ways. Here we aim at computing the
determinants of the Laplacians on Sk (k = 2n + 1) by mainly using certain closed-form
evaluations of the series involving zeta function.
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1 Introduction and preliminaries
During the last three decades, the problem of evaluation of the determinants of the Lapla-
cians on Riemann manifolds has received considerable attention from many authors in-
cluding (among others) D’Hoker and Phong [, ], Sarnak [], and Voros [], who com-
puted the determinants of the Laplacians on compact Riemann surfaces of constant cur-
vature in terms of special values of the Selberg zeta function. Although the first interest in
the determinants of the Laplacians arosemainly for Riemann surfaces, it is also interesting
and potentially useful to compute these determinants for classical Riemannian manifolds
of higher dimensions, such as spheres. Here, we are particularly concerned with the evalu-
ation of the functional determinant for the k-dimensional unit sphere Sk (k = n+ ) with
the standard metric.
For this purpose we need the following definitions. Let {λn} be a sequence such that

 = λ < λ � λ � · · · � λn � · · · ; λn ↑ ∞ (n→ ∞); (.)

henceforth we consider only such nonnegative increasing sequences. Then we can show
that

Z(s) :=
∞∑
n=


λs
n
, (.)

which is known to converge absolutely in a half-plane �(s) > σ for some σ ∈R.
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Definition  (cf. Osgood et al. []) The determinant of the Laplacian � on the compact
manifoldM is defined to be

det′� :=
∏
λk �=

λk , (.)

where {λk} is the sequence of eigenvalues of the Laplacian � on M. The sequence {λk}
is known to satisfy the condition as in (.), but the product in (.) is always divergent;
so, in order for the expression (.) to make sense, some sort of regularization procedure
must be used (see, e.g., []). It is easily seen that, formally, e–Z′() is the product of nonzero
eigenvalues of �. This product does not converge, but Z(s) can be continued analytically
to a neighborhood of s = . Therefore, we can give ameaningful definition:

det′� := e–Z
′(), (.)

which is called the functional determinant of the Laplacian � onM.

Definition  The order μ of the sequence {λk} is defined by

μ := inf

{
α > 

∣∣∣ ∞∑
k=


λα
k
< ∞

}
. (.)

The analogous and shifted analogous Weierstrass canonical products E(λ) and E(λ,a) of
the sequence {λk} are defined, respectively, by

E(λ) :=
∞∏
k=

{(
 –

λ

λk

)
exp

(
λ

λk
+

λ

λ
k
+ · · · + λ[μ]

[μ]λ[μ]
k

)}
(.)

and

E(λ,a) :=
∞∏
k=

{(
 –

λ

λk + a

)
exp

(
λ

λk + a
+ · · · + λ[μ]

[μ](λk + a)[μ]

)}
, (.)

where [μ] denotes the greatest integer part in the order μ of the sequence {λk}.

There exists the following relationship between E(λ) and E(λ,a) (see Voros []):

E(λ,a) = exp

( [μ]∑
m=

Rm–(–a)
λm

m!

)
E(λ – a)
E(–a)

, (.)

where, for convenience,

R[μ](λ – a) :=
d[μ]+

dλ[μ]+

{
– logE(λ,a)

}
. (.)

The shifted series Z(s,a) of Z(s) in (.) by a is given by

Z(s,a) :=
∞∑
k=


(λk + a)s

. (.)
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Formally, indeed, we have

Z′(,–λ) = –
∞∑
k=

log(λk – λ),

which, if we define

D(λ) := exp
[
–Z′(,–λ)

]
, (.)

immediately implies that

D(λ) =
∞∏
k=

(λk – λ).

In fact, Voros [] gave the relationship between D(λ) and E(λ) as follows:

D(λ) = exp
[
–Z′()

]
exp

[
–

[μ]∑
m=

FPZ(m)
λm

m

]

· exp
[
–

[μ]∑
m=

C–m

(m–∑
k=


k

)
λm

m!

]
E(λ), (.)

where an empty sum is interpreted to be nil and the finite part prescription is applied (as
usual) as follows (cf. Voros [, p.]):

FP f (s) :=

⎧⎨
⎩f (s) if s is not a pole,

limε→(f (s + ε) – Residue
ε

) if s is a simple pole
(.)

and

Z(–m) = (–)mm!C–m. (.)

Now consider the sequence of eigenvalues on the standard Laplacian �n on Sn. It is
known from the work of Vardi [] (see also Terras []) that the standard Laplacian �n

(n ∈N) has eigenvalues

μk := k(k + n – ) (.)

with multiplicity

qn(k) :=
(
k + n
n

)
–

(
k + n – 

n

)
=
(k + n – )(k + n – )!

k!(n – )!

=
k + n – 
(n – )!

n–∏
j=

(k + j) (k ∈N), (.)

where N denotes the set of positive integers and N :=N∪ {}. From now on we consider
the shifted sequence {λk} of {μk} in (.) by ( n– ) as a fundamental sequence. Then the
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sequence {λk} is written in the following simple and tractable form:

λk = μk +
(
n – 


)

=
(
k +

n – 


)

(.)

with the same multiplicity as in (.).
We will exclude the zero mode, that is, start the sequence at k =  for later use. Further-

more, with a view to emphasizing n on Sn, we choose the notations Zn(s), Zn(s,a), En(λ),
En(λ,a), and Dn(λ) instead of Z(s), Z(s,a), E(λ), E(λ,a), and D(λ), respectively.
We readily observe from (.) that

Dn

((
n – 


))
= det′�n, (.)

where det′ �n denotes the determinants of the Laplacians on Sn (n ∈N).
Several authors (see Choi [], Kumagai [], Vardi [], and Voros []) used the theory

of multiple gamma functions (see Barnes [–]) to compute the determinants of the
Laplacians on the n-dimensional unit sphere Sn (n ∈ N := {, , , . . .}). Quine and Choi
[] made use of zeta regularized products to compute det′ �n and the determinant of
the conformal Laplacian, det(�Sn + n(n – )/). Choi and Srivastava [, ], Choi et al.
[], and Choi [] made use of some closed-form evaluations of the series involving zeta
function (see [, Chapter ]) for the computation of the determinants of the Laplacians
on Sn (n = , , , , , , , ). In the sequel, here, we aim at presenting a general explicit
formula for the determinants of the Laplacians on Sk (k = n+ ; n ∈N) by mainly using a
summation formula of the series involving zeta function.

2 The Stirling numbers s(n,k) of the first kind
Webegin by recalling the Stirling numbers s(n,k) of the first kind defined by the generating
functions (see, e.g., [, Section .]; see also [, Section .])

z(z – ) · · · (z – n + ) =
n∑

k=

s(n,k)zk (.)

and

{
log( + z)

}k = k!
∞∑
n=k

s(n,k)
zn

n!
(|z| < 

)
. (.)

The following recurrence relations are satisfied by s(n,k):

s(n + ,k) = s(n,k – ) – ns(n,k) (n≥ k ≥ ); (.)(
k
j

)
s(n,k) =

n–j∑
�=k–j

(
n
�

)
s(n – �, j)s(�,k – j) (n≥ k ≥ j). (.)
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It is not difficult to see also that

s(n, ) =

⎧⎨
⎩ (n = ),

 (n ∈N),
s(n,n) = , s(n,k) =  (k > n),

s(n, ) = (–)n+(n – )!, s(n,n – ) = –
(
n


) (.)

and

n∑
k=

s(n,k) = 
(
n ∈N \ {}); n∑

k=

(–)n+ks(n,k) = n!;

n∑
j=k

s(n + , j + )nj–k = s(n,k).

(.)

The Pochhammer symbol (z)n is defined (for z ∈C) by

(z)n : =

⎧⎨
⎩ (n = ),

z(z + ) · · · (z + n – ) (n ∈N)

=
�(z + n)

�(z)
(
n ∈N; z ∈C \Z–


)
, (.)

in terms of the gamma function �, and Z
–
 := {,–,–, . . .}.

From the definition (.) of s(n,k), the Pochhammer symbol in (.) can be written in
the form

(z)n = z(z + ) · · · (z + n – ) =
n∑

k=

(–)n+ks(n,k)zk , (.)

where (–)n+ks(n,k) denotes the number of permutations of n symbols, which has exactly
k cycles.
For potential use, we observe the following simple properties related to s(n,k) in the

lemma below.

Lemma  For n ∈N, let
[ n∑

j=

s(n, j)zj
][ n∑

j=

(–)n+js(n, j)zj
]
:=

n∑
�=

C�(n)z�.

Then we have

C�(n) =
�–∑
j=

(–)js(n, j)s(n,� – j) and C�+(n) =  (� ∈ N). (.)

Proof It is easy to see the first expression for C�(n). For the second one, it is enough to see
that the defined product is an even function of z. �

For later use, we compute the first few values of C�(n) as in Lemma .
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Lemma  The values of C�(n) when (�,n) = (, ), (, ), (, ), (, ), are computed as fol-
lows:

C() = –; C() = –; C() = ; C() = –; C() = ;

C() = –; C() = –; C() = ; C() = –; C() = .

3 Series associated with the zeta functions
A rather classical (over two centuries old) theorem of Christian Goldbach (-),
which was stated in a letter dated  from Goldbach to Daniel Bernoulli (-),
was revived in  by Shallit and Zikan [] as the following problem:

∑
ω∈S

(ω – )– = , (.)

where S denotes the set of all nontrivial integer kth powers, that is,

S :=
{
nk | n,k ∈N \ {}}. (.)

In terms of the Riemann zeta function ζ (s) defined by

ζ (s) :=

⎧⎨
⎩

∑∞
n=


ns =


––s

∑∞
n=


(n–)s (�(s) > ),


––s

∑∞
n=

(–)n–
ns (�(s) > ; s �= ),

(.)

Goldbach’s theorem (.) assumes the elegant form (cf. Shallit and Zikan [, p.])

∞∑
k=

{
ζ (k) – 

}
=  (.)

or, equivalently,

∞∑
k=

F
(
ζ (k)

)
= , (.)

where F (x) := x – [x] denotes the fractional part of x ∈ R. As a matter of fact, it is fairly
straightforward to observe also that

∞∑
k=

(–)kF
(
ζ (k)

)
=


, (.)

∞∑
k=

F
(
ζ (k)

)
=



and
∞∑
k=

F
(
ζ (k + )

)
=


. (.)

The Hurwitz (or generalized) zeta function ζ (s,a) is defined by

ζ (s,a) :=
∞∑
k=

(k + a)–s
(�(s) > ;a ∈C \Z–


)
, (.)

where Z–
 denotes the set of nonpositive integers. It is noted that both the Riemann zeta

function ζ (s) and the Hurwitz zeta function ζ (s,a) can be continued meromorphically to
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the whole complex s-plane except for a simple pole only at s =  with their residue . For
easy reference, we recall some properties of ζ (s) and ζ (s,a) as in the following lemma.

Lemma  Each of the following identities holds true.

ζ (s) = ζ (s, ) =
(
s – 

)–
ζ

(
s,



)
=  + ζ (s, ), (.)

ζ (s,a) = ζ (s,n + a) +
n–∑
k=

(k + a)–s (n ∈N), (.)

ζ (s) = ζ (s,n + ) +
n∑
k=

k–s (n ∈N), (.)

ζ (–n,a) = –
Bn+(a)
n + 

(n ∈N), (.)

where Bn(a) and Bn := Bn() are the Bernoulli polynomials and numbers, respectively (see
[, Section .]; see also [, p., Eq. ()]). It is said that s = –n (n ∈ N) are the trivial
zeros of ζ (s):

ζ (–n) =  (n ∈N). (.)

It is known that

ζ (n) = (–)n+
(π )n

(n)!
Bn (n ∈N) (.)

and

ζ ′(–n) =

⎧⎨
⎩(–)n (n)!

(π )n ζ (n + ) (n ∈N),

– 
 log(π ) (n = ).

(.)

Employing the variousmethods and techniques used in the vast literature on the subject
of the closed-form evaluations series associated with the zeta functions, Srivastava and
Choi (see [, Chapter ], [, Chapter ], and see also the related references therein)
presented a rather extensive collection of closed-form sums of series involving the zeta
functions. For the use in the next section, we recall two general formulas as in the following
lemma (see [, p.]).

Lemma  The following identity holds true:

∞∑
�=

ζ (�,a)
� + j

t�+j =
j∑

m=

(
j
m

)[
ζ ′(–m,a – t) + (–)mζ ′(–m,a + t)

]
tj–m

–
j–∑
m=

ζ (–m,a)
j –m

tj–m – ζ ′(–j,a)
(
j ∈ N; |t| < |a|). (.)

By setting t = n and a = n +  in (.) and using suitable formulas given in this section,
we get a special case identity of (.) as in Lemma  below.

http://www.advancesindifferenceequations.com/content/2013/1/236
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Lemma  The following identity holds true:

∞∑
�=

ζ (�,n + )
� + j

n�+j

= nj log
[
(n)!
π

]
– (–)j

(j)!
(π )j

ζ (j + )

+
j∑

m=

(
j
m

)[
(–)m

(m)!
(π )m

ζ (m + ) +
n∑
�=

�m log�

]
nj–m

–
j–∑
m=

(
j

m + 

)( n∑
�=

�m+ log�

)
nj–m– – 

n∑
�=

�j log�

+

j

(


+ n

)
nj +

j–∑
m=


j –m

( n∑
�=

�m

)
nj–m (n, j ∈N). (.)

Further specialized formulas of the identity in (.), for later use, are obtained as in
Lemma  below.

Lemma  Each of the following formulas holds true:

∞∑
�=

ζ (�) – 
� + 

=


– logπ , (.)

which has been recorded and used in several places (see, for example, [, p., Eq. (.)],
[, p., Eq. (.)], [, p., Eq. ()])

∞∑
�=

ζ (�, )
� + 

�+ =  –  log + log –  logπ , (.)

∞∑
�=

ζ (�, )
� + 

�+ =  –  log + log –  logπ –

π ζ (), (.)

∞∑
�=

ζ (�, )
� + 

�+ =



–  log –  log +  log –  logπ , (.)

∞∑
�=

ζ (�, )
� + 

�+ =
,


–  log –  log +  log –  logπ –
ζ ()

π , (.)

∞∑
�=

ζ (�, )
� + 

�+ =
,


–  log –  log +  log –  logπ

–
,ζ ()

π +
ζ ()
π , (.)

∞∑
�=

ζ (�, )
� + 

�+ = – log –  log + log +  log –  logπ , (.)

∞∑
�=

ζ (�, )
� + 

�+ = , + , log + , log + , log

+ , log –  logπ –
ζ ()

π , (.)
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∞∑
�=

ζ (�, )
� + 

�+ = , – , log – , log + log +  log

– , logπ –
,ζ ()

π +
ζ ()

π , (.)

∞∑
�=

ζ (�, )
� + 

�+ = , – , log – , log + log + , log

– , logπ –
,ζ ()

π +
,ζ ()

π –
,ζ ()

π . (.)

4 The determinants of the Laplacians on Sk (k = 2n + 1)
Here, by using (.) and the results in the previous sections, we are ready to compute the
determinants of the Laplacians on Sk (k = n + ) as in the following theorem.

Theorem The determinants of the Laplacians on Sk (k = n + ) are given as follows:

det′�n+ = exp
[
–Z′

n+()
]
exp

[
–

n∑
m=

Zn+(m)
nm

m

]

· exp
[
–

n∑
m=

�–m(n)Hm–
nm

m!

]
En+

(
n

)
, (.)

where

Zn+(–m) := (–)mm!�–m(n) (m ∈N) (.)

and Hm are harmonic numbers defined by

Hm :=
m∑
k=


k

(m ∈N). (.)

Here we have

Z′
n+() =

(–)n

(n)!

n∑
�=

C�(n)

[
(–)�

(�)!
(π )�

ζ (� + ) +
n∑
j=

j� log j

]
, (.)

Zn+(m) =
(–)n

(n)!

·
[ m∑

�=

C�(n)

(
(–)m–�+ (π )(m–�)

(m – �)!
B(m–�) –

n∑
j=


jm–�

)

–
n∑

�=m+

C�(n)

( n∑
j=


jm–�

)]
, (.)

Zn+(–m) = (–)mm!�–m(n) =
(–)n+

(n)!

n∑
�=

C�(n)

( n∑
j=

jm+�

)
(.)
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and

logEn+
(
n

)
=
(–)n+

(n)!

n∑
j=

Cj(n)P(n, j), (.)

where, for convenience,

P(n, j) :=
∞∑

�=n+

ζ (� – j,n + )
�

n�

=
n–j∑
�=

[
(–)�

(π )�

(�)!
B� +

n∑
k=


k�

]
n�+j

� + j
+

∞∑
�=

ζ (�,n + )
� + j

n�+j, (.)

of which the last series is expressed in a closed-form as given in Lemma .

Proof In view of (.), the sequence {μk} of eigenvalues on the standard Laplacian �n+

on Sn+ is given as follows: μk := k(k + n) with multiplicity qn+(k) as in (.). Here
we consider the shifted sequence {λk} of {μk} by n as a fundamental sequence. Then the
sequence {λk} is written in the following simple and tractable form:

λk = μk + n = (k + n) (.)

with the same multiplicity qn+(k). It is noted that λk has the order

μ = (n + )/ = n + /. (.)

It follows from (.) and (.) with the aid of (.) and (.) that

det′�n+ = exp
[
–Z′

n+()
]
exp

[
–

n∑
m=

FPZn+(m)
nm

m

]

· exp
[
–

n∑
m=

�–m(n)Hm–
nm

m!

]
En+

(
n

)
, (.)

where �–m(n) and Hm are given as in (.) and (.), respectively.
In order to express Zn+(s) in terms of certain known functions, we first consider the

corresponding multiplicity qn+(k): From (.), we have

qn+(k) =
(n + k)
(n)!

n–∏
j=

(k + j)

=


(n)!
· [(k + )(k + ) · · · (k + n)

] · [(k + n)(k + n + ) · · · (k + n – )
]
.

We find from (.) and (.) that

qn+(k) =


(n)!

[ n∑
j=

s(n, j)(k + n)j
][ n∑

j=

(–)n+js(n, j)(k + n)j
]
,
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which, in view of Lemma  (see also (.)), is expressed as follows:

qn+(k) =
(–)n

(n)!

n∑
�=

C�(n)(k + n)�. (.)

Now it is easy to see that

Zn+(s) :=
∞∑
k=

qn+(k)
(k + n)s

=
(–)n

(n)!

n∑
�=

C�(n)ζ (s – �,n + ), (.)

where C�(n) is given in (.).
Since the Hurwitz zeta function ζ (s,a) has only a simple pole at s =  with its residue ,

it is seen that Zn+(s) has simple poles at s = � + / (� = , , . . . ,n) with their respective
residue (–)nC�(n)/(n)!. Therefore we find from the finite part prescription (.) that

FPZn+(m) = Zn+(m) (m = , , . . . ,n). (.)

It is seen that applying (.) to (.) proves (.). Employing (.), (.), (.), and
(.) in (.), we obtain the expressions (.), (.), and (.).
In view of (.), (.), and (.), we obtain

En+
(
n

)
=

∞∏
k=

{(
 –

n

(k + n)

)qn+(k)

· exp
[
qn+(k)

(
n

(k + n)
+

n

(k + n)
+ · · · + nn

n(k + n)n

)]}
. (.)

Taking the logarithm of both sides in (.) and considering

log( – x) = –
∞∑
�=

x�

�
(–� x < ), (.)

we obtain

logEn+
(
n

)
= –

∞∑
�=n+

n�

�

∞∑
k=

qn+(k)
(k + n)�

. (.)

Applying (.) to (.), we get (.). Letting � – j = �′ in the definition of P(n, j) in (.)
and dropping the prime on �, we obtain

P(n, j) =
∞∑

�=n+–j

ζ (�,n + )
� + j

n�+j

= –
n–j∑
�=

ζ (�,n + )
� + j

n�+j +
∞∑
�=

ζ (�,n + )
� + j

n�+j

(n, j ∈N; � j� n),

which, upon using (.) and (.) in the first finite series, yields (.). �
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By setting n = , , ,  in (.), we give det′�n+ as in the following corollary.

Corollary The determinants of the Laplacians on Sk (k = , , , ) are given as follows:

det′� = π exp

[
ζ ()
π

]
, (.)

det′� =
π


exp

[



+
ζ ()
π –

ζ ()
π

]
, (.)

det′� =
π


exp

[
–
,


+
ζ ()
π –

ζ ()
π +

ζ ()
π

]
, (.)

det′� = –
,
, –

,
 –


 –

,
 π

· exp
[
,,,

,
+
,ζ ()
,π

–
,ζ ()
,π +

ζ ()
π –

ζ ()
π

]
. (.)
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