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1 Introduction

In this paper, we consider the matrix equation

X+A*X'A+B*X'B=(Q, (1)

where A and B are square matrices, Q is a positive definite matrix. It is easy to see that

matrix equation (1) can be reduced to
X+A'X"A+BX'B=1, 2)
where [ is the identity matrix. Trying to solve special linear systems [1] leads to solving

nonlinear matrix equations of the above types as follows.

For a linear system Mx = f with

Q 0 A
M=o Q B
A* B Q

positive definite, we rewrite M = M + K, where

X 0 A Q-X 0 0
M=o Xx B|, K=| 0 Q-X 0
A* B Q 0 0 0
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Moreover, we decompose M to the LU decomposition

X 0 A I 0 O0\/x o0 A
M=|l0 X B|-= 0 I ollo x B
A* B* Q AXY BXt 1J\0 0 X

A decomposition of M exists if and only if X is a positive definite solution of matrix
equation (1). Solving the linear system My = f is equivalent to solving two linear systems
with a lower and upper block triangular system matrix. To compute the solution of Mx = f
from y, the Woodbury formula [2] can be applied.

The matrix equation X + A*X~1A = Q has been studied extensively by many authors [3—
14]. Several conditions for the existence of positive definite solutions and some iterations
to find maximal positive definite solutions for these equations were discussed. Apparently,
matrix equation (1) generalizes the matrix equation X + A*X14 = Q.

Matrix equation (2) was studied in [15], and based on some conditions, the authors
proved that matrix equation (2) has positive definite solutions. They also proposed two
iterative methods to find the Hermitian positive definite solutions of matrix equation (2).
They did not analyze the convergence rate of proposed algorithms.

In this paper, we propose two algorithms. We will show that Algorithm (7) is more ac-
curate than Algorithm (3) pointed out in [15]. Also, Algorithm (10) needs less operation
in comparison with Algorithm (3). The following notations are used throughout the rest
of the paper. The notation A > 0 (A > 0) means that A is Hermitian positive semidefinite
(positive definite). For Hermitian matrices A and B, we write A> B (A>B)if A-B>0
(> 0). Similarly, by A1(A) and A, we denote, respectively, the maximal and the minimal
eigenvalues of A. The norm used in this paper is the spectral norm of the matrix A4, i.e.,
Al = (1(A7A))3.

2 Fixed point theorems
Lemma 1 [8] If C and P are Hermitian matrices of the same order with P > 0, then CPC +
P >2C.

In [15] an algorithm that avoids matrix inversion for every iteration, called inversion-
free variant of the basic fixed point iteration, and a theorem to find a Hermitian positive

definite solution of matrix equation (2) were proposed as follows.

Algorithm 1 [15] Let

XO = YO :I)
Xy =1-A"Y,A-BY,B, (3)
Yyn=2Y,-Y,X,Y,, n=0,12,....

Theorem 1 [15] Assume that matrix equation (2) has a positive definite solution. Then
Algorithm (3) defines a monotonically decreasing matrix sequence {X,} converging to the
positive definite matrix X which is a solution of matrix equation (2). Also, the sequence {Y,,}
defined in Algorithm (3) defines a monotonically increasing sequence converging to X .
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Although it is not mentioned in the previous theorem that the sequence {X,,} converges
to the maximal Hermitian positive definite solution of equation (2), during the proof of
the theorem in [15], it is obvious. So, X = X, where X, is the maximal positive definite
solution of matrix equation (2) in Theorem 1.

The problem of convergence rate for Algorithm (3) was not considered in [15]. We now
establish the following result.

Theorem 2 If matrix equation (2) has a positive definite solution, for Algorithm (1) and
any € >0, we have

[ Yo = X2 ] = (JAXZ ] + [BXL2] + ) Yo - XX | )
and

X1 — Xooll < (IAIZ + IBI?) | Y - X2 || (5)
for all n large enough.

Proof From Algorithm (3), we have
Yy =2Y, - Y, (I -A*Y, 1A - B'Y,1B)Y,
=2Y, - Y} + VA" (X + Yo - X30)AY, + Y, B* (X! + Yoo — X)) BY,,
=2Y, = Yo Xoo ¥y + Y A* (Yo — X1)AY, + Y, B* (Y1 — X31)BY,,.

Thus

XL =Y =X = Yo+ YuXoo Yy = Yy + Y, AN (XS] = Y1) AY,, + Y, B (X3 — Y1) BY,

oo

= (X2 - Y)X, (X

,1_
[e.¢]

Y,) + Y, A* (X - Y,o)AY, + VB (X3! - Y1) BY,.

Now, since || Y, — X || < [|Y,1 — X2l and lim Y, = X7}, inequality (4) follows. Also, in-
equality (5) is true since

Xui1 —Xoo =A* (X} - Y)A + B (X3) - Y,)B. (6)
This completes the proof. O

The above proof shows that Algorithm (3) should be modified as follows to improve the
preceding convergence properties.

Algorithm 2 Let

Xo=Yo =1,
Yn+1 = 2Yn - YanYm (7)
Xy =1-A"YynA-BY,1uB, n=0,12,....

Theorem 3 Assume that matrix equation (2) has a positive definite solution. Then Algo-
rithm (7) defines a monotonically decreasing matrix sequence {X,,} converging to X, which
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is the maximal Hermitian positive definite solution of equation (2). Also, the sequence {Y,}
defined in Algorithm (7) defines a monotonically increasing sequence converging to X3

Proof Let X, be a positive definite solution of matrix equation (2). It is clear that
Xo=Xi>>X,>X,, Yo<¥Vi<---<Y, <X (8)
is true for n = 1. Assume (8) is true for n = k. By Lemma 1, we have that
Yin = 2Y - ViXo Y < Xt < X[
Therefore,
X =1 - A YinA>1-A*X'A=X,.
Since Yx < X;', < X', we have Y > X;. Thus
Yiri—Yr= Yk(YIZI - X )Y =0
and

Xis1 = Xp = -A* (Y - YA <0.

We have now proved (8) for n = k + 1. Therefore, (8) is true for all #, and lim,,_, o, X, and
lim,,_, « Y, exist. So, we have lim X, = X, and limY,, = X;. O

Similar to Theorem 2, we can state the following theorem.

Theorem 4 If matrix equation (2) has a positive definite solution for Algorithm (7) and
any € > 0, then we have

[ Yo = X2 = (JAX2] + [BX2] +€)’| Y - X2
and

I1X, = Xooll < (IAI% + IBI) || Y = X2 | ©)
for all n large enough.

Now, we can see that Algorithm (7) can be faster than Algorithm (3) from the estimates
in Theorems 2 and 4.

Algorithm 3 Take

Xo=1, Yo=1,
Yo = (I_Xn)Yn +1, (10)
XVHIZI_A*YnHA_B*YnHB; n=0,12,....

Algorithm (10) requires only five matrix multiplications per step, whereas Algorithm (3)
requires six matrix multiplications per step.
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Theorem 5 [f matrix equation (2) has a positive definite solution and the two sequences
{X,} and {Y,} are determined by Algorithm (10), then {X,} is monotone decreasing and
converges to the maximal Hermitian positive definite solution X«. Also, the sequence {Y,}
defined in Algorithm (10) is a monotonically increasing sequence converging to X3}

Proof Let X, be a positive definite solution of equation (2). We prove that

Xo=X1 > 22X, > X, (11)
and

Y o<Vi<--<Y, <X (12)

Since X, is a solution of matrix equation (1), Xo = I > X,. Also, we have Yy = Y7 =, and
1)

Xi=I-A*A-BB>1-A*X'"A-B'X;'B=X,,
ie,Xo>X; > X,.
For the sequence {Y,}, since ] < X;!, Yo =Y; =1 < XL

Thus inequalities (11) and (12) are true for n = 1. Now, assume that inequalities (11) and
(12) are true for n =k, i.e.,

We show that inequalities (11) and (12) are true for n = k + 1. We have
Yin=U-X)Y+1> I -Xp_ ) Vi +1=Y;

and
Yin=U-X)Ye+I < -X)X;' +1=X]",

i, Y < Yis < X7 Then
X — Xiy1 = A" (Y1 — Yi)A + B* (Y1 — Y5)B,

and X1 < Xy, since Y < Yi,1. On the other hand,

Xi = I = A"YinA - B" Y B
>I-A*X'A-B'X'B

=X,, 13)

ie., Xk = Xk+l > X+-

Page 5 of 10
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Then the above inequalities are true for all #, also lim,_, - X, and lim,,_, », Y, exist. By
taking limit on Algorithm (10), we have lim,,_, oo X, = Xoo and limy, 0 ¥y, = X;g, where X,
is the maximal positive definite solution of matrix equation (2). a

By Algorithm (10), we have I — X,,Y}, = Y,,;1 — Y,,. Then, for small € > 0, ||/ — X,,Y,| can
be one stopping condition.

Theorem 6 Ifmatrix equation (2) has a positive definite solution and after n iterative steps
of Algorithm (10), the inequality |1 — X,,Y,,|| < € implies

|X, + A*X;2A + B X' B 1| < e(JAI2 + 1BI2) | X
Proof Since

Xy + A X' A+ B*X,'B—1 =X, = Xp1 + A*(X,,' = Y1 )A + B* (X, = Yy1)B
=A* (Y - X, + X, - Y,)A
+B* (Yo - X' + X' - Y,)B
+ A (X' = Yu)A + B (X, = Y,1)B (14)
= A*X M - X, YA + B X, (I - X,,Y,,)B,
1%, + A* X' A + B*X,,'B 1| < (IAI* + IBI?) | X2 | 11 = X Youl

<e(lAl? + 1B1%) | X2
This completes the proof. O

Theorem?7 IfX, > 0 forevery n, then matrix equation (2) has a Hermitian positive definite
solution.

Proof Since X, > 0 for every n, the proof of the monotonicity of {Y;,} and {X,} noted
in Theorem 5 remains valid. Therefore, the sequence {X,,} is monotone decreasing and
bounded from below by the zero matrix. Then lim,_, » X,, = X exists. We claim that the
sequence {Y,} is bounded above. Suppose that it does not hold. Then, for every m > 0,
there exists n,, such that mI < Y, . Since each X, is positive definite for every n, we have

A*Y,A+BY,B<I forevery n.

Furthermore, since A or B are nonsingular for every m > 0, we have
m(A*A + B’B) <A*Y,,, A + B'Y,, B<I.

By [16, Lemma 1.2],
m(A*A +B*B) <1 for every m,

which is a contradiction. Then the sequence {Y,,} is bounded above and convergent. Sup-
pose that lim,,_,» Y, = Y. As Yy = and {Y,} is monotone increasing, ¥ < /. Taking limit
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in Algorithm (10) implies that

Y=(I-X)Y +1,

X=1-A"YA-B'YB.

Since Y <I,X = Y'>0,and hence X =1 - A*X"'A — B*X"'B. Then matrix equation (2)
has a positive definite solution. O

Theorem 8 If matrix equation (2) has a positive definite solution and ||A|| < % and ||B| <
%, then the sequence {X,} defined in Algorithm (10) satisfies

[ Yo = X3 = (|AXZ] + |BXZ D Yo - X5 (15)
and

X1 = Xooll < (IAI% + 1BI?) || Y - X2 | (16)
for all n large enough.

Proof From Algorithm (10), we have

Yy = =Xn)Y, +1

= A*Y,AY, + B'Y,BY, +I

=AY (Y, + X2 - XAY, + B* (Y, + X3 = X2)BY, +1

= A* (Y, - XD)AY, + B* (Y, - X)BY, + A X AY, + BXI!BY, + Y, - Y, +1
= A" (Y, - X)AY, + B* (Y - X2)BY, - (I -A*X A - B X B)Y, + Y, +1
=AY, - X3))

DAY, + B (Y, = X2)BY, = Xoo Yy + Yy + 1.
Thus

X2 =Y = X+ A* (X0 — Yu)AY, + BY (X} - Y)BY, + Xoo Yy = Yy = 1

o0
= A" (X3} = Y,)AY, + BY (X = Y,)BY, + (I - Xoo) (X2 = V)
= A*(XJ! - Y,)AY, + B* (X3} - Y,)BY,
+ ANXIAXS - Y,) + BXIB(X - Ya).
Therefore, we have
[X% = Yaa | = (A" [1AY, 1 + | B[ 1BY, 1 + [A*XZA[ + | BXSB|) [ X - Y|
= (1A, 1+ [ xSAf) 4] + (1BY. 1+ [XZB]) [ B [) | X3 = Y-
Now, since lim,_, « Y, = X3}, inequality (15) follows. Also, inequality (16) is true since

X1 — Xoo = A" (XL - Y,)A + B* (X3! - Y,,)B. 17)

This completes the proof. d

Page 7 of 10
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3 Numerical examples

In this section, we present some numerical examples to show the effectiveness of the new
inversion-free variant of the basic fixed point iteration methods. Hermitian positive defi-
nite solutions of matrix equation (2) for different matrices A and B are computed. We will
compare the suggested algorithms, Algorithm (7) and Algorithm (10), by Algorithm (3).
All programs were written in MATLAB.

Example 1 Consider equation (2) with

1 02 -01 03 0.46 -0.01 0.020
A=——10. . -0.7 1, B=—1-0. -0. -0.

200 0.56 0.3 0.7 20 015 -0.488 -0.060

02 05 0.6 0.04 -0.01 -0.120

Algorithm (3) needs six iterations to get the solution

0.999400612248657 —0.000176704506272 —0.000028208026789
X =1 -0.000176704506272  0.999395021004650 —-0.000077249011425 |,
—-0.000028208026789 —-0.000077249011425 0.9999304:83901903

|X+A* XA+ B X' B-1I|_ =13885e-013.
Algorithm (7) needs six iterations to get the solution

0.999400612248567 —0.000176704506276 —0.000028208026792
X =1 -0.000176704506276  0.999395021004514 —-0.000077249011443 |,
—-0.000028208026792 —-0.000077249011443  0.999930483901898

|X+A*X A+ B X'B-1|_ =6.7763e-021.

We can easily see that Algorithm (7) is more accurate than Algorithm (3).

Algorithm (10) needs six iterations to get the solution

0.999400612248567 —-0.000176704506276 —0.000028208026792
X =] -0.000176704506276  0.999395021004514 —0.000077249011443 |,
—-0.000028208026792 —0.000077249011443  0.999930483901898

|X+A* XA+ B*X'B-1I||  =6.7763e—021.
Example 2 Consider equation (2) with

41 15 23 35 66 23 21 23 25 32
25 12 27 45 21 21 45 60 42 33
23 27 28 16 24|, =330 23 24 34 18 17
15 45 16 52 65 13 42 18 44 30
66 21 24 65 35 32 33 26 30 26

" 820
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Algorithm (3) after 21 iterations gives the solution

0.98393799066  -0.01161748103  -0.01233926321 -0.01833845539  —-0.01633619168
—0.0116174:8103 0.98497686219  —0.01315828865  —0.01745583944  —0.01639741581
X =] -0.01233926321  -0.01315828865  0.98561286596  —0.01623773649  —0.01467582916 |,
—0.01833845539  -0.01745583944  -0.01623773649  0.97439947749  —-0.02237728728
—-0.01633619168  -0.01639741581  —0.01467582916  —0.02237728728  0.97634558763

|X+A* XA+ B*X'B- 1| =3.7975e-013.

Algorithm (7) after 21 iterations gives the solution

0.98393799066  -0.01161748103  -0.01233926321 -0.01833845539  —-0.01633619168
—-0.0116174:8103 0.98497686219  —0.01315828865  —0.01745583944  —0.01639741581
X =] -0.01233926321  -0.01315828865  0.98561286596  —0.01623773649  —0.01467582916 |,
—0.01833845539  —-0.01745583944  -0.01623773649  0.97439947749  —-0.02237728728
—-0.01633619168  -0.01639741581  —0.01467582916  —0.02237728728  0.97634558763

|X +A* XA+ B*X'B-1I|| = 6.0963e-018.

Algorithm (10) after 21 iterations gives the solution

0.98393799066  -0.01161748103  -0.01233926321 —-0.01833845539  —0.01633619168
—-0.0116174:8103 0.98497686219  —0.01315828865  —0.01745583944  —0.01639741581
X =] -0.01233926321  -0.01315828865  0.98561286596  —0.01623773649  —0.01467582916 |,
—0.01833845539  -0.01745583944  -0.01623773649  0.97439947749  —-0.02237728728
—0.01633619168  -0.01639741581  —0.01467582916  —0.02237728728  0.97634558763

|X+A* XA+ B X'B-1I|__ =6.1220e-018.

We can see that Algorithm (10) needs to find a Hermitian positive definite solution.
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