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Abstract

This paper investigates the lag projective synchronization and anti-synchronization
problems for a general master-slave chaotic system with bounded nonlinearity. An
adaptive controller is designed to guarantee that the slave system synchronizes with
the master system by using Lyapunov stability theory and the idea of bang-bang
control. Different from some existing master-slave models, the nonlinear terms in the
considered chaotic system only need to satisfy bounded conditions. Furthermore, the
structure of the master system does not need to match that of the slave system.
Finally, three numerical examples are given to illustrate the main results.

1 Introduction

In the past few decades, the synchronization of master-slave chaotic systems has become
a hot research topic in the nonlinear science field. One of the most important reasons is its
potential applications in the real world such as the secure communications [1, 2], telecom-
munication [3—6], chemical reactions and biological systems [7, 8], etc. For a master-slave
system, the synchronization means that the state of a slave system follows the state of a
master system asymptotically by using the output of the master system to control the slave
system. It is well known that the state trajectories of chaotic systems closely depend on the
initial conditions, then it is difficult to drive a master-slave chaotic system with different
initial conditions to achieve synchronization. In particular, for a master-slave chaotic sys-
tem with different state equations, this problem becomes much more difficult.

To date, many papers on the study of the synchronization control of chaotic systems have
appeared. For example, Su et al. investigated the synchronization of a discrete master-
slave chaotic system with impulsive effect in [9], and Qi et al. investigated the Hy, syn-
chronization of a discrete master-slave chaotic system with external disturbance in [10],
respectively. In these two papers, the master system is required to match well the slave sys-
tem; moreover, the nonlinear parts in the master-slave system must satisfy the Lipschitz
condition. For continuous cases, there are also many related results. For instance, in [11]
and [12], Yang et al. and Xu et al. studied the lag synchronization of the chaotic system
with time delay. The anti-synchronization of chaotic systems is investigated in [13, 14] by
using the adaptive control method. The projective synchronization of chaotic systems is
studied by utilizing adaptive back-stepping control, state feedback control and impulsive
control in [15-17], respectively. Similar results can be found in [18—28] and the references
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therein. In these papers, the chaotic synchronization problems mainly include synchro-
nization, projective synchronization, anti-synchronization and lag synchronization. The
used synchronization control methods mostly include the state feedback control, pinning
control, adaptive control and impulsive control.

Although there have been a lot of literature works studying the synchronization problem
of chaotic systems, we find the following deficiencies: (1) Most of them require the nonlin-
ear parts in the chaotic systems to satisfy the Lipschitz condition. (2) Each paper usually
only could solve a single synchronization problem, which leads to the lack of a unified
method to solve all the synchronization problems for the same master-slave model. Moti-
vated by these factors, we aim in this paper to find a kind of effective method to deal with
all the synchronization problems for a general master-salve chaotic system. The contribu-
tions of this paper are as follows: (i) The lag projective synchronization which can include
synchronization, projective synchronization, anti-synchronization and lag synchroniza-
tion at the same time is investigated. (ii) The considered master-slave system model is
different from the systems in the literature, in which the nonlinearities only need to sat-
isfy abounded condition. Moreover, the state equations of the master system and the slave
system are non-identical. (iii) The presented results are very concise and it is easy to adjust
the synchronization rate by the control gains.

The rest of this paper is organized as follows. In Section 2, the investigated master-
slave chaotic system is presented and an adaptive synchronization controller is designed.
In Section 3, three numerical examples are provided to illustrate the effectiveness of the
obtained method. Conclusions are drawn in Section 4.

Notations

R" and R"*™ denote the n-dimensional Euclidean space and the set of # x m real matrices,
respectively. R, stands for the set of positive real numbers. For an n-dimensional vector
v=(n,va,...,v,)T €R", whose norms are defined as [|v[; = Y1, [vil, [vIl2 = /> 1, v} and
[Vlloo = max;<i<,{|v]}, sign(v) = (sign(v;), sign(vy), ..., sign(v,))?. AT denotes the transpose
of matrix A, the notation X > Y (respectively, X > Y) means that X — Y is a symmetric
semi-definite matrix (respectively, positive definite matrix), where X, Y are symmetric

matrices. I, is the # x n identical matrix.

2 Synchronization control scheme
Consider a general master-slave chaotic dynamical system that is described as follows:

Slave: y(t) = By(t) + g(y(¢), t) + u(t), o

{ Master: (£) = Ax(t) + f(x(£), £),
where x(£) = (x1(£), %2(2), ..., %,(£))T € R* and y(t) = (y1(8),y2(£),...,y.())T € R" are the
state vectors of the master system and the slave system, respectively. A € R"*” and B €
R™" are two known real matrices, f(-) : R” x R, — R" and g(-) : R” x R, — R”" are two
bounded nonlinear vector functions. u(t) € R" is the control input to be determined.

For given scalars v > 0 and u # 0, define the error state as e(£) = y(¢) + px(t — ), then
one can obtain the following error system:

e(t) = Ae(t) +g(y(t), t) + ,uf(x(t —-1),t— r) + (B=A)y(t) + u(z). (2)
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Definition 1 For given constants T and u, master-salve chaotic system (1) is said to be lag
projective synchronization if

lim He(t)”2 =0 3)

—+00

for any initial conditions.

Remark 1 The aim of this paper is to design a suitable controller u(t) such that the con-
trolled slave system synchronizes with the master system. Thus, by Definition 1, one only
needs to design a controller such that error system (2) is stable.

Remark 2 Especially, master-salve chaotic system (1) is said to be lag anti-synchronization
if 1 = 1; master-salve chaotic system (1) is said to be lag synchronization if u = —1. When
time delay v = 0, master-salve chaotic system (1) is said to be anti-synchronization if u = 1;
master-salve chaotic system (1) is said to be synchronization if i = —1; master-salve chaotic
system (1) is said to be projective synchronization if 4 # £1. Then Definition 1 unites sev-
eral kinds of synchronization definitions together and is very general.

In order to study the lag projective synchronization of master-slave chaotic system (1),
the following assumption is firstly given.

Assumption 1 Assume that the nonlinear functions in master-slave system (1) are
bounded, i.e., there exist two constants My > 0 and M, > 0 such that

lf=@,.0)| ., =Mp  [eb®)1)], =M,
hold for any x(¢), y(t) € R" and ¢ > 0.

Remark 3 There exist a lot of papers that study the synchronization problems of master-
slave chaotic systems. Different from them, the nonlinear functions f(x(¢), t) and g(y(z), £)
in system (1) need not satisfy the Lipschitz condition. In fact, the bounded functions could
satisfy the Lipschitz condition. For example, f(z) = sin % is bounded but does not satisfy
the Lipschitz condition in the neighborhood of zero. Conversely, the functions satisfying
the Lipschitz condition may not be bounded. For instance, f(z) = z satisfies the Lipschitz
condition but it is not bounded. Therefore, the Lipschitz condition and bounded condition
are different. To the best of our knowledge, the results on this topic are few.

In this paper, the following controller and updated laws are designed

u(t) = —(B—A)y(t) — L (t)e(t) — Ly(t) - sign(Pe(t)),
L1(2) = ae” (¢)Pe(z), (4)
Ly () = BlIPe(®)IIx

to promote master-slave system (1) achieving synchronization, where & and 8 are any
given positive constants, P € R"*" is a positive definite symmetric matrix to be deter-
mined.

In what follows, the main result is obtained.
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Theorem 1 Suppose master-siave chaotic system (1) satisfies Assumption 1. If there exist
scalars L >0, L, > 0 and a positive definite symmetric matrix P € R™" such that

PA+ATP-2L,P<0 5)
and
Myl + My <L, (6)

hold, then master-slave chaotic system (1) synchronizes well under the action of adaptive

controller (4), where o and B are any given positive constants.

Proof Choose the following Lyapunov function:
T 1 w2 1 “\2
V(e(t)) = e’ (¢)Pe(t) + &(Ll(t) -L)"+ 5 (La(0) - L), (7)

where L; and L, are sufficiently large positive constants to be determined in the sequel.
The derivative of V(e(¢)) along the state trajectories of system (2) is

V(e(®)) = " (t)Pe(t) + e (t)Pé(t) + 2™ (L1(2) — L) La(2) + 287 (La(8) — Ly) La(2)
= [Ae(t) +g(y(0), 1) + uf (x(t - 7).t~ 7)
+(B=A)y(®) +u(t)] Pe(t) + e (t)P[Ae(t) + g(»(0), 1)
+uf(x(t—1),t— ) + (B—A)y(t) + u(t)]
+2(L1(2) — Ly)e” (t)Pe(t) + 2(La(2) - Ly) | Pe(t) |,
= e’ (t)(PA + ATP)e(t) + g" (y(t), t)Pe(t) + e” (t)Pg(y(t), t)
+ul[fT (6t = 1)t — T)Pe(t) + €T (E)Pf (x(t — 7),t — 7) ]
—2e"()P[L1(t)e(t) + Ly(¢) - sign(Pe(?))]
+2(L1(2) - Ly)e” (£)Pe(t) + 2(L2(t) - Ly) )
=’ (t)(PA + ATP)e(t) + g" (y(t), t)Pe(t) + e (t)Pg(y(t), t)
+ u[fT (%t = 1), £ — T)Pe(t) + " (O)Pf (x(t - 1), t — 7)]
—2L;e" (t)Pe(t) - 2L, | Pe(t) . (8)

From Assumption 1, one gets
" (0, 1) Pe(t) + e (OP(y(0),1) = 2[e(y(®) 1) | - [ Pe(®)], = 2M || Pe()], )

and

wlfT (x(t - 7).t — T)Pe(t) + e" (E)Pf (x(t — 7), t — )]
<2lul- [f(xe-0)e-1)| - [Pe®],

< 2My|u| - || Pe(t) |, (10)
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Inequalities (9) and (10) yield that

V(e(t)) < e’ ()(PA + ATP - 2L P)e(t) + 2(My|p| + My — Ly) | Pe(?)| - (11)
From inequalities (5) and (6), we have

V(e(t)) <0.

By the Lasalle invariance principle of differential equation, it is known that all the state
trajectories of system (1) converge to the set S = {e(t)|e(t) = 0}, which implies that
lim;_, ;oo |le(t)|l2 = 0 and the slave system synchronizes with the master system. This com-
pletes the proof. g

Remark 4 Adaptive controller (4) is divided into three parts. The first and second parts
can be thought of as the state feedback control, and the last part can be thought of as a
suitable complement for the bounded nonlinearities in the chaotic system by using the
idea of the bang-bang control.

Remark 5 It is easy to see that adaptive controller (4) can always drive the slave system
to synchronize with the master system since inequalities (5) and (6) always have feasible
solutions. Different from the methods in [28, 29], our method does not need to do some
complex computation. Furthermore, the synchronization rate can be altered through ad-

justing the control gains « and 8.

Remark 6 From Theorem 1, it is also easy to design the synchronization controller, anti-
synchronization controller, lag synchronization controller and projective synchronization
controller for chaotic system (1).

3 Numerical simulations
In this section, three examples are given to show the effectiveness of the proposed method.

Example 1 Consider the known second-order non-autonomous chaotic system [30]
y(E) + 8[d cos2y(t) —d + l]y(t) + (02 - cosy(t)) siny(¢t) = 8T cos wt, (12)
where ¢, d, §, w, I are positive constants.
Let y(¢) = x1(¢) and j(¢) = x,(t), then system (12) can be transformed to

x1(2) = %o (8),

Xo(£) = =8[d cos 2x,(£) — d + 1]z (t) — (c? — cosx1(¢)) sin; (¢) + T cos wt 13)

or
x(t) = Ax(t) + f (x(2), 2),

where x(£) = (01(0),%20)7, A = [ yp ] &GO, 8) = (0,-8dcos2x,(t) - x5(t) - (> -
cosx1(2)) sinx; (£) + 8T cos wt)T. When choosing ¢ =0.07338,d =08, =0.landw=T =1,
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X,

Figure 1 Phase diagram of system (13) with initial condition x(0) = (1.2, -0.8)7.

the phase diagram of system (13) is shown in Figure 1. This figure shows that the state tra-
jectories are bounded for ¢ > 0, then f(x(¢), £) is bounded for all the x(¢) and Assumption 1
is satisfied. Taking two non-autonomous systems defined by (12) to constitute a master-
slave system, setting 1 = —1 and t = 2, and computing by the LMI’s Toolbox in the Matlab,
the following feasible solutions

P = diag(1,1}, L =01, L,=05

are obtained. Under the action of adaptive controller (4), taking the initial conditions as
%(0) = (1.2,-0.8)T and y(0) = (-12,8)7, & = B = 0.1, we show the state trajectories of error
system (2) and updated laws in adaptive controller (4) in Figures 2-4, respectively. These
figures show that the master-slave system is lag synchronization.

Remark 7 In [30], Wu et al. investigated a synchronization problem of the master-slave
system composed of system (12). Using their methods, one needs to do some complex
computation and discussion. Hence, our method is more concise than theirs.
Example 2 Consider the following Chua’s circuit [29]:

x1(2) = alxy(t) — mx1(£)] — ah(x1(2)),

x(2) = 21(2) — x2(2) + x3(2), (14)

x3(t) = —bxy(2),

where h(x,(t)) = %(mo —my)(|x1(£) + | = |x1(t) = ¢c|),a=9,b=14.28, c=1, my = —1/7 and
my = 2/7. System (14) can be represented by

x(t) = Ax(t) + f (x(2), 2),
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20 40 60 80 100

0 20 40 60 80 100
t

Figure 2 State trajectories of the master-slave system with initial conditions x(0) = (1.2, -0.8)7 and
y(0)=(-12,8).

e(t)
0

N
o

-12 ' : ' '
0 20 40 60 80 100

Figure 3 Synchronization error trajectories.

0
where A = [ T j11 1:|,f(x(t), t) = (—ah(x,(¢)),0,0)7. Taking this system as the master sys-
0 0

tem, the corresponding slave system is
() = Ay(®) +g(¥(0), 2),
where g(y(2),£) = (0, h(y,(¢)),0) . Since

’xl(t) + c‘ - |x1(t) - C‘ < |(x1(t) + C) - (xl(t) - C)| =2¢,
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Figure 4 State trajectories of updated laws.
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Figure 5 State trajectories of the master-slave system with initial conditions x(0) = (20,-20, 50)7 and
y(0) = (40,70,-50)".

then ||f(x(2), )l co = lg(2), t)ll o < ac|mg — m|, which implies that Assumption 1 holds.
Considering the anti-synchronization of the master-slave system composed of system (14),
choosing p =1, 7 = 0, and computing by the LMI’s Toolbox in the Matlab, one can obtain

the feasible solutions of inequalities (5) and (6) as follows:

P = diag{1,1,1}, Ly =75, L,=8.
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Figure 6 Anti-synchronization error trajectories.
6
[
) L,
5 [ T Lz(t)
i
= O
T
2}
-4
-6 . . . . .
0 5 10 15 20 25 30
t
Figure 7 State trajectories of updated laws.

Taking the initial conditions as x(0) = (20,-20,50)% and y(0) = (40,70,-50)%,a = 8 = 0.5,
under the action of adaptive controller (4), we show the illustration results in Figures 5-7,

respectively. These figures show that the master-slave system is anti-synchronization.

Example 3 Consider the following dynamical system:

x(t) = Ax(t) + f (x(2), 2), (15)
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Figure 8 State trajectories of the master-slave system with initial conditions x(0) = (60,-100, 100)7
and y(0) = (-80,100,-100)".
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Figure 9 Synchronization error trajectories.

where A = [1.5 20 :|,f(x(t), t) = (sin —%—, sin ——, sin —+—)7, ¢ = 0.00001. Tak-

So wre” S e S Tl

ing system (15) as the master system, and y(¢) = Ay(¢) — g(y(¢),t) as the slave system,
where g(y(t),t) = (cos m(tlms,cos Iyz(ll)HS’COS Iyg(i)IH?)T’ it is easy to see |f(x(£),)|lco =
le(@®),)]leo <1 for any x(t),y(t) € R3, and f(x(t),t) and g(y(¢),£) do not satisfy the
Lipschitz condition. Considering the synchronization of this master-slave system and

choosing = -1, © = 0, after computing by the LMI’s Toolbox in the Matlab, one can
get the feasible solutions of inequalities (5) and (6) as follows:

P = diag({1,1,1}, L =4, L,=11
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Figure 10 State trajectories of updated laws.

Taking the initial conditions as x(0) = (60,-100,100)7 and y(0) = (-80,100,-100)7, & =
B = 0.2, under the action of adaptive controller (4), we show the illustration results in
Figures 8-10. These figures show that the master-slave system is synchronization. It should
be noticed that the nonlinear function in system (15) is bounded but does not satisfy the
Lipschitz condition.

4 Conclusions

In this paper, the lag projective (anti-)synchronization problems for a kind of master-slave
chaotic systems by using the adaptive control method have been investigated. Based on
the Lasalle invariance principle of differential equation and the idea of the bang-bang con-
trol, an adaptive controller with simple updated laws has been proposed. Three numerical
examples have shown that the obtained method is effective.
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