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Abstract
In this paper, fault detection and estimation problem is studied for non-Gaussian
stochastic systems with time varying delay. A new approach based on the output
probability density function (PDF) and observers technique to detect and estimate
time varying faults is presented. Some slack variables and scalars are introduced to
design observers’ parameters, which can provide more degrees of freedom. A particle
distribution example is given to illustrate the design procedures, and the simulation
results show the performance of the proposed approaches.
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1 Introduction
Automatic control systems are widely applied to many industrial processes. However, un-
expected faults may destroy the stability of the systems. For such reasons, fault detec-
tion and estimation for dynamical systems has received much attention [–]. In past
two decades, many significant approaches have been presented and applied to practical
processes successfully []. In general, the fault detection (FD) results can be classified
into three types: filter- or observer-based approaches [–]; the identification-based FD
scheme [, ]; and statistic approach []. For the dynamic stochastic systems, the filter-
based FD approach has been shown as an effective way where generally the variables are
supposed to be Gaussian in [] and []. It has been shown that in systems where either
the system variables or not, the noise are not Gaussian in [, ]. Existing methods may
not be sufficient to characterize the closed loop system behavior. As a result, the output
PDF rather than the mean variance was proposed [–]. Here, we firstly introduce the
output PDF definition. For a dynamic stochastic system, suppose that the random process
y ∈ [a,b] is the output of the stochastic system, its output PDFs are defined by γ (z,u(t)),
where u(t) ∈ Rm is control input. In output PDFs shape control, the B-spline expansion
technique has been introduced in the output PDF modeling in [–], i.e., the following
square root B-spline expansion model has been used to approximate γ (z,u(t)):

√
γ
(
z,u(t)

)
=

n∑
i=

vi(u)bi(z), ()
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where bi(z) (i = , , . . . ,n) are pre-specified basis functions defined on [a,b], and vi(u(t))
(i = , , . . . ,n) are the corresponding weights of such an expansion. Denote

B(z) =
[
b(z) b(z) · · · bn–(z)

]τ

,

V (t) := V
(
u(t)

)
=

[
v v · · · vn–

]τ

.
()

And let � =
∫ b
a B(z)Bτ

(z)dz, � =
∫ b
a Bτ

(z)bn(z)dz, � =
∫ b
a bn(z)dz �= , � = �� –

��
τ
 . Furthermore, it can be verified that () can be rewritten as:

√
r
(
z,u(t)

)
= Bτ (z)V (t) + h

(
V (t)

)
bn(z), ()

where

Bτ (z) = Bτ
(z) –

�

�
bn(z), h

(
V (t)

)
=

√
� –V τ (t)�V τ (t)

�
, ()

where h(V (t)) satisfies ‖h(V(t))–h(V(t))‖ ≤ ‖U(V(t)–V(t))‖ for anyV(t) andV(t),
and U is a known matrix.
Themotivation of fault detection and estimation via the output PDFs from the retention

system in papermaking was first studied in [–], where the weight dynamical system
was supposed to be a precise linear model. However, linear mappings cannot change the
shape of output PDFs, which implies that the fault cannot be detected through the shape
change of the PDFs. To meet the requirement in complex processes, nonlinearity should
be considered in the weighting dynamic behavior [, –]. For example, the following
nonlinear dynamic model was considered in []:

⎧⎨
⎩ẋ(t) = Ax(t) +Adx(t – d(t)) +Gg(x(t)) +Hu(t) + Jf (t),

V (t) = Ex(t),
()

where x(t) ∈ Rm is the unmeasured state, f (t) is the fault to be detected and be assumed
‖f (t)‖ ≤ α and ‖ḟ (t)‖ ≤ β . A, Ad , G,H , D and E represent the known parametric matrices
of the dynamic part of the weight system. d(t) is time varying delay and satisfies  < d(t) ≤
h and ḋ(t) ≤ μ. The nonlinear function g(x(t)) is assumed to be Lipschitz with respect to
the state x, i.e., ‖g(x(t)) – g(x(t))‖ ≤ ‖U(x(t) – x(t))‖, where U is a known matrix.
Recently, a fault detection algorithm has been established by using the output PDFs in

[, , –]. However, the algorithms in [] did not consider time delay information in
the designed fault detection observer and the threshold. The method in [] provides less
conservative fault detection algorithms than [] by designing delay-dependent observer
and minimizing the threshold. To further improve the previous results, in this paper, a
new delay-dependent observer design is presented such that the estimation error system
is stable, and the fault can be detected and estimated through a threshold by introducing
the tuning parameter and slack variable. Finally, particle distribution process example is
given to demonstrate the applicability of the proposed approach.

Notation  Throughout this paper, for a vector ω(t), its Euclidean norm is defined by
‖ω(t)‖ = √

ωτ (t)ω(t). A real symmetric matrix P >  (≥ ) denotes P being a positive

http://www.advancesindifferenceequations.com/content/2013/1/22


Hu et al. Advances in Difference Equations 2013, 2013:22 Page 3 of 12
http://www.advancesindifferenceequations.com/content/2013/1/22

Figure 1 Fault-detection system.

definite (positive semi-definite) matrix, and A > (≥)B means A – B > (≥). I is used to
denote an identity matrix with proper dimension. Matrices, if not explicitly stated, are
assumed to have compatible dimensions. The symmetric terms in a symmetric matrix are
denoted by ∗.

2 Fault detection
Generally speaking, a fault-detection system consists of a residual generator and a residual
evaluator including an evaluation function and a threshold as in Figure  [–]. We
will consider two parts of fault detection systems by using the information of PDF in the
following section.

2.1 Residual generator
For the purpose of residual generation, we construct the following nonlinear observer:

˙̂x(t) = Ax̂(t) +Adx̂
(
t – d(t)

)
+Gg

(
x̂(t)

)
+Hu(t) + Lξ (t), ()

where x̂(t) is the estimated state, L ∈ Rm×p is the gain to be determined, ξ (t) is output
PDF’s estimation error defined as

ξ (t) =
∫ b

a
σ (z)

(√
γ
(
z,u(t), f (t)

)
–

√
γ̂
(
z,u(t)

))
dz

and

√
γ̂
(
z,u(t)

)
= Bτ (z)Ex̂(t) + h

(
Ex̂(t)

)
bn(z).

Define a state estimation error as e(t) = x(t) – x̂(t) and ξ (t), it can be shown that

ė(t) = (A – L
)e(t) +Ade
(
t – d(t)

)
+G

[
g
(
x(t)

)
– g

(
x̂(t)

)]
– L


[
h
(
Ex(t)

)
– h

(
Ex̂(t)

)]
+ Jf (t), ()

ξ (t) = 
e(t) + 

(
h
(
Ex(t)

)
– h

(
Ex̂(t)

))
, ()

where 
 =
∫ b
a σ (z)Bτ (z)Edz, 
 =

∫ b
a σ (z)bn(z)dz.

Thus, the problem of designing an observer-based fault detection can be described as
designing a matrix L such that the error system () is asymptotically stable and the fault
can be detected.
In order to formulate some practically computable criteria to check the stability of the

error system described by () and provide a feasible observer designmethod, the following
lemma is needed.
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Lemma  [] For any matrix M > , scalars b > a and c < d ≤ , if there exists a Lebesgue
vector function ω(s), then the following inequalities hold:

–
∫ b

a
ωᵀ(s)Mω(s)ds≤ –


b – a

ω̃ᵀ(s)Mω̃(s–), ()

–
∫ d

c

∫ t

t+θ

ωᵀ(s)Mω(s)dsdθ ≤ –


c – d ω̄ᵀ(s)Mω̄(s), ()

where ω̃(s) =
∫ b
a ωᵀ(s)ds, ω̄(s) =

∫ d
c

∫ t
t+θ

ω(s)dsdθ .

Based on the above lemma, a new delay-dependent fault detection observer can be de-
signed by using the following result.

Theorem  Given the scalars λi >  (i = h and μ), if there exist matrices P > , Q > ,
R > , R > , any matrices Z and N , satisfying


 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


 


hR – εNAd  

hR εNG εZ


∗ 
 –NAd   –NG Z


∗ ∗ 


hR   

∗ ∗ ∗ – 
hR   

∗ ∗ ∗ ∗ – 
hR  

∗ ∗ ∗ ∗ ∗ – 
λ
I 

∗ ∗ ∗ ∗ ∗ ∗ – 
λ
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< , ()

where


 = –

h
R – R +Q +


λ

EτUτ

UE +

λ

Uτ

U – ε
(
NA – Z
 +AᵀNᵀ – 


ᵀ
 Z

ᵀ),

 = P –AᵀNᵀ + 


ᵀ
 Z

ᵀ + εN ,


 =N +Nᵀ + hR +
h


R,


 = –

h
R – ( –μ)Q,

then in the absence of the fault f (t), the error system () with gain L =N–Z is stable.

Proof Define g̃ := g(x(s)) – g(x̂(s)), h̃ := h(Ex(s) – h(Ex̂(s))) and denote the Lyapunov func-
tion candidate as follows:

V(t) = eτ (t)Pe(t) +
∫ 

–h

∫ t

t+θ

ėτ (s)Rė(s)dsdθ

+
∫ 

–h

∫ 

θ

∫ t

t+v
ėτ (s)Rė(s)dsdvdθ +

∫ t

t–d(t)
eτ (s)Qe(s)ds

+

λ


∫ t



[∥∥UEe(s)
∥∥ – ‖h̃‖]ds + 

λ


∫ t



[∥∥Ue(s)
∥∥ – ‖g̃‖]ds ()

with P > ,T > ,Q > . Then following () and () givesV (t) ≥ . Along the trajectories of
() in the absence of f (t) and by using the completion-of-square method, it can be shown
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that

V̇(t) ≤ eτ (t)Pė(t) + ėτ (t)
(
hR +

h


R

)
ė(t) –

∫ t

t–h
ėτ (s)Rė(s)ds

–
∫ 

–h

∫ t

t+θ

ėτ (s)Rė(s)dsdθ + eτ (t)Qe(t) – ( –μ)eτ
(
t – d(t)

)
Qe

(
t – d(t)

)

+

λ

eτ (t)

(
EτUτ

UE
)
e(t) +


λ

eτ (t)

(
Uτ

U
)
e(t) –


λ

h̃τ h̃ –


λ

g̃τ g̃

+�(t). ()

It is noted that�(t) = ė(t)–(A–L
)e(t)–Ade(t–d(t))–Gg̃+L
h̃ =  in the absence of
f (t). According to the free weighting matrix method in [], for anymatrixN , the following
equality holds:


(
εeτ (t)N + ėτ (t)N

)(
ė(t) – (A – L
)e(t) –Ade

(
t – d(t)

)
–Gg̃ + L
h̃

)
= . ()

From Lemma , it is easily shown that

–
∫ t

t–h
ėτ (s)Rė(s)ds

= –
∫ t–d(t)

t–h
ėτ (s)Rė(s)ds –

∫ t

t–d(t)
ėτ (s)Rė(s)ds

≤
[
eᵀ(t) eᵀ(t – d(t)) eᵀ(t – h)

]⎡
⎢⎣
–R

h
R
h 

∗ –R
h

R
h

∗ ∗ –R
h

⎤
⎥⎦

⎡
⎢⎣

e(t)
e(t – d(t))
e(t – h)

⎤
⎥⎦ , ()

–
∫ 

–h

∫ t

t+θ

ėτ (s)Rė(s)dsdθ

≤ –

h

(∫ 

–h

∫ t

t+θ

ė(s)dsdθ

)ᵀ
R

(∫ 

–h

∫ t

t+θ

ė(s)dsdθ

)

=
[
eᵀ(t)

∫ t
t–h e

ᵀ(s)ds
][

–R

hR

∗ – 
hR

][
e(t)∫ t

t–h e(s)ds

]
. ()

From () and (), we can have 
 < , which implies V̇(t) ≤ η
ᵀ
 (t)
η(t) < , where

η(t) = [eᵀ(t) ėᵀ(t) eᵀ(t – d(t)) eᵀ(t – h)
∫ t
t–h eᵀ(s)ds g̃ᵀ h̃ᵀ]ᵀ and the error system () is

asymptotically stable. This completes the proof. �

Compared with the result in [], time varying delay is considered and a new method
in [] to deal with time delay is also used in Theorem . Meanwhile, to reduce complex
computations, some free weighting matrices Y, W in [] are not introduced in this paper.

2.2 Residual evaluator
After the fault detection observer is designed, the next important task for fault detection
is the evaluation of the generated residual, including a threshold and a decision logic unit

http://www.advancesindifferenceequations.com/content/2013/1/22
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[–]. In this case, we choose

Jr =

√∫ t+t

to
ξᵀ(s)ξ (s)ds ()

as the residual evaluation function, where t denotes the initial evaluation time instant
and t stands for the evaluation time, and ξ (t) is defined in (). Let

Jth = sup
f (t)=

Jr ()

be the threshold. Based on this, the following logical relationship is used for fault detec-
tion:

Jr > Jth ⇒ alarm⇒ fault,

Jr < Jth ⇒ no fault.

3 Fault estimation
For the purpose of estimation, we construct the following nonlinear observer:

˙̂x(t) = Ax̂(t) +Adx̂
(
t – d(t)

)
+Gg

(
x̂(t)

)
+Hu(t) + J f̂ (t) + Lξ (t),

˙̂f (t) = ϒ f̂ (t) +ϒξ (t),
()

where x̂(t) and f̂ (t) are estimation of x(t) and f (t). L, ϒ and ϒ are the gain parameters
to be determined. ξ (t) has been denoted in ().
By using e(t) = x(t) – x̂(t) and ef (t) = f (t) – f̂ (t), the estimation error system can be for-

mulated to give

ė(t) = (A – L
)e(t) +Ade
(
t – d(t)

)
+G

[
g
(
x(t)

)
– g

(
x̂(t)

)]
– L


[
h
(
Ex(t)

)
– h

(
Ex̂(t)

)]
+ Jef (t). ()

Theorem  Given the scalars λi >  (i = , ), h, μ and γ , if there exist scalars ui >  (i =
, , . . . , ), matrices P > , P > , Q > , R > , R > , and any matrices Z, N , W and
W satisfying

[

 
̄

ᵀ



̄ ϒ
ᵀ
 +ϒ

]
+ diag{uI,uI,uI,uI,uI,uI,uI,uI} < , ()

where


̄ =
[
–(γϒ
 + εJᵀNᵀ)JᵀNᵀ     –γϒ


]
()

and 
 is defined in (). When ‖ef (t)‖ ≥ α|P|+β|W|
u

, the error system () with gain L =
N–Z, ϒ = P–

 W and ϒ = P–
 W is asymptotically stable in the presence of f (t).

http://www.advancesindifferenceequations.com/content/2013/1/22
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Proof Denote the Lyapunov function candidate as follows:

V(t) = V(t) + γ eᵀf (t)ef (t) ()

with γ > . It can be shown that

V̇(t) = V̇(t) + γ eᵀf (t)ėf (t) +�(t). ()

It is noted that �(t) = ė(t) – (A – L
)e(t) – Ade(t – d(t)) – Gg̃ + L
h̃ – Jef (t) = .
According to the free weighting matrix method in [], for any matrix N , the following
equality holds:


(
εeᵀ(t)N + ėτ (t)N

)[
ė(t) – (A–L
)e(t) –Ade

(
t –d(t)

)
–Gg̃ +L
h̃– Jef (t)

]
= . ()

Then we have

V̇(t) ≤ η
ᵀ
 (t)
η(t) + εeᵀ(t)NJef (t) + ėᵀ(t)NJef (t) + γ eᵀf (t)ėf (t)

= η
ᵀ
 (t)
η(t) + εeᵀ(t)NJef (t) + ėᵀ(t)NJef (t) + γ eᵀf (t)ḟ (t) – γ eᵀf (t)ϒf (t)

+ γ eᵀf (t)ϒef (t) – γ eᵀf (t)ϒ
e(t) – γ eᵀf (t)ϒ
h̃

= η
ᵀ
 (t)

[

 
̄

ᵀ



̄ Wᵀ
 +W

]
η(t) + γ eᵀf (t)ḟ (t) – γ eᵀf (t)ϒf (t)

≤ –u
∥∥e(t)∥∥

 – u
∥∥ė(t)∥∥

 – u
∥∥e(t – d(t)

)∥∥
 – u

∥∥e(t – h)
∥∥
 – u

∥∥∥∥
∫ t

t–h
e(s)ds

∥∥∥∥




– u‖g̃‖ – u‖h̃‖ – u
∥∥ef (t)∥∥

 + γ
∥∥ef (t)∥∥∥∥ḟ (t)∥∥ + γ

∥∥ef (t)∥∥‖ϒ‖
∥∥f (t)∥∥

≤ –u
∥∥ef (t)∥∥

 + γα
∥∥ef (t)∥∥ + γβ

∥∥ef (t)∥∥|W|
=

(
–u

∥∥ef (t)∥∥ + γα + γβ|W|
)∥∥ef (t)∥∥, ()

where η(t) = [ηᵀ
 (t) e

ᵀ
f (t)]ᵀ, if ‖ef (t)‖ ≥ γ α+γβ|W|

u
, then the above () has the form of

V̇(t) < . That is to say, the estimation error of the fault is asymptotically stable. �

In Theorem , some parameters ui (i = , , . . . , ) and γ are introduced. These param-
eters may provide more degrees of freedom in fault estimation observer design and esti-
mation performance.

4 Simulations
In this section, we consider a simple example related to the particle distribution control
problems, where the shapes of measured output PDF usually have two or three peaks (see
[–]). Suppose these output PDFs can be approximated using a square root B-spline
model as

√
γ (z,u(t)) =

∑
i= vi(u(t),F)bi(z), where z is defined in [, .] and

bi =

⎧⎨
⎩| sinπz|, z ∈ [.(i – ), .i],

, others.
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Figure 2 The 3-Dmesh plot of the output PDF when the fault occurs.

For i = , , , it can be verified that � = diag{., .}, � = [, ], � = .. It is
assumed that the identified weighting system is formulated by () with the following co-
efficient matrices:

A =

[
–. 
 –

]
, Ad =

[
–. 
 –.

]
, G =

[
 
 

]
,

H =

[
 
 

]
, E =

[
 –
 

]
, J =

[
. 
 .

]
.

The upper bounds of nonlinearity are denoted byU = diag{., .},U = diag{., .}.
It can be tested that 
 = [. .], 
 = . for σ (z) = . In the simulation, the
initial condition of the system state and its estimation are selected as

x(t) =
[
. + exp(t – ) – . + exp(t – )

]τ , t ∈ [–., ], x̂() =
[
 

]
, t ∈ [–., ]

with the parameters being given as λ = , λ = , μ = . The fault is supposed as

f (t) =

⎧⎪⎪⎨
⎪⎪⎩
, t < ,

. + .× sin(t),  ≤ t ≥ ,

, t > .

By using Theorem  and Theorem , we can obtain Figures , , , , , the three-
dimensional (-D) mesh plot shows the changes of the measured output PDFs and Fig-
ure  demonstrates the responses of residual signal, Figure  shows the threshold and the
evaluation function. Figures  and  demonstrate the response of the error system and
fault estimation, when the fault occurs at  seconds to .

5 Conclusion
In this paper, a new fault detection and estimation scheme has been developed for the
stochastic dynamic systems with time varying delay by using stochastic distribution of

http://www.advancesindifferenceequations.com/content/2013/1/22
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Figure 3 The response of the residual signal.

Figure 4 Threshold and the evaluation function.

system output. Based on LMI techniques and by using the slack variables, a new delay-
dependent fault detection observer is designed to detect the system fault with a thresh-
old. Furthermore, an observer-based fault estimation method is provided to estimate the
size of the fault. Particle distribution example is to show the efficiency of the proposed
approach.
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Figure 5 The response of the error systemwhen the fault occurs.

Figure 6 The fault and its estimation.
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