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Abstract

In this paper, by using a fixed point theorem and differential inequality techniques,
we consider the existence and global exponential stability of an equilibrium point for
a class of fuzzy bidirectional associative memory neural networks with time-varying
delays in leakage terms on time scales. We also present a numerical example to show
the feasibility of obtained results. The results of this paper are completely new and
complementary to the previously known results.
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1 Introduction

The bidirectional associative memory (BAM) neural networks were first introduced by
Kosto in 1988 [1]. These are special recurrent neural networks that can store bipolar vector
pairs and are composed of neurons arranged in two layers. The neurons in one layer are
fully interconnected to the neurons in the other layer, while there are no interconnections
among neurons in the same layer.

In recent years, due to their wide range of applications, for example, pattern recognition,
associative memory, and combinatorial optimization, BAM neural networks have received
much attention. There are lots of results on the existence and stability of an equilibrium
point, periodic solutions or almost periodic solutions of BAM neural networks [2—-10].

Based on traditional cellular neural networks, Yang and Yang proposed a fuzzy cellular
neural network, which integrates fuzzy logic into the structure of traditional cellular neu-
ral networks and maintains local connectedness among cells [11]. The fuzzy neural net-
work has fuzzy logic between its template input and/or output besides the sum of product
operation. Studies have revealed that the fuzzy neural network is very useful for image
processing problems, which is a cornerstone in image processing and pattern recognition.
Besides, in reality, time delays often occur due to finite switching speeds of the amplifiers
and communication time and can destroy a stable network or cause sustained oscillations,
bifurcation or chaos. Hence, it is important to consider both the fuzzy logic and delay ef-
fect on dynamical behaviors of neural networks. There have been many results on the
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fuzzy neural networks with time delays [12—17]. Moreover, time delay in the leakage term
also has a great impact on the dynamics of neural networks. As pointed out by the author
in [18], time delay in the stabilizing negative feedback term has a tendency to destabilize
a system. Therefore, it is meaningful to consider fuzzy neural networks with time delays
in the leakage terms [19-24].

In fact, both continuous and discrete systems are very important in implementation and
applications. To avoid the trouble of studying the dynamical properties for continuous
and discrete systems respectively, it is meaningful to study those on time scales, which
was initiated by Stefan Hilger in his PhD thesis, in order to unify continuous and discrete
analyses. Lots of scholars have studied neural networks on time scales and obtained many
good results [25—-34]. However, to the best of our knowledge, there is no paper published
on the stability of fuzzy BAM neural networks with time delays in the leakage terms on
time scales.

Motivated by the above, in this paper, we integrate fuzzy operations into BAM neural
networks with time delays in the leakage terms and study the stability of considered neural
networks on time scales. By using a fixed point theorem and differential inequality tech-
niques, we consider the existence and global exponential stability of an equilibrium point
for the following BAM neural network with time-varying delays in leakage terms on time
scales:

x2(2) = —awxi(t - 8,(2)) + Pom G0t = 1) + N eufi 0t = (1))
+ /\;g Tiiwy + V2 Bifi 0t = 7a(2)))
+ \/;Zlsz’M/ +1, teT,i=12,...,n,

J’;A(t) = =by(t —n;(t)) + Y1y dygi(xi(t — 03i(0) + Ny piigi (it — 045(2)))
+ A1 Fjvi + Vi qigi(xi(t — 035(2)))
+\VL Gi+);, teT,j=12,...,m,

(1.1)

where T is a time scale; n, m are the number of neurons in layers; x;(¢) and y;(t) denote
the activations of the ith neuron and the jth neuron at time £; ; > 0 and b; > 0 represent
the rate at which the ith neuron and the jth neuron will reset their potential to the resting
state in isolation when they are disconnected from the network and the external inputs;
0<d; <4/ and 0 <7; <7; denote the leakage delays; f, g are the input-output functions
(the activation functions); 0 < 7;(t) < 7; and 0 < 0y(¢) < oj; are transmission delays; ¢ —
7i(t) € T, t — 0y(t) € T, t - §;(¢) € [0,00) 1 and £ — n;(¢) € [0,00) 15 cji, djj are elements of
feedback templates; a;, p;; denote the elements of fuzzy feedback MIN templates and g,
g;j are the elements of fuzzy feedback MAX templates; Tj;, Fj; are fuzzy feed-forward MIN
templates and Hj;, G;; are fuzzy feed-forward MAX templates; j1;, v; denote the input of
the ith neuron and the jth neuron; I;, /; denote biases of the ith neuron and the jth neuron,
i=12,...,n,j=12,...,m, /\ and \/ denote the fuzzy AND and fuzzy OR operations,
respectively.
The initial condition of (1.1) is of the form

xi(s) = @i(s), se€[-0,0]r,0 =max{maxjo;, max;8;},i=1,2,...,n,
¥i(s) = ¥i(s), s e [-7,0]r, T = max{maxj Tj;, max; r]].*},j =1,2,...,m,

where ¢;(-), ¥;(-) denote positive real-valued continuous functions on [-o,0]r and
[-7, 0], respectively.
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For the sake of convenience, we introduce some notations. For matrix D, DT denotes the
transpose of D, p(D) denotes the spectral radius of D. A matrix or a vector D > 0 means
that all entries of D are greater than or equal to zero, D > 0 can be defined similarly. For
matrices or vectors D and E, D > E (respectively D > E) means that D— E > 0 (respectively
D—-E>0).

Throughout this paper, we assume that the following condition holds:

(H) f,g € C(R,R) and there exist positive constants r , L‘f such that

) ~fO| <Llu—v,  |gw) - gv)] < Llu—v]

forallu,veR,i=1,2,...,n,j=1,2,...,m.

The organization of the rest of this paper is as follows. In Section 2, we introduce some
preliminary results which are needed in the later sections. In Section 3, we establish some
sufficient conditions for the existence and uniqueness of the equilibrium point of (1.1).
In Section 4, we prove the equilibrium point of (1.1) is globally exponentially stable. In
Section 5, we give an example to illustrate the feasibility and effectiveness of our results
obtained in previous sections.

2 Preliminaries
In this section, we state some preliminary results.

Definition 2.1 [25] Let T be a nonempty closed subset (time scale) of R. The forward
and backward jump operators o,p : T — T and the graininess p : T — R, are defined,
respectively, by

o(t)=inf{se T:s>t}, p(t)=sup{se T:s<t} and wu(t)=o0(t)-t.

Lemma 2.1 [25] Assume that p,q: T — R are two regressive functions, then
(i) eo(t,s)=1ande,(t,t) =1;
(ii) ep(trs) = % = eep(s’ t);
(iil) ey(t,8)ep(s,r) = ey(t, 1);
(iv) (ep(2,9)2 = p(t)ey(t,s).

Lemma 2.2 [25] Let f, g be A-differentiable functions on T, then
1) (if + v22)2 = vif 2 + vog? for any constants vy, vo;

(i) ()2(@) =f2(0)g(®) +f(o(£)g™(t) =f(B)g™ (®) +f*(£)g(o (2)).
Lemma 2.3 [35] Assume that p(t) > 0 for t > s, then e,(t,s) > 1.
Definition 2.2 [35] A function r: T — R is called regressive if

L+ u()r(t) #0

for all £ € TX. The set of all regressive and rd-continuous functions r : T — R will be de-
noted by R. We define the set R* = {r e R : 1+ u()r(t) > 0,vt € T}.

Lemma 2.4 [35] Suppose that p € R*, then
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(i) ep(t,s) >0 forallt,seT;
(ii) ifp(t) <q(t) forallt > s,t,s € T, then e,(t,s) < e,(t,s) forall t > s.

Lemma 2.5 [35] Ifpe Rand a,b,c €T, then
[es(e,)]" = —ples(e, )]

and

b
f p(t)ey(c,o (1)) At = ey(c,a) — ey(c, b).

Lemma 2.6 [35] Leta e TX, b € T and assume that f : T x TX — R is continuous at (,t),
where t € TK with t > a. Also assume that f*(t, ) is rd-continuous on [a, o (t)]. Suppose that
for each ¢ > 0, there exists a neighborhood U of T € [a, o (t)] such that

[f(a(t),f) —f(s,7) —fA(t,t)(a(t) —s)| < 8|a(t) -s

, Vsel,

where f denotes the derivative of f with respect to the first variable. Then
(i) g(t):= [ f(t,0) AT implies g*(8) := [Lf2(t,T) AT +f(0(t), 0);
(i) K(e):= [ f(t,T) AT implies B2 (t) := ["f2(t, ) AT —f (o (8), 8).

Definition 2.3 A point z* = (x},%5,...,%%,y5,95,...,95)T € R™™ is said to be an equilib-
rium point of (1.1) if z(¢) = z* is a solution of (1.1).

Lemma 2.7 [17] Let f; be defined on R, j = 1,2,...,m. Then, for any a; € R, i=1,2,...,n,
j=1,2,...,m, we have the following estimations:

Naifiw) = N\ asfiv)| <D lallfw) - )]
j=1 j=1 J=1

and
\ aifiw) = \/ asfiv)| <D lasllfiw) - )],
j=1 j=1 j=1

where u;, v €R,j=1,2,...,m.

Definition 2.4 [36] A real matrix A = (@;),x, is said to be an M-matrix if a; <0, i,j =
1,2,...,n,i#jand all successive principal minors of A are positive.

Lemma 2.8 [36] Let A = (a;j)nxn be a matrix with nonpositive off-diagonal elements, then
the following statements are equivalent:
(i) A isan M-matrix;
(i) there exists a vector n > 0 such that An > 0;
(iii) there exists a vector &€ > 0 such that ETA > 0;
(iv) there exists a positive definite n x n diagonal matrix D such that AD + DAT > 0.
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Lemma 2.9 [36] Let A > 0 be an | x | matrix with p(A) <1, then (E; — A)™ > 0, where
p(A) denotes the spectral radius of A and E is the identity matrix of size I.

Definition 2.5 Let z* = (xf,x;...,xf,,yi‘,yﬁ,...,yfn)T be an equilibrium point of (1.1). If
there exists a positive constant A with —A € R* such that for ¢y, € [-¥,0]r, there exists
M > 1 such that for an arbitrary solution z(¢) = (x1 (), %2(£), ..., %, (), y1(£), y2(£), .. ., ¥ () T
of (1.1) with initial value ¢(s) = (¢1(s), 92(5), ..., ©u(5), Y1(8), Yo (S), ..., ¥u(s))T satisfies

|2(t) - 2|, < M| ¢ — 2" |ecn(t, t0), € [to,00)p,t > to,

where ¥ = max{o, t}, |2(¢) — 2"[1 = max{max, <;<,{lxi(t) — 7|}, maxi<j<m{ly;(€) — 7 3}, 1 —
z*|| = max{maxi <j<, MaXse[—¢ 0}7 {1¢i(s) — ¥ |}, Maxy <j< Maxse—z 01 {1¥(s) — ¥ [}}. Then the
equilibrium point z* is said to be globally exponentially stable.

3 Existence and uniqueness of an equilibrium point
In this section, we study the existence and uniqueness of an equilibrium point of (1.1).

Theorem 3.1 Let (H) hold. Suppose further that p(F) < 1, where F = A™BL, A = diag(ay, as,
e ram by by, by), L=diag(I], I, .. L), 18,15, .. 18) and

s- (% 7).
Q Ome
P = ([cjil + letjil + 1BjilDmxns Q = (14| + |pijl + |93 nxm. Then (1.1) has one unique equilibrium
point.

Proof Let z* = (x},%5,...,x5, 95,95, ...,7%,)T be an equilibrium point of (1.1), then we have

aix; = 330 Gifi07) + N i 07)

+ N Tiiws + V2 Bidi07) + Vo Hjiw + iy
by = 3L digi(x;) + N\iZy pigio) + Ny Fijvi

+ Vi 45&(5) + V2 Gyvi + ),

wherei=1,2,...,n,j=1,2,...,m. Define a mapping & : R"*"” — R"*" as follows:
cb(xly Kyeos yxn’yl’yZy e ,J/m) = ((Dlr CDZy ceey (D}’ll CD}'HI’ ceey q)VH-m)T;

where

;= a7 [ 6 09) + AN i)
+ N Ty + 2 Bifi ) + o Hy + 1,
D,y = b,»_l[zlil dijgi(x) + N\iZy pigi(xi) + Ny Fijvi
+ Vit g€ + /iy Gyvi +Jj]

fori=1,2,...,n,j=1,2,...,m. Obviously, we need to show that ® : R"*"” — R"" js a

contraction mapping on R"*™. In fact, for any ® = (hy, ha, ..., hy,v1,Va,. .., V) and O =
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(1, Moyl V1,02, -, V) € R7™ we have
|®,(h;) — ®y(hy)|

Z Gi(fi(v)) - Vl)

+

a; /\O‘ﬂ(f("/ Vl))

;" \/ Bi(fi(v) - £(#)

j1

+

m
1 - ,
<a; Z(|C]‘i|+|Olji|+|,3/i|)Lj;|Vj—Vj, i=1,2,...,mn

j=1
and
’q>n+j(vj) - q)n+j(1_/j)|
n B n _
= bj_lzdi/(gi(hi) - gi(h))| + bj_l/\pi/(gi(hi) - gi(hy))
i=1 i=1
bj_l \/ qi (@) - gi(hy))
i=1
<b" > (1dyl + gl + ag) LS Vs = Bl j=1,2,...,m
i=1
It follows that

’(D(hl’hZ;'urhn:Vl;VZ:H';VWI)_ (D(}_ll,}_IZ,...,}_ln,l_/lﬂ_/z,...,Vm)‘

art 7 (el + ol + B L] vy — ] |y — I

2| @ el + ol + 1BuDZ] =51 | _ | Vo= )
T b Y (Idal + pal + 1gal)Li i — hil [vi — 1]
b;nl Z:q=1(|dzm| + |Piml + |qtm|)L§|hz - ]jlz| [Vin = Vil

Let N be a positive integer. In view of (3.1), we have

’q)N(hlxw';hmVly«n:Vm) - d)N(}_llyon;ljlml_/ly«n;l_/m)’
= = - N
<FN(Ilm = hlse.os Vg =Rl [vi = V1l Vi = V)
Since p(F) < 1, we obtain limy_, ;o FN = 0, which implies that there exist a positive integer
M and a positive constant r < 1 such that

n+m

FM = (A7BL)™ = (1)l mem), Zl,]<r,t—12 R
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Hence, we have

’@M(hl,...,h,,,vl,...,vm)—CDM(}_zl,...,;l,,,f/l,...,f/m)|

\hy = | 171 = | > by

h, —h hy—h - A
o | VBl [ p | Wil | o g | S |

[vi — 1] lvi =l it Loy

|Vm - ‘_/ml ”Vm - ‘_/m ” Z]n;lm l(n+m)j

which implies that || ®*(©) — d®M(O)|| < r||® — O||. Since r < 1, it is obvious that the map-
ping ®M : R"" — R"* is a contraction mapping. By the fixed point theorem of a Banach
space, @ possesses a unique fixed point in R"*”, that is, there exists a unique equilibrium
point of (1.1). The proof of Theorem 3.1 is completed. d

4 Global exponential stability of an equilibrium point
In this section, we study the global exponential stability of the equilibrium point of (1.1).

Theorem 4.1 Let (H) and p(F) <1 hold. Suppose further that

(Hs) max{e;, e} <1, where

m
€1 = max ia,a; + (87 + ) Y (Il + legal + |ﬂ,-i|)L{]
j=1

1<i<n
J

and
n

1<j<m

€3 = max {bﬂ?f +(nf +571) ) (1dyl + Ipyl + |%j|)L}g}~

i=1
Then the equilibrium point of (1.1) is globally exponentially stable.

Proof By Theorem 3.1, (1.1) has a unique equilibrium point z* = (x},%3,..., %%, %7, 95,...,
y%)T. Suppose that z(t) = (x1(£),%2(2), ..., %, (), y1(£), ¥2(£), .. ., ym(®))T is an arbitrary solu-
tion of (1.1) with the initial condition ¢(s) = (¢1(s), ©2(S), ..., ©u(5), Yi(s), W2 (5), ..., Yim(s)) L.
Let w(t) = (u1(2), 2 (£), ..., (), vi(£), v2(2), ..., v ()T = 2(¢) — z*, where u;(t) = x;(t) — x7,
vi(t) = y;(2) —y}’-‘, i=12,...,n,j=1,2,...,m. Then (1.1) can be rewritten as

up (6) = —au;(t = 8(t) + 37, C/J;(V/(t - 5i®)) + N2 @i (vi(t = 5 (9)) + y})
= N @idi7) + Vo Bii(vi(t = u(®)) + y7)
VL BEOD, i=1,2,,m,

V,A(f) = —byv(t — nj(t)) + Y_i di@i(ui(t — 045(8))) + N\, pigi(uit — 0y(2)) + x7)
= N Pigi&]) + \/ 12y 45i (it — 05(0)) + 7)
- Vi ag), j=12,...,m,

(4.1)

where t € T and

F0i(t=®)) =0i(e-5: @) -£07),  Glwi(t-0y(0)) = gi(xi(t-05(0))) ~ ()

Page 7 of 16
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The initial condition of (4.1) is the following:

ui(s) = i(s) —xf, sel[-0,0lr,i=12,...,mn,
vi(s) = ¥5(s) —yf, sel-7,0lr,j=12,...,m

We rewrite (4.1) as follows:

S

ul(s) + aiui(s) = al/ ut(O)A0 + Zcﬂf vi(s - 7i(s))) /\oeﬂf vi(s - 7ii(s)) +y1)

s=8;(s)
- Neifi7) +\/ B (vi(s = 5ils)) + 77)
j-1 =1

_\/ﬂﬂf}(yj), i=1,2,...,n (4.2)

j-1

and

S
vjA(s) +b(s) = bj/ ) ) 0)AD + Zdl,g, (s — a,,(s)))
S*T]l'

i=1

+ /\Pijgi(ui (s —03i(s)) +7)
- /\pi/gi( \/qzjgl ul — Ojj S)) +X; )
i=1

- \/q,'jg,-(xf), j=12,...,m. (4.3)

Multiplying both sides of (4.2) by e_,,(¢,0(s)) and integrating on [to,t]T, where £, €
[-9,0]T, we get

u;(t) = ui(to)e_q,(t, to)

+/ e_“i(t’a(s)){ﬂi/(;,() 0)A8 +Zcﬂf vi(s - 7i(s)))

0

+/\ajzﬁ(v/(s—r;l +) /\aufy, \/ﬂufvl — 7i(s)) +57)

_\/ﬁ;gﬁ(y;‘)}As, i=1,2,...,n. (4.4)

j=1
Similarly, multiplying both sides of (4.3) by e_bj(t, o (s)) and integrating on [¢y, ], we get

vi(t) = Vj(to)e—bj(t: to)

+ / e, (t,a(s)) {b,»/ ()vjA(G)AQ + Zd,,-g,-(u,.(s - o,-j(s)))
s=1;(s

to i=1

Page 8 of 16
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+ N\pigi(i(s = 03(5)) +7) = \pigi(i) + \/ 2gi(au(s = 05(6) +7)
i=1 i=1

i=1

-\ 58 () tAs, j=1,2,...,m. (4.5)
i=1

For a positive constant o < min{min;<;<, a;, Mini<j< bj’} with —a € R*, we have
ecu(t ty) > 1 for t < ty. Take M > max{i, é}. In view of (Hs), it is obvious that M > 1.

Hence, we have

’W(t) ’1 = Me@ot (t; to) ”(b - Z*

) Vit e [_ﬁi tO]T'
We claim that

’W(t) ’1 = Me@a (t; to) ”({b - Z*

,  Vte(ty,+00)T. (4.6)
To prove this claim, we show that for any p > 1, the following inequality holds:

, Vte (to, +OO)T’ (4'7)

|w(t)|, < pMeca(t,t0) | ¢ — 2*
which means that for i = 1,2,...,n, we have

’ui(t)‘ < pMeg,(t, to)H¢ -z H, Vt € (ty, +00)T (4.8)
and forj=1,2,...,m, we have

, VYt e (t, +00)T. (4.9)

|[vi(0)] < pMeca(t, 1) || ¢ — 2*

By way of contradiction, assume that (4.7) does not hold. Firstly, we consider the following
two cases.

Case One: (4.8) is not true and (4.9) is true. Then there exist #; € (g, +00)r and iy €
{1,2,...,n} such that

|y (11)| = pMecq (1, 10) | ¢ — 2° |, |uiy ()| < pPMeca(t,80) | ¢ — 2|, € (0,11,

’ul(t)’ <pMeea(t,to)”¢ -z || for [ # iy, t € (to, 1] 7,0=1,2,...,n.

Hence, there must be a constant ¢ > 1 such that

|uiy (01)] = cpMeca (1, 10) | ¢ — 2° |, |y ()| < coMeq(t,t0) | — 2*||, ¢ € (to, 1)1,

’ul(t)’ < cpMeea(t,to)”(b —z*H for I #ip,t € (to,t1]7,1=1,2,...,n.

Note that in view of (4.4), we have

g (1) = |1 (e (81 20) + / ey (1,06))

to

X [a,«o / uiAO (6)AO + Zcﬁ(fj(vj(s - Tjiy (s)))

—Bip (s j=1
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+ /\“llof vi(s = 7ig (5)) +y, /\“ﬂof J’,

j=1

+\/ﬁll0f VJS_fﬂo(S +J’, \/ﬁllaf J’, }

j=1

= ’Mio(to)eaio (t1,t0) + / 1 €_a, (thU(S))

to

X {“io/5~ ()[ aig iy (60 = 81, (0)) + chlof(vl( A

+ /\“ﬂaf V/ = Tjig (0 + )’; /\O‘ﬂuf y;

Jj=1 j=1

+ \/ ﬁ/laf V/ ~ Tig 9)) +J’}k)

j=1

/s [29+ St~ )

+ N\ @io (v (s = 7o () + 97 /\‘X/zof 5;)

Jj=1 Jj=1

+\/5ﬂof VJS_"'/lo(S +J’; \/ﬂllof )’, }

j=1 j=1

51
e oo+ [ e (0.00)
0

s
X ﬂio/
5=8ig (5)

0

§ : C/laf V/ = Tjig (

|:aio |”io (9 =3y (0
+ /\ alluf V/ = Tjig (0 + _)’ 1 /\ a/tof )/ g \/ ﬂ]l(lf V/

j=1
}Ae 1S 6T 0 - 0 9)
j=1

- \/ Biiofi (97)

+ /\O‘/laf Vl S = Tig (5) +)’, /\O‘ﬂaf y]

j=1 j=1

+\/ﬂ110f Vj S_l}lg(s +J’, \/:szgf y]

j=1

>

51
= ||¢ -z || + / e—ﬂio (tlr G(S)) [ﬂio(sfo |:di0 CPMeea (tl) tO) ||¢) -z ||
to

m
+ Z(|Cﬁo| + |ogig | + 1 Bjig |)L{CPM€ea(t1,fo)||¢ -z ||i|
-1

m
3 (Iejio) + oy | + 1Bjig )} cpMeca (81, t0) [ - 2| }As
j=1

9))

~ T 9)) +y})
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4
<||¢ - z*| ecaltr, to) +/ e_a, (1,0 (5))

Lo

X [dio (S::) |:6li0 CpMeeot (tl) tO) || d) -z ”

m
+ > (Igio| + ltig| + 1Bjig|) I cpMeca (b1, t0) | — 2* ||}

j=1

+

M=

(Igjio| + oo + 1By |) L coMeca (t1,t0) | ¢ — 2°| }As

~
I
—_

= ||¢ — 2*||eca(trs o) + cPMecq (t1, to) | — 2* |
5} "
< / ey (81:0(5) {ama:o [a + 3 (I + legio | + 1B )] ]
to j=1
m
+ Z(|0j50| +lajig| + 1 Bjig |)Lf}As
-1

]

1
= ||¢ -z ||€ea(t1, to) — ;CPMeea(tl,to)}|¢ -z ||
io

m
x {aioa;o [mo + 3 (g0l + e + 1By )] }
j=1
m f n
+ 3 (Igio| + lagig | + 185 ) /(_aiO)e‘“io(tl"’(s))As
j=1

t
j 0

1
= ¢ — 2" leaa(t1, t0) = — (e, (01, 20) = 1) cpMectr, o) | ~ 2°|
ajg 0

m
x {aioai; [aio + 3 (ol + oo + 1By ) }

j=1
m
+ Z(|C1z0| +10jig | + [ Bjig |)sz'(}
j=1
<cpM||¢ - 2" | eca(tr, to)

11 < i
x {W o [%630 (a + 3 (1G] + logi | + |:Bﬁo|)L/)

j-1

+ Z(I%I + [etio | + 1Bjig |)LJ;} }

Jj=1

<cpM| ¢ - z* | eca(t1, to)

11 “
x {]W - |:ﬂi05i+0 (dio + Z(|Cﬂo| + i | + |ﬂﬁ0|)Lf)

10 j=1
m
+ Z(chtol + |etji | + | Bjig |)L{i| }
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J
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= cpM | ¢ — 2*||eca(tr, to)

1 “ P
x (M a8+ (85 +a) > ( |c,,-0|+|a,,-0|+|,3ﬁ0|)L}.>

j=1

< cpMegy (t,

which is a contradiction.
Case Two: (4.8) is true and (4.9) is not true. Then there exist ¢, € (¢, +00)t and jy €
{1,2,...,n} such that

|Vj0(t2)| > pMecq (B, to)”(f’ -z H; |ng (t)| < pMecq(t, to) || t € (to, t2)t,

’Vk(t)| <pMeea(t,t0)||¢—z*H for k #jo,t € (to, 2], k=1,2,...,m

Hence, there must be a constant ¢; > 1 such that

|Vjo (2)| = croMecq (b2, t0) | ¢ - 2*]),
[vio ()| < cLpMeca(t,t0)| ¢ —2* |, £ € (to, t2)T,

|vk(t)| <c1pMeea(t,to)||¢>—z* || for k #jo,t € (to, L2l 1, k=1,2,...,m

Note that in view of (4.5), we have

[ (82)] = [V e 4, (12, 0) + / Ceyy (0009)

to
s
X bj()/
s—1jn (8)

Tjo

|:_b/o Yo (9 ~ Mo (9)) + Z dijo&i (”i (9 ~ Tij (9)))

i=1

+ /\ptlogl Ui (9 Tijo (8 +x /\pllogt

i=1

+\/ @0 (1i(60 = 05, 6)) +57)

i=1

— \/qllogl :|A9 + Zdllogl (S — Ul'jo (S)))

i=1

"'/\piiogi(”i( Gl/o(s) +x /\pl]()gl

i=1

n
+ \/ @joi (i (s — 03y (5)) +47) — \/ 2308 (%) } As
i=1 i=1

/ ’ €_p, (tz, G(S))

|:_b/o Yo (9 ~ Mo (9)) + Z dijo&i (”i (9 ~ Tij (9)))

i=1

< ey, (t2, to)”(f’ -z “ +
S
X :bio /
$=1jgy (s)

+ /\p,,og, (4:(6 — 04y (0)) + %7) /\p,,ogl
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+\/ @0 (1i(60 = 05, (6)) +57)
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i=1

+ /\puogz u; (S - 0110 (S) + x /\Pz;og;

i=1

+ \/ qz]()gz Ui (S - 0110 (S) + x \/ %logl }

i=1

t
<=2+ [ "eu, <tz,o<s>>{bjon;) [bjoclpMeeam,to)uqs—z* ||
to

i=1

+ Z(|di/‘o| +pijo| + 1370 | Lf crpMec (£, o) || — 2* Hi|

n
+ Z(|dijo| +|pijo| + 1370 | Li crpMega (£, 10) || — 2* | ]AS
i1

2
= ||¢ -z ||eea(t2,t0) +f €-bj, (t2,0(s))
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n
+ 3 (1dijo | + piio | + 15 |) L crpMeca (2, t0) | ¢ — 2° | }As
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[5]
X / (tZ»G(S)){ jo 7’]0 |:b]o + Z |dt]0| + |pt]0| + |qt]0 |) :|

t i=1

+ Z \dijo | + |Pijo | + |0 1) LS }As

i=1

1
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1
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+ Z(|dijo| +1Pijo | + 143 |)L§}

i=1

< CIPMH¢ -z ”eea(tz, to)

1 1 + . g
x !CIPM + b_io |:bio’7jo (bio + Z(|diio| + |pijo | + |qii0|)Li>

i=1

n
+ Z('dljo| + |pl}0| + |qijo |)L‘lg} }

i=1

<cipM| ¢ - z* | ecq (t2, t0)

1 1 -
x 3 —+ | Bnf ( bio + Y (Idio| + 1Py | + i ) L
M b,

i=1

+ Z(|dllo| + |pl/0| + |%’/0 |)L;g:| }

i=1
n

1
=cpM|¢ -z ||€ea(t2,to)(M + b} + (0] + bj_l) (Idy1 + |pg| + |%‘j|)L§>

i=1

< cipMecy (b2, to) ||¢ -z H,

which is also a contradiction.
By the above two cases, for other cases of negative proposition of (4.7), we can obtain a
contradiction. Therefore, (4.7) holds. Let p — 1, then (4.6) holds. Hence, we have that

|W(t)|1 §M||¢—Z*||eea(t;t0), te [—ﬂ,OO)T,tZto,

which means that the equilibrium point z* of (1.1) is globally exponentially stable. The
proof of Theorem 4.1 is completed. O

5 Example
In this section, we present an example to illustrate the feasibility of our results.

Example 5.1 Let n = m = 2. Consider the following fuzzy BAM system with delays in
leakage terms on a time scale T:

X (8) = —amwi(t - 8(8) + Z,-Zzl cifi(yi(t — ;u(2))) + /\,-2=1 oifi (y;(t — 7;i(2)))

+ N Tty + NV Bifi 0t = @) + /oy Hyopy + I, t€ Toi=1,2,
R(8) = =yt = ni(8) + 0, digililt — 0y(0)) + Ny pigiilt — 0(2)

+ Nia Fyvi + 1y asgiit — 0(0) + /1y Gyvi + ), t€T,j=12,

(5.1)

where time delays §;, 7j;, 1j, 0y, i,j = 1,2 are defined as those in system (1.1) and the coeffi-
cients are as follows:

LG (6

) 0.01 0.03 ) 002 0
Cji)ax2 = ’ Qji)ax2 = ’
2271006 0.04 22T 001 0.04
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0.05 —0.03 0.03 0.01
Voo = , dij)axa = ’
(Bji)2x2 0 0.02 ()22 0.04 0.02
0.03 —0.02 0 -001
Cile={ 01 004 )0 427\ Lo02 003
0.001|sin¢| 0 3
8‘ t — , 1 = ’
(340)) 5.2 0 0.006] cos| =\,
(). = 0.002|sin 2¢| 0
Ni\E) ) 3% = 0 0.004|sin¢ —1|

2
Up2x1 = ) Si(u)) = 0.02|uy],

&) =0.04(vi+ 1= vi-1)),  w=v=1 ij=12,

and (Tj)ax2 = (Hji)ax2 = (Fij)2x2 = (Gjj)ax2 are identity matrices. By calculating, we have
L{ = L% = 0.02. We can verify that for T = R and T = Z, all the conditions of Theorem 3.1
and Theorem 4.1 are satisfied. Hence, for T =R or T = Z, (5.1) always has one unique

equilibrium point, which is globally exponentially stable.
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