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Abstract
This paper is concerned with the problem of finite-time H∞ control for a class of
Markovian jump system with mode-dependent time-varying delay. By using the new
augmented multiple Lyapunov function with more general decomposition approach,
a novel sufficient condition for finite-time bounded with an H∞ performance index is
derived. Based on the derived condition, the reliable H∞ control problem is solved,
and an explicit expression of the desired controller is also given, the system trajectory
stays within a prescribed bound during a specified time interval. Finally, numerical
examples are given to demonstrate that the proposed approach is more effective
than some existing ones.

Keywords: H∞ finite-time stability; time-varying delay; Markov jump system; H∞
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1 Introduction
Markovian jump systems were introduced by Krasovskii and Lidskii [], which can be de-
scribed by a set of systems with the transitions in a finite mode set. In the last few decades,
there has been increasing interest in Markovian jump systems because this class of sys-
tems is appropriate to model many physical systems mainly those random failures, re-
pairs and sudden environment disturbance [–]. Such class of systems is a special class
of stochastic hybrid systems with finite operation modes, which may switch from one to
another at different time. As a crucial factor, it is shown that such jumping can be deter-
mined by a Markovian chain []. For linear Markovian jumping systems, many important
issues have been studied extensively such as stability, stabilization, control synthesis and
filter design [–]. In finite operation modes, Markovian jump systems is a special class
of stochastic systems that can switch from one to another at different time. It is worth
pointing out that time delay is one of the instability sources for dynamical systems and is
a common phenomenon in many industrial and engineering systems [–]. Hence, it
is not surprising that much effort has been made to investigate of Markovian jump sys-
tems with time delay during the last two decades [–]. The exponential stabilization
of Markovian jump systems with time delay was first studied in [] where the decay rate
was estimated by solving linear matrix inequalities []. However, in the aforementioned
works, the network-induced delays have been commonly assumed to be deterministic,
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which is fairly unrealistic since delays resulting from network transmissions are typically
time varying.
Generally speaking, the delay-dependent criterions are less conservative than delay-

independent ones, especially when the time delay is small enough in Markovian jump
systems. Thus, recent efforts were devoted to the delay-dependent Markovian jump sys-
tems stability analysis by employing Lyapunov-Krasovskii functionals [–]. However,
most efforts have been given on how to construct an appropriate Lyapunov functional by
dividing the delay interval [–μ, –μ] into N equal length subintervals []. It should be
pointed out that the delay decomposition method is not effective when the lower bound
of time-varying delay is zero. Furthermore, although the decay rate can be computed, it
is a fixed value that one cannot adjust to deduce if a larger decay rate is possible. There-
fore, how to obtain the improved results without increasing the computational burden has
greatly improved the current study.
Over the years, many research efforts have been devoted to the study of finite-time sta-

bility of systems. In finite-time interval, finite-time stability is investigated to address these
transient performances of control systems. Recently, the concept of finite-time stability
has been revisited in the light of linear matrix inequalities (LMIs) and Lyapunov function
theory, some results are obtained to ensure that system is finite-time stable or finite-time
bounded [–]. It is noted that there are still some related issues to be solved, to the
best of our knowledge, the finite-time H∞ control for a class of Markovian jump systems
with time-varying delay has not been fully developed. The analysis method in the existing
references seems still conservative to study Markovian jump system. There is room for
further investigation.
The main contribution of this paper is as follows: Firstly, we present a new augmented

Lyapunov functional by employing the more general decomposition of a delay interval for
a class ofMarkovian jump systems withmode-dependent time-varying delay. Secondly, in
order to reduce the possible conservativeness and computational burden, some slack ma-
trices are introduced []. Several sufficient conditions are derived to guarantee the finite-
time stability and boundedness of the resulting closed-loop system. Last but not the least,
it is shown that less conservative and more general results can be derived since the time-
varying delays are divided into a more general decomposition. We find that finite-time
stability is a concept independent from Lyapunov stability and can always be affected by
switching behavior significantly, thus it deserves our investigation. The finite-time bound-
edness criteria can be tackled in the form of LMIs. Finally, numerical examples illustrate
the effectiveness of the developed techniques.
Notations: Throughout this paper, we let P >  (P ≥ , P < , P ≤ ) denote a sym-

metric positive definite matrix P (positive semi-definite, negative definite and negative
semi-definite). For any symmetric matrix P, λmax(P) and λmin(P) denote themaximum and
minimum eigenvalues of matrix P, respectively.Rn denotes the n-dimensional Euclidean
space andRn×m refers to the set of all n×m real matrices andN = {, , . . . ,N}. The iden-
titymatrix of order n is denoted as In. ∗ represents the elements below themain diagonal of
a symmetric matrix. The superscripts ᵀ and – stand for matrix transposition and matrix
inverse, respectively.

2 Preliminaries
Given a probability space (�,F ,P) where �, F and P respectively represent the sample
space, the algebra of events and the probability measure defined on F . In this paper, we
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consider the following Markov jump system over the space (�,F ,P) described by

⎧⎪⎨⎪⎩
ẋ(t) = Art x(t) +Aτ rt x(t – τrt (t)) + Brtu(t) +Drtω(t),
z(t) = Crt x(t) +Cτ rt x(t – τrt (t)) + Ertu(t) + Frtω(t),
x(t) = ϕ(t), t = [–μ, ],

()

where x(t) ∈ Rn is the state vector of the system, z(t) ∈ Rq is the controlled output,
u(t) ∈ Rm is the control input and ϕ(t), t = [–μ, ] and r ∈ N are initial conditions of
continuous state and the mode. ω(k) ∈Rq is the disturbance input satisfying

∫ ∞


ωᵀ(t)ω(t)dt ≤ d. ()

Let the random form process {rt , t ≥ } be the Markov stochastic process taking values
on a finite set N = {, , . . . ,N} with the transition rate matrix � = {πij}, i, j ∈ N , and the
transition probabilities described as

Pr(rt+� = j | rt = i) =

{
πij� + o(�) if i �= j,
 + πii� + o(�) if i = j,

where � > , πij ≥ , for i �= j, is the transition rate frommode i at time t to mode j at time
t +� and

–πii =
N∑

j=,j �=i
πij

for each mode i ∈ N , lim�→+
o(�)
�

= . τi(t) denotes the mode dependent time-varying
state delay in the system and satisfies the following condition:

 < μi ≤ τi(t) ≤ μi < ∞, ()

hi ≤ τ̇i(t)≤ hi, ()

where μ =min{μi, i ∈N } and μ =max{μi, i ∈N } are prescribed integers representing
the lower and upper bounds of time-varying delay τi(t). Similarly, h =min{hi, i ∈N } and
h =max{hi, i ∈ N } are prescribed integers representing the lower and upper bounds of
time-varying delay τ̇i(t).Art ,Aτ rt ,Brt ,Drt ,Crt ,Cτ rt , Ert and Frt are knownmode-dependent
matrices with appropriate dimension functions of the random jumping process {rt} and
represent the nominal systems for each rt ∈ N . For notation simplicity, when the system
operates in the ith mode (rt = i), Art , Aτ rt , Brt , Drt , Crt , Cτ rt , Ert and Frt are denoted as Ai,
Aτ i, Bi, Di, Ci, Cτ i, Ei and Fi, respectively.

Remark  In this paper, the lower bound of τ̇i(t) is required in order to implement the
proposed delay decomposition method. If hi = hi = , then τi(t) corresponds to the con-
stant delay.
Moreover, the transient process of a system can be clearly characterized if its decay rate

is available. The objective of this study is to develop a new approach to designing a state
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feedback controller

u(t) = Kix(t) ()

via a novel Lyapunov functional such that the resulting closed-loop system is finite-time
stable, where Ki is the controller gains to be designed.
In this paper, we split the delay interval [–μ, –μ] into two segments: [–τi(t), –μ] ∪

[–μ, –τi(t)]. Moreover, we further subdivide each interval into l, m equal length subseg-
ments [–τk , –τk–] and [–τl+s, –τl+s–], respectively, where

τk = μ +
k
l
(
τi(t) –μ

)
, τl+s = τi(t) +

s
m
(
μ – τi(t)

)
, k = , , . . . , l, s = , , . . . ,m,

and l,m are given positive integers.

Remark  The delay intervals are divided subsegments dependent on t, thus the pro-
posed delay decomposition method is more general than those in [–, –]. The
conservatism will be reduced with the partitioning number l andm increase.

In order to more precisely describe the main objective, we introduce the following def-
initions and lemmas for the underlying system.

Definition . System () is said to be finite-time bounded with respect to (c, c,T ,Rrt ,d)
if condition () and the following inequality hold:

sup
–μ≤υ≤

E
{
xᵀ(υ)Rrt x(υ), ẋ

ᵀ(υ)Rrt ẋ(υ)
}≤ c

⇒ E
{
xᵀ(t)Rrt x(t)

}
< c, ∀t ∈ [,T], ()

where c > c ≥  and Rrt > .

Definition . [] Consider V (xt , rt) as the stochastic Lyapunov function of the resulting
system (), its weak infinitesimal operator is defined as

£V (xt , rt , t) = lim
�t→


�t

[
E
{
V (xt+�t , rt+�t , t +�t)

}
–V (xt , i, t)

]
=

∂

∂t
V (xt , i, t) +

∂

∂x
V (xt , i, t)ẋ(t, i) +

N∑
j=

πijV (xt , j, t).

Definition . Given a constant T > , for all admissible ω(t) subject to condition (),
under zero initial conditions, if the closed-loop Markovian jump system () is finite-time
bounded and the control outputs satisfy condition () with attenuation γ > ,

E

{∫ T


zᵀ(t)z(t)dt

}
≤ γ eηT

E

{∫ T


ωᵀ(t)ω(t)dt

}
,

then the controller system () is called the finite-time bounded with disturbance attenua-
tion γ .

http://www.advancesindifferenceequations.com/content/2013/1/214


Cheng et al. Advances in Difference Equations 2013, 2013:214 Page 5 of 22
http://www.advancesindifferenceequations.com/content/2013/1/214

Remark  It should be pointed that the assumption of zero initial condition in system ()
is only for the purpose of technical simplification in the derivation, and it does not lose
generality. In fact, if this assumption is lost, the same control result can still be got along
the same lines, except adding extra manipulations in the derivation and extra terms in
the control presentation. However, in real world applications, the initial condition of the
underlying system is generally not zero.

Lemma . [] Let fi :Rm → R (i = , , . . . ,N ) have positive values in an open subset D
ofRm. Then the reciprocally convex combination of fi over D satisfies

min
{βi|βi>,

∑
i βi=}

∑
i


βi
fi(t) =

∑
i

fi(t) +max
gi,j(t)

∑
i�=j

gi,j(t)

subject to

{
gi,j :Rm →R, gj,i(t) = gi,j(t),

[
fi(t) gi,j(t)
gi,j(t) fj(t)

]
≥ 

}
.

Lemma . For a given function μi ≤ τi(t) ≤ μi, hi ≤ τ̇i(t) ≤ hi (i ∈ N ), there exist
four functions α(t) ≥ , α(t) ≥ , β(t) ≥  and β(t) ≥  satisfying α(t) + α(t) =  and
β(t) + β(t) = , respectively, such that ∀i ∈N , the following equation holds:

τi(t) = α(t)μi + α(t)μi, τ̇i(t) = β(t)hi + β(t)hi.

Lemma . [] For matrices A, Q =Qᵀ >  and P > , the following matrix inequality

AᵀPA –Q < 

holds if and only if there exists a matrix G of appropriate dimension such that

[
–Q AᵀG
∗ P –G –Gᵀ

]
< .

Lemma . ([] Schur complement) Given constant matrices X, Y , Z,where X = Xᵀ and
 < Y = Yᵀ, then X + ZᵀY–Z <  if and only if

[
X Zᵀ

∗ –Y

]
<  or

[
–Y Z
∗ X

]
< . ()

3 Finite-time H∞ performance analysis
We first consider the problem of stability analysis for system () with u(t) = . The fol-
lowing results actually present the finite-time stability for the Markov jump system with
time-varying delay.

Theorem . System () is finite-time bounded with respect to (c, c,d,Ri,T) if there exist
matrices Pi > , Q(r)

i > , Q(r) >  (r = , , . . . , (m+ l)), Ri, R > ,W > , Si, ∀i, j ∈N , scalars
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c < c, T > , κ > , κ > , κ > , λs >  (s = , , . . . , ), λ > , η >  and � > , such that
for all i, j ∈N , k = , , . . . , l, s = , , . . . ,m, the following inequalities hold:

�i(μqi,hqi) =

⎡⎢⎣�i(μpi,hqi) ϒi ϒi

∗ �i(μpi,hqi) ϒi

∗ ∗ ϒi

⎤⎥⎦ < , p = , ,q = , , ()

e
λ
l (μpi–μ)

N∑
j=

πijQ(k)
j ≤ Q(k), e

λ
m (μ–μpi)

N∑
j=

πijQ(l+s)
j ≤ Q(l+s), p = , , ()

eλμ
N∑
j=

πijRj ≤ R, ()

c� + dλλ

η

(
 – e–ηT) < λce–ηT , ()

where

�i(μpi,hqi)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃i(μpi,hqi)    · · · 
∗ �̃i(μpi,hqi) – l

μ–μ
Ri  · · · 

∗ ∗ �̃i(μpi,hqi) – l
μ–μ

Ri · · · 

∗ ∗ ∗ . . .
. . .

...
∗ ∗ ∗ ∗ �̃li(μpi,hqi) – l

μ–μ
Ri

∗ ∗ ∗ ∗ ∗ �̃(l+)i(μpi,hqi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�i(μpi,hqi)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�i(μpi,hqi) – m
μ–μ

Ri  · · · 
∗ �i(μpi,hqi) – m

μ–μ
Ri · · · 

∗ ∗ . . . . . . 
∗ ∗ ∗ �mi(μpi,hqi) – m

μ–μ
Ri

∗ ∗ ∗ ∗ �(m+)i(μpi,hqi)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

ϒi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

PiAτ i  · · ·  
Si Si · · · Si Si
Si Si · · · Si Si
...

...
...

...
...

– l
μ–μ

Ri + Si Si · · · Si Si

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

ϒi =

⎡⎢⎢⎢⎢⎣
PiDi Aᵀ

i Ri Aᵀ
i R

  
...

...
...

  

⎤⎥⎥⎥⎥⎦ , ϒi =

⎡⎢⎢⎢⎢⎣
 Aᵀ

τ iRi Aᵀ
τ iR

  
...

...
...

  

⎤⎥⎥⎥⎥⎦ ,

ϒi =

⎡⎢⎣–λW Dᵀ
i Ri Dᵀ

i R
∗ – 

κ
Ri 

∗ ∗ – 
κ
R

⎤⎥⎦ ,
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�̃i(μpi,hqi) = –λPi + PiAi +Aᵀ
i Pi +

N∑
j=

πijPj

+
l∑

k=

eλ[μ+
k(μpi–μ)

l ] – eλ[μ+
(k–)(μpi–μ)

l ]

λ
Q(k)

+
m∑
s=

eλ[μpi+
(l+s)(μ–μpi)

m ] – eλ[μpi+
(l+s–)(μ–μpi)

m ]

λ
Q(l+s),

�̃i(μpi,hqi) = e
λ
l (μpi–μ)Q()

i +
l

μ –μ
Ri,

�̃i(μpi,hqi) = –
(
 –


l
hqi

)
Q()

i +
(
 –


l
hqi

)
e

λ
l (μpi–μ)Q()

i +
l

μ –μ
Ri,

�̃li(μpi,hqi) = –
(
 –

l – 
l

hqi
)
Q(l–)

i +
(
 –

l – 
l

hqi
)
e

λ
l (μpi–μ)Q(l–)

i +
l

μ –μ
Ri,

�̃(l+)i(μpi,hqi) = –
(
 –

l – 
l

hqi
)
Q(l–)

i +
(
 –

l – 
l

hqi
)
e

λ
l (μpi–μ)Q(l)

i +
l

μ –μ
Ri,

�i(μpi,hqi) = –( – hqi)Q(l)
i + ( – hqi)e

λ
m (μ–μpi)Q(l+)

i +
l +m

μ –μ
Ri,

�i(μpi,hqi) = –
(
 –

m – 
m

hqi
)
Q(l+)

i +
(
 –

m – 
m

hqi
)
e

λ
m (μ–μpi)Q(l+)

i +
m

μ –μ
Ri,

�mi(μpi,hqi) = –
(
 –


m
hqi

)
Q(l+m–)

i +
(
 –


m
hqi

)
e

λ
m (μ–μpi)Q(l+m)

i +
m

μ –μ
Ri,

�(m+)i(μpi,hqi) = –Q(l+m)
i +

m
μ –μ

Ri,

κ =
eλμ – eλμ

λ
, κ =

eλμ – eλμ – λ(μ –μ)
λ ,

κ =
eλμ – eλμ – λ(μ

 –μ
 ) – λ(μ –μ)

λ ,

� = λ + κλ + κ(λ + λ) + κλ,

λ =max
i∈N

λmax(Pi), λ =max
i∈N

λmax (̃Pi), λ = max
i∈N ,≤r≤(m+l)

λmax
(
Q̃(r)

i
)
,

λ = λmax(Q̃), λ =max
i∈N

λmax (̃Ri), λ = λmax (̃R), λ = λmax(W ),

P̃i = R– 


i PiR
– 


i , Q̃(r)
i = R– 


i Q(r)

i R– 


i , Q̃ = R– 


i QR– 


i ,

R̃i = R– 


i RiR
– 


i , R̃ = R– 


i RR– 


i .

Proof First, in order to cast our model into the framework of the Markov processes, we
define a new process {(xt , rt), t ≥ } by

xt(s) = x(t + s), s ∈ [–μ, –μ].

Now, we consider the following Lyapunov-Krasovskii functional:

V (xt , rt , t) =
∑
l=

Vl(xt , rt , t), ()

http://www.advancesindifferenceequations.com/content/2013/1/214
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where

V(xt , rt , t) = x(t)ᵀeλtPrt x(t),

V(xt , rt , t) =
l∑

k=

∫ t–τk–

t–τk

eλ(υ+τk )xᵀ(υ)Q(k)
rt x(υ)dυ

+
m∑
s=

∫ t–τl+s–

t–τl+s

eλ(υ+τs)xᵀ(υ)Q(l+s)
rt x(υ)dυ,

V(xt , rt , t) =
l∑

k=

∫ –τk–

–τk

∫ t

t+θ

eλ(υ–θ )xᵀ(υ)Q(k)x(υ)dυ dθ

+
m∑
s=

∫ –τl+s–

–τl+s

∫ t

t+θ

eλ(υ–θ )xᵀ(υ)Q(l+s)x(υ)dυ dθ ,

V(xt , rt , t) =
∫ –μ

–μ

∫ t

t+θ

eλ(υ–θ )ẋᵀ(υ)Rrt ẋ(υ)dυ dθ ,

V(xt , rt , t) =
∫ –μ

–μ

∫ 

θ

∫ t

t+κ

eλ(υ–κ)ẋᵀ(υ)Rẋ(υ)dυ dκ dθ .

Then, let the mode at time t be i, i.e., rt = i ∈N , we have

£V(xt , i, t) = λeλtxᵀ(t)Pix(t) + eλtxᵀ(t)Pi
(
Aix(t) +Aτ ix

(
t – τi(t)

)
+Diω(t)

)
+ eλtxᵀ(t)

( N∑
j=

πijPj

)
x(t),

£V(xt , i, t) =
l∑

k=

[(
 –

k – 
l

τ̇i(t)
)
xᵀ(t – τk–)eλ(t+τk–τk–)Q(k)

i x(t – τk–)

–
(
 –

k
l
τ̇i(t)

)
xᵀ(t – τk)eλtQ(k)

i x(t – τk)
]

+
l∑

k=

∫ t–τk–

t–τk

eλ(υ+τk )xᵀ(υ)

( N∑
j=

πijQ(k)
j

)
x(υ)dυ

+
m∑
s=

[(
 –

m – s + 
m

τ̇i(t)
)
xᵀ(t – τl+s–)eλ(t+τl+s–τl+s–)Q(l+s)

i x(t – τl+s–)

–
(
 –

m – s
m

τ̇i(t)
)
xᵀ(t – τl+s)eλtQ(l+s)

i x(t – τl+s)
]

+
m∑
s=

∫ t–τl+s–

t–τl+s

eλ(υ+τl+s)xᵀ(υ)

( N∑
j=

πijQ(l+s)
j

)
x(υ)dυ

= eλt
l∑

k=

[(
 –

k – 
l

τ̇i(t)
)
xᵀ(t – τk–)e

λ[τi(t)–μ]
l Q(k)

i x(t – τk–)

–
(
 –

k
l
τ̇i(t)

)
xᵀ(t – τk)Q(k)

i x(t – τk)
]

+ eλt
m∑
s=

[(
 –

m – s + 
m

τ̇i(t)
)
xᵀ(t – τl+s–)e

λ
m [μ–τi(t)]Q(l+s)

i x(t – τl+s–)

http://www.advancesindifferenceequations.com/content/2013/1/214
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–
(
 –

m – s
m

τ̇i(t)
)
xᵀ(t – τl+s)Q(l+s)

i x(t – τl+s)
]

+
l∑

k=

∫ t–τk–

t–τk

eλ(υ+τk )xᵀ(υ)

( N∑
j=

πijQ(k)
j

)
x(υ)dυ

+
m∑
s=

∫ t–τl+s–

t–τl+s

eλ(υ+τl+s)xᵀ(υ)

( N∑
j=

πijQ(l+s)
j

)
x(υ)dυ,

£V(xt , i, t) = eλt
l∑

k=

eλτk – eλτk–

λ
xᵀ(t)Q(k)x(t) – eλt

l∑
k=

∫ t–τk–

t–τk

xᵀ(υ)Q(k)x(υ)dυ

+
l∑

k=

τ̇k

∫ t

t–τk

eλ(υ+τk )xᵀ(υ)Q(k)x(υ)dυ

–
l∑

k=

τ̇k–

∫ t

t–τk–

eλ(υ+τk–)xᵀ(υ)Q(k)x(υ)dυ

+ eλt
m∑
s=

eλτl+s – eλτl+s–

λ
xᵀ(t)Q(l+s)x(t)

– eλt
m∑
s=

∫ t–τl+s–

t–τl+s

xᵀ(υ)Q(l+s)x(υ)dυ

+
m∑
s=

τ̇l+s

∫ t

t–τl+s

eλ(υ+τl+s)xᵀ(υ)Q(l+s)x(υ)dυ

–
m∑
s=

τ̇l+s–

∫ t

t–τl+s–

eλ(υ+τl+s–)xᵀ(υ)Q(l+s)x(υ)dυ

≤ eλtxᵀ(t)

{ l∑
k=

eλ[μ+
k(τi(t)–μ)

l ] – eλ[μ+
(k–)(τi(t)–μ)

l ]

λ
Q(k)

+
m∑
s=

eλ[τi(t)+
(l+s)(μ–τi(t))

m ] – eλ[τi(t)+
(l+s–)(μ–τi(t))

m ]

λ
Q(l+s)

}
x(t)

– eλt
l∑

k=

∫ t–τk–

t–τk

xᵀ(υ)Q(k)x(υ)dυ

– eλt
m∑
s=

∫ t–τl+s–

t–τl+s

xᵀ(υ)Q(l+s)x(υ)dυ,

£V(xt , i, t) = ẋᵀ(t)eλt × eλμ – eλμ

λ
Riẋ(t) – eλt

∫ t–μ

t–μ

ẋᵀ(υ)Riẋ(υ)dυ

+
∫ –μ

–μ

∫ t

t+θ

eλ(υ–θ )ẋᵀ(υ)

( N∑
j=

πijRj

)
ẋ(υ)dυ

£V(xt , i, t) =
eλμ – eλμ – λ(μ –μ)

λ eλt ẋᵀ(t)Rẋ(t)

– eλt
∫ –μ

–μ

∫ t

t+θ

ẋᵀ(s)Rẋ(s)dsdθ .
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Moreover, denote

η(k) =
∫ t–τk–

t–τk

ẋ(υ)dυ, η(l + s) =
∫ t–τl+s–

t–τl+s

ẋ(υ)dυ.

By using Lemma ., it yields that

–
∫ t–μ

t–μ

ẋᵀ(υ)Riẋ(υ)

= –
l∑

k=

∫ t–τk–

t–τk

ẋᵀ(υ)Riẋ(υ) –
m∑
s=

∫ t–τl+s–

t–τl+s

ẋᵀ(υ)Riẋ(υ)

≤ –
μ –μ

τi(t) –μ

l∑
k=

ηᵀ(k)
l

μ –μ
Riη(k) –

μ –μ

μ – τi(t)

m∑
s=

ηᵀ(l + s)
m

μ –μ
Riη(l + s)

= –
l∑

k=

ηᵀ(k)
l

μ –μ
Riη(k) –

μ – τi(t)
τi(t) –μ

l∑
k=

ηᵀ(k)
l

μ –μ
Riη(k)

–
l∑

k=

ηᵀ(l + s)
m

μ –μ
Riη(l + s) –

τi(t) –μ

μ – τi(t)

m∑
s=

ηᵀ(l + s)
m

μ –μ
Riη(l + s)

≤ –

[ ∑l
k= η(k)∑m

s= η(l + s)

]ᵀ [ l
μ–μ

Ri Si
∗ m

μ–μ
Ri

][ ∑l
k= η(k)∑m

s= η(l + s)

]
. ()

It follows from () and Q(r) >  (r = , , . . . , (m + l)) that

l∑
k=

∫ t–τk–

t–τk

eλ(υ+τk )xᵀ(υ)

( N∑
j=

πijQ(k)
j

)
x(υ)dυ

≤ eλt
l∑

k=

∫ t–τk–

t–τk

xᵀ(υ)eλ(τk–τk–)

( N∑
j=

πijQ(k)
j

)
x(υ)dυ

≤ eλt
l∑

k=

∫ t–τk–

t–τk

xᵀ(υ)Q(k)x(υ)dυ, ()

m∑
s=

∫ t–τl+s–

t–τl+s

eλ(υ+τl+s)xᵀ(υ)

( N∑
j=

πijQ(l+s)
j

)
x(υ)dυ

≤ eλt
m∑
s=

∫ t–τl+s–

t–τl+s

xᵀ(υ)eλ(τl+s–τl+s–)

( N∑
j=

πijQ(l+s)
j

)
x(υ)dυ

≤ eλt
m∑
s=

∫ t–τl+s–

t–τl+s

xᵀ(υ)Q(l+s)x(υ)dυ. ()

Similarly, () implies

∫ –μ

–μ

∫ t

t+θ

eλ(υ–θ )ẋᵀ(υ)

( N∑
j=

πijRj

)
ẋ(υ)dυ ≤ eλt

∫ –μ

–μ

∫ t

t+θ

ẋᵀ(s)Rẋ(s)dsdθ . ()
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From ()-(), we can eventually obtain

£V (xt , rt , t) – λωᵀ(t)Wω(t)≤ eλtξᵀ(t)�i
(
τi(t), τ̇i(t)

)
ξ (t), ()

where

ξᵀ(t) =
[
xᵀ(t),xᵀ(t –μ),xᵀ(t – τ), . . . ,xᵀ(t – τl),xᵀ(t – τl+), . . . ,xᵀ(t – τl+m),ωᵀ(t)

]
,

and

�i
(
τi(t), τ̇i(t)

)
=

⎡⎢⎣�i(τi(t), τ̇i(t)) �i �i

∗ �i(τi(t), τ̇i(t)) �i

∗ ∗ –λW +Dᵀ
i (κRi + κR)Di

⎤⎥⎦ ,

�i
(
τi(t), τ̇i(t)

)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃i(τi(t), τ̇i(t))    · · · 
∗ �̃i(τi(t), τ̇i(t)) – l

μ–μ
Ri  · · · 

∗ ∗ �̃i(τi(t), τ̇i(t)) – l
μ–μ

Ri · · · 

∗ ∗ ∗ . . .
. . .

...
∗ ∗ ∗ ∗ �̃(l)i(τi(t), τ̇i(t)) – l

μ–μ
Ri

∗ ∗ ∗ ∗ ∗ �̃(l+)i(τi(t), τ̇i(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�i
(
τi(t), τ̇i(t)

)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�i(τi(t), τ̇i(t)) – m
μ–μ

Ri  · · · 
∗ �i(τi(t), τ̇i(t)) – m

μ–μ
Ri · · · 

∗ ∗ . . . . . . 
∗ ∗ ∗ �mi(τi(t), τ̇i(t)) – m

μ–μ
Ri

∗ ∗ ∗ ∗ �(m+)i(τi(t), τ̇i(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

�i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

PiAτ i +Aᵀ
i (κRi + κR)Aτ i  · · ·  

Si Si · · · Si Si
Si Si · · · Si Si
...

...
...

...
...

– l
μ–μ

Ri + Si Si · · · Si Si

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

�i =

⎡⎢⎢⎢⎢⎣
PiDi +Aᵀ

i (κRi + κR)Di


...


⎤⎥⎥⎥⎥⎦ , �i =

⎡⎢⎢⎢⎢⎣
Aᵀ

τ i(κRi + κR)Di


...


⎤⎥⎥⎥⎥⎦ ,

�̃i
(
τi(t), τ̇i(t)

)
= λPi + PiAi +Aᵀ

i Pi +
N∑
j=

πijPj + +Aᵀ
i (κRi + κR)Ai

+
l∑

k=

eλ[μ+
k(τi(t)–μ)

l ] – eλ[μ+
(k–)(τi(t)–μ)

l ]

λ
Q(k)

+
m∑
s=

eλ[τi(t)+
(l+s)(μ–τi(t))

m ] – eλ[τi(t)+
(l+s–)(μ–τi(t))

m ]

λ
Q(l+s),
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�̃i
(
τi(t), τ̇i(t)

)
= e

λ
l (τi(t)–μ)Q()

i +
l

μ –μ
Ri,

�̃i
(
τi(t), τ̇i(t)

)
= –

(
 –


l
τ̇i(t)

)
Q()

i +
(
 –


l
τ̇i(t)

)
e

λ
l (τi(t)–μ)Q()

i +
l

μ –μ
Ri,

�̃li
(
τi(t), τ̇i(t)

)
= –

(
 –

l – 
l

τ̇i(t)
)
Q(l–)

i

+
(
 –

l – 
l

τ̇i(t)
)
e

λ
l (τi(t)–μ)Q(l–)

i +
l

μ –μ
Ri,

�̃(l+)i
(
τi(t), τ̇i(t)

)
= –

(
 –

l – 
l

τ̇i(t)
)
Q(l–)

i

+
(
 –

l – 
l

τ̇i(t)
)
e

λ
l (τi(t)–μ)Q(l)

i +
l

μ –μ
Ri,

�i
(
τi(t), τ̇i(t)

)
= –

(
 – τ̇i(t)

)
Q(l)

i +
(
 – τ̇i(t)

)
e

λ
m (μ–τi(t))Q(l+)

i

+
l +m

μ –μ
Ri +Aᵀ

τ i(κRi + κR)Aτ i,

�i
(
τi(t), τ̇i(t)

)
= –

(
 –

m – 
m

τ̇i(t)
)
Q(l+)

i

+
(
 –

m – 
m

τ̇i(t)
)
e

λ
m (μ–τi(t))Q(l+)

i +
m

μ –μ
Ri,

�mi
(
τi(t), τ̇i(t)

)
= –

(
 –


m

τ̇i(t)
)
Q(l+m–)

i

+
(
 –


m

τ̇i(t)
)
e

λ
m (μ–τi(t))Q(l+m)

i +
m

μ –μ
Ri,

�(m+)i
(
τi(t), τ̇i(t)

)
= –Q(l+m)

i +
m

μ –μ
Ri.

By Lemma ., there exist functions α(t) ≥ , α(t)≥ , β(t) ≥  and β(t) ≥  satisfy-
ing α(t) + α(t) =  and β(t) + β(t) = , respectively. Using the Schur complement such
that

�i
(
τi(t), τ̇i(t)

)
= α(t)β(t)�i(μi,hi) + α(t)β(t)�i(μi,hi)

+ α(t)β(t)�i(μi,hi) + α(t)β(t)�i(μi,hi), ()

where�i(μi,hi),�i(μi,hi),�i(μi,hi) and�i(μi,hi) are defined in Theorem .. Sub-
stituting () into (), then () can be rewritten as

£V (xt , rt , t) – λωᵀ(t)Wω(t)≤
∑

p=

∑
q=

�i(μpi,hqi). ()

Therefore, the following relation holds by condition () and ():

E
{
£V (xt , rt , t)

}≤ E
[
ηV (xt , rt , t)

]
+ λωᵀ(t)Wω(t).

Multiplying the aforementioned inequality by e–ηt , we can get

E
{
£
[
e–ηtV (xt , rt , t)

]}≤ e–ηtλωᵀ(t)Wω(t).
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By integrating the aforementioned inequality between  and t, it follows that

e–ηt
E
[
V (xt , rt , t)

]
–E

[
V (x, r, )

]≤ λ

∫ t


e–ηsωᵀ(s)Wω(s)ds.

Denote P̃i = R– 


i PiR
– 


i , Q̃(r)
i = R– 


i Q(r)

i R– 


i , Q̃ = R– 


i QR– 


i , R̃i = R– 


i RiR
– 


i , R̃ = R– 


i RR– 


i ,
it yields that

E
[
V (x, r, )

]
≤
{
max
i∈N

λmax (̃Pi) + κ max
i∈N ,≤r≤(m+l)

λmax
(
Q̃(r)

i
)
+ κλmax(Q̃)

+ κmax
i∈N

λmax (̃Ri) + κλmax (̃R)
}

× sup
–μ≤υ≤

{
xᵀ(υ)Rix(υ), ẋᵀ(υ)Riẋ(υ)

}
=
(
λ + κλ + κ(λ + λ) + κλ

)× sup
–μ≤υ≤

{
xᵀ(υ)Rix(υ), ẋᵀ(υ)Riẋ(υ)

}
= c�. ()

Noting that η >  and  ≤ t ≤ T , we have

E
[
V (xt , rt , t)

]≤ E
[
eηtV (x, r, )

]
+ eηtλ

∫ t


e–ηsωᵀ(s)Wω(s)ds

≤ eηTc� + dλeηTλmax(W )
∫ T


e–ηs ds

≤ eηT
{
c� + dλλ


η

(
 – e–ηT)}. ()

On the other hand, it follows from () that

E
[
V (xt , rt , t)

]≥ E
[
xᵀ(t)eλtPix(t)

]≥ max
i∈N

λmin(Pi)E
[
xᵀ(t)Rix(t)

]
= λE

[
xᵀ(t)Rix(t)

]
. ()

It can be derived from ()-() that

E
[
xᵀ(t)Rix(t)

]≤ eηT

λ

{
c� + dλλ


η

(
 – e–ηT)}. ()

From () and (), we have

E
[
xᵀ(t)Rix(t)

]
< c. ()

Then the system is finite-time bounded with respect to (c, c,d,Ri,T). �

Remark  It should be mentioned that novel terms V(xt , i, t) and V(xt , i, t) are contin-
uous at τi(t) = τl is included in the Lyapunov-Krasovskii functional (), which plays an
important role in reducing conservativeness of the derived result.
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Remark  In this paper, τi(t) and τ̇i(t) may have different upper bounds in various delay
intervals satisfying () and (), respectively. While in previous work such as [, ], τi(t)
and τ̇i(t) are enlarged to τi(t) ≤ μ = max{μi, i ∈ N } and τ̇i(t) ≤ h = max{hi, i ∈ N },
respectively, which may lead to conservativeness inevitably. However, the case above can
be taken fully into account by employing the Lyapunov-Krasovskii functional ().

Remark Whendealingwith term–
∫ t–μ
t–μ

ẋᵀ(υ)Riẋ(υ)dυ , the convex combination is not
employed, Lemma . is used in this paper, then the free-weighting matrices-dependent
null add items are necessary to be introduced in our proof, which leads to the decrease in
the number of LMIs and LMIs scalar decision variables.

Remark  The feature of this paper is the way to deal with the integral term. Many re-
searchers have enlarged the derivative of the Lyapunov functional in order to deal with
the integral term in mathematical operations. In this paper, we transform different inte-
gral intervals with the same integral length into an integral interval. It is worth pointing
out that in the proof of the theorem no extra inequality is introduced. We propose a novel
delay-dependent sufficient criterion, which ensures that theMarkovian jump system with
time-varying delays is finite-time stable.

Remark  One can clearly see from the proof of Theorem . that neither free-weighting
matrices nor model transformation has been employed to deal with the sum terms, and
none of useful items are ignored, resulting in better results with the less number of LMIs
scalar decision variables, which deduces some conservatism in some sense.
By using the novel Lyapunov functionals with the more general decomposition of delay

interval, a state feedback controller () can be designed such that the resulting closed-loop
system is finite-time bounded withH∞ performance. When rt = i, the closed-loop system
is expressed by

{
ẋ(t) = Aix(t) +Aix(t – τrt (t)) +Diω(t),
z(t) = Cix(t) +Cτ ix(t – τi(t)) + Fiω(t),

()

where

Ai = Ai + BiKi, Ci = Ci + EiKi.

Theorem . System () is finite-time bounded with respect to (c, c,d,Ri,T) if there
exist matrices Pi > , Q(r)

i > , Q(r) >  (r = , , . . . , (m + l)), Ri, R > , Si, ∀i, j ∈ N , scalars
γ > , c < c, T > , κ > , κ > , κ > , λs >  (s = , , . . . , ), λ > , η >  and � > , such
that for all i, j ∈N , k = , , . . . , l, s = , , . . . ,m, the following inequalities hold:

�i(μqi,hqi) =

⎡⎢⎣�i(μpi,hqi) ϒi ϒ̃i

∗ �i(μpi,hqi) ϒ̃i

∗ ∗ ϒ̃i

⎤⎥⎦ < , p = , ,q = , , ()

c� + dλγ  
η

(
 – e–ηT) < λce–ηT , ()
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where

�i(μpi,hqi)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃i(μpi,hqi)    · · · 
∗ �̃i(μpi,hqi) – l

μ–μ
Ri  · · · 

∗ ∗ �̃i(μpi,hqi) – l
μ–μ

Ri · · · 

∗ ∗ ∗ . . .
. . .

...
∗ ∗ ∗ ∗ �̃li(μpi,hqi) – l

μ–μ
Ri

∗ ∗ ∗ ∗ ∗ �̃(l+)i(μpi,hqi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ϒ̃i =

⎡⎢⎢⎢⎢⎣
PiDi Ci Aᵀ

i Ri Aᵀ
i R

   
...

...
...

...
   

⎤⎥⎥⎥⎥⎦ ,

ϒ̃i =

⎡⎢⎢⎢⎢⎣
 Cτ i Aᵀ

τ iRi Aᵀ
τ iR

   
...

...
...

...
   

⎤⎥⎥⎥⎥⎦ ,

ϒ̃i =

⎡⎢⎢⎢⎣
–γ I Fi Dᵀ

i Ri Dᵀ
i R

∗ –I  
∗ ∗ – 

κ
Ri 

∗ ∗ ∗ – 
κ
R

⎤⎥⎥⎥⎦ ,

�̃i(μpi,hqi) = –λPi + PiAi +Aᵀ
i Pi +

N∑
j=

πijPj

+
l∑

k=

eλ[μ+
k(μpi–μ)

l ] – eλ[μ+
(k–)(μpi–μ)

l ]

λ
Q(k)

+
m∑
s=

eλ[μpi+
(l+s)(μ–μpi)

m ] – eλ[μpi+
(l+s–)(μ–μpi)

m ]

λ
Q(l+s).

Proof We now consider the H∞ performance of system (). Select the same Lyapunov-
Krasovskii functional as Theorem . and the Schur complement, it yields that

£V (xt , i, t) + zᵀ(t)z(t) – γ ωᵀ(t)ω(t)≤ ξᵀ(t)�i(μpi,hqi)ξ (t). ()

It follows from () that

E
{
£V (xt , i, t)

}≤ E
[
ηV (xt , i, t)

]
+ γ ωᵀ(t)ω(t) –E

[
zᵀ(t)z(t)

]
. ()

Multiplying the aforementioned inequality by e–ηt , one has

E
{
£
[
e–ηtV (xt ,i,t)

]}≤ e–ηt[γ ωᵀ(t)ω(t) – zᵀ(t)z(t)
]
. ()
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Under zero initial condition and E[V (xt , i, t)] > , by integrating the aforementioned in-
equality between  and T , we can get

E

[∫ T


e–ηυzᵀ(υ)z(υ)dυ

]
≤ γ 

E

[∫ T


e–ηυωᵀ(υ)ω(υ)dυ

]
. ()

Then it yields

E

[∫ T


zᵀ(υ)z(υ)dυ

]
≤ γ eηT

E

[∫ T


ωᵀ(υ)ω(υ)dυ

]
. ()

Thus it is concluded by Definition . that system () is finite-time bounded with an
H∞ performance γ . The proof is completed. �

Remark  From the proof process of Theorem . and Theorem ., it is easy to see that
neither bounding technique for cross terms normodel transformation is involved. In other
words, the obtained result is expected to be less conservative.

Remark  Lyapunov asymptotic stability and finite-time stability of a class of systems
are independent concepts. Lyapunov asymptotically stable system may not be finite-time
stable. Moreover, finite-time stable system may also not be Lyapunov asymptotically sta-
ble. There exist some results on Lyapunov stability, while finite-time stability also needs
our full investigation, which was neglected by most previous work.

4 Finite-time H∞ control
Theorem. System () is finite-time boundedwith respect to (c, c,d,Ri,T) if there exist
matrices P̂i > , Q̂(r)

i > , Q̂(r) >  (r = , , . . . , (m + l)), R̂i, R̂ > , Ŝi, ∀i, j ∈N , scalars c < c,
T > , κ > , κ > , κ > , σs >  (s = , , . . . , ), λ > , η >  and � > , such that for all
i, j ∈N , k = , , . . . , l, s = , , . . . ,m, the following inequalities hold:

�i(μqi,hqi) =

⎡⎢⎢⎢⎣
�i(μpi,hqi) �̃i �̃i �i

∗ �i(μpi,hqi) �̃i 
∗ ∗ �̃i 
∗ ∗ ∗ �i

⎤⎥⎥⎥⎦ < , p = , ,q = , , ()

e
λ
l (μpi–μ)

N∑
j=

πijQ̂(k)
j ≤ Q̂(k),

e
λ
m (μ–μpi)

N∑
j=

πijQ̂(l+s)
j ≤ Q̂(l+s), p = , ,

()

eλμ
N∑
j=

πijR̂ij ≤ R̂i, ()

σR
–
i < Xi < R–

i ,  < Q̂ii < σRi,  < Q̂i < σRi,

 < R̂ii < σRi,  < R̂i < σRi,
()

[
c� + dλγ  

η
( – e–ηT ) – ce–ηT √c√c σ

]
< , ()
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where

�i(μpi,hqi)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃i(μpi,hqi)    · · · 
∗ �̃i(μpi,hqi) – l

μ–μ
R̂ii  · · · 

∗ ∗ �̃i(μpi,hqi) – l
μ–μ

R̂ii · · · 

∗ ∗ ∗ . . .
. . .

...
∗ ∗ ∗ ∗ �̃li(μpi,hqi) – l

μ–μ
R̂ii

∗ ∗ ∗ ∗ ∗ �̃(l+)i(μpi,hqi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�i(μpi,hqi)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�i(μpi,hqi) – m
μ–μ

R̂ii  · · · 
∗ �i(μpi,hqi) – m

μ–μ
R̂ii · · · 

∗ ∗ . . . . . . 
∗ ∗ ∗ �mi(μpi,hqi) – m

μ–μ
R̂ii

∗ ∗ ∗ ∗ �(m+)i(μpi,hqi)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

�̃i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Aτ iXi  · · ·  
Ŝii ̂Sii · · · ̂Sii Ŝii
Ŝii ̂Sii · · · ̂Sii Ŝii
...

...
...

...
...

– l
μ–μ

R̂ii + Ŝii ̂Sii · · · ̂Sii Ŝii

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

�̃i =

⎡⎢⎢⎢⎢⎣
DiXi XiCᵀ

i + YiEᵀ
i XiAᵀ

i + YiBᵀ
i XiAᵀ

i + YiBᵀ
i

   
...

...
...

...
   

⎤⎥⎥⎥⎥⎦ ,

�̃i =

⎡⎢⎢⎢⎢⎣
 XiCᵀ

τ i XiAᵀ
τ i XiAᵀ

τ i

   
...

...
...

...
   

⎤⎥⎥⎥⎥⎦ ,

�̃i =

⎡⎢⎢⎢⎣
–γ (Xi – I) XiFi XiDᵀ

i XiDᵀ
i

∗ –I  
∗ ∗ – 

κ
(Xi – R̂ii) 

∗ ∗ ∗ – 
κ
(Xi – R̂i)

⎤⎥⎥⎥⎦ ,

�i = [
√

πiXi, . . . ,
√

πi(i–)Xi,
√

πi(i+)Xi, . . . ,
√

πiNXi],

�i = diag{X, . . . ,Xi–,Xi+, . . . ,XN },
�̃i(μpi,hqi) = –λXi +AiXi +XiA

ᵀ
i + πiiXi

+
l∑

k=

eλ[μ+
k(μpi–μ)

l ] – eλ[μ+
(k–)(μpi–μi)

l ]

λ
Q̂(k)

+
m∑
s=

eλ[μpi+
(l+s)(μ–μpi)

m ] – eλ[μpi+
(l+s–)(μ–μpi)

m ]

λ
Q̂(l+s),
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�̃i(μpi,hqi) = e
λ
l (μpi–μ)Q̂()

ii +
l

μ –μ
R̂ii,

�̃i(μpi,hqi) = –
(
 –


l
hqi

)
Q̂()

ii +
(
 –


l
hqi

)
e

λ
l (μpi–μ)Q̂()

ii +
l

μ –μ
R̂ii,

�̃li(μpi,hqi) = –
(
 –

l – 
l

hqi
)
Q̂(l–)

ii +
(
 –

l – 
l

hqi
)
e

λ
l (μpi–μ)Q̂(l–)

ii +
l

μ –μ
R̂ii,

�̃(l+)i(μpi,hqi) = –
(
 –

l – 
l

hqi
)
Q̂(l–)

ii +
(
 –

l – 
l

hqi
)
e

λ
l (μpi–μ)Q̂(l)

ii +
l

μ –μ
R̂ii,

�i(μpi,hqi) = –( – hqi)Q̂(l)
ii + ( – hqi)e

λ
m (μ–μpi)Q̂(l+)

ii +
l +m

μ –μ
R̂ii,

�i(μpi,hqi) = –
(
 –

m – 
m

hqi
)
Q̂(l+)

ii +
(
 –

m – 
m

hqi
)
e

λ
m (μ–μpi)Q̂(l+)

ii +
m

μ –μ
R̂ii,

�mi(μpi,hqi) = –
(
 –


m
hqi

)
Q̂(l+m–)

ii +
(
 –


m
hqi

)
e

λ
m (μ–μpi)Q̂(l+m)

ii +
m

μ –μ
R̂ii,

�(m+)i(μpi,hqi) = –Q̂(l+m)
ii +

m
μ –μ

R̂ii,

� = κσ + κ(σ + σ) + κσ.

Moreover, the state feedback gain matrices can be designed as

Ki = YiX–
i , ∀i = , , . . . ,N .

Proof Consider Theorem . and the overall closed-loop Markov jump system (). Pre-
and post-multiplying inequality () by block-diagonal matrix diag{P–

i , . . . ,P–
i , I,R–

i ,R–}
and its transpose, respectively. Letting

Xi = P–
i , Yi = KiXi, Q̂(r)

ij = XiQ(r)
j Xi, Q̂(r)

i = XiQ(r)Xi,

R̂ij = XiRjXi, R̂i = XiRXi, Ŝij = XiSjXi.
()

It can be easily obtained that

�i(μqi,hqi) =

⎡⎢⎢⎢⎣
�i(μpi,hqi) �̃i �̃i �i

∗ �i(μpi,hqi) �̃i 
∗ ∗ �̃i 
∗ ∗ ∗ �i

⎤⎥⎥⎥⎦ < , p = , ,q = , , ()

where

�̃i =

⎡⎢⎢⎢⎣
–γ XiXi XiFi XiDᵀ

i XiDᵀ
i

∗ –I  
∗ ∗ – 

κ
XiR̂–

ii Xi 
∗ ∗ ∗ – 

κ
XiR̂–

i Xi

⎤⎥⎥⎥⎦ .

From Lemma ., for any Xi > , R̂ii >  and R̂i > , one can obtain –XiXi ≤ Xi – I ,
–XiR̂iiXi ≤ Xi – R̂ii, –XiR̂iXi ≤ Xi – R̂i. Then () is equivalent to (). Therefore, if ()
holds, system () is finite-time bounded with a prescribed H∞ performance index γ . The
proof is completed. �
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Remark  By solving the Markovian jumping system with finite-time observer-based
controller, the mode-dependent positive-definite weighting matrices Ri in inequalities
()-() should be known first. For convenience, we always choose the initial value for
Ri = I .

Remark  Inmany actual applications, theminimumvalue of γ 
min is of interest. In Theo-

rem., with a fixed λ, γmin can be obtained through the following optimization procedure:

minγ 

s.t. ()-().

In Theorem ., as for finite-time stability and boundedness, once the state bound c is
not ascertained, the minimum value cmin is of interest. With a fixed λ, and define λ = ,
λ = σ, then the following optimization problem can be formulated to get the minimum
value cmin

minςγ  + ( – ς )c

s.t. ()-(),

where ς is weighted factor, and ς ∈ [, ].

5 Illustrative example
Example  Consider the Markovian jump system () with two operation modes and the
following data:

A =

[
–. .
–. –.

]
, Aτ =

[
–. –.
. –.

]
,

B =

[
–. .
–. –.

]
, C =

[
. –.
. –.

]
,

and the transition probability matrix is

� =

[
–. .
. –.

]
.

Under different levels of the upper bound μ and λ, Table  and Table  list the results
of the maximum allowable upper bound, the decay rate λ for different time delays and

Table 1 Comparison of the upper bounds of the decay rate for different delays

μ2 = 0.2 μ2 = 0.5 μ2 = 0.8 μ2 = 1 μ2 = 1.2

[22] (m = 2) 1.2718 1.0223 0.8234 0.7145 0.6209
[22] (m = 4) 1.3648 1.1245 0.9515 0.9980 0.8241
[21] (m = 2) 1.3641 1.1972 1.0035 0.8398 0.6934
[21] (m = 4) - - - - -
Theorem 3.1 (m = 1, l = 1) 1.3663 1.2019 1.1012 0.9920 0.7125
Theorem 3.1 (m = 2, l = 2) 1.4834 1.3132 1.2563 1.0197 0.9582
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Table 2 Comparison of the allowable values of time delay μ2 for different decay rates

λ = 0.6 λ = 0.8 λ = 1 λ = 1.2 λ = 1.4

[22] (m = 2) 1.2496 0.8045 0.5304 0.2801 0.0662
[22] (m = 4) 1.3562 0.9123 0.6294 0.3883 0.1716
[21] (m = 2) 1.3525 1.0512 0.8044 0.4953 0.1318
[21] (m = 4) - - - - -
Theorem 3.1 (m = 1, l = 1) 1.4681 1.2003 0.9943 0.6015 0.2726
Theorem 3.1 (m = 2, l = 2) 1.5722 1.3620 1.0342 0.7110 0.3675

maximum values of μ derived from various methods including the one proposed in this
paper, respectively. One can see fromTable  andTable  that the same results are obtained
in [, ]. It is clear fromTable  andTable  that the performance achieved by ourmethod
is much better than those by [, ]. Therefore, our results not only are less conservative,
but also require the less number of scalar decision variables.

Example  Consider a two-mode Markovian jump system () with

A =

[
–. .
 

]
, Aτ =

[
–. 
–. 

]
,

B =

[
– .
. –.

]
, D =

[
.
.

]
,

C =

[
. 
 .

]
, Cτ =

[
. 
. .

]
,

E =

[
. 
. .

]
, D =

[
.
.

]
,

A =

[
– .
 

]
, Aτ =

[
– .
 –.

]
,

B =

[
– 
. –

]
, D =

[
.
.

]
,

C =

[
. .
 .

]
, Cτ =

[
. 
. .

]
,

E =

[
. 
. .

]
, F =

[
.
.

]
.

In addition, the transition rate matrix is given by

� =

[
–. .
 –

]
.

Then we choose R = R = I , T = , c = , d = ., through Theorem ., it yields that
c = .. Moreover, we also can obtain the following controller gains:

K =

[
–. .
–. .

]
, K =

[
. –.
–. .

]
.
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It confirms the effectiveness of Theorem . for the state feedback controller design to
finite-time Markovian jump systems with time-varying delay.

6 Conclusions
In this paper, we have examined the problems of finite-time H∞ control for a class of
Markovian jump systems with mode-dependent time-varying delay. Based on a novel ap-
proach, a sufficient condition is derived such that the closed-loopMarkovian jump system
is finite-time bounded and satisfies the prescribed level of H∞ disturbance attenuation in
a finite time interval. The controller and observer gains can be solved directly by using
the existing LMIs optimization techniques. Finally, numerical examples are also given to
illustrate the effectiveness of the proposed design approach.
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