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Abstract
In this paper, the problem of the adaptive almost surely asymptotically
synchronization for stochastic delayed neural networks with Markovian switching is
considered. By utilizing a new nonnegative function and theM-matrix approach, we
derive a sufficient condition to ensure adaptive almost surely asymptotically
synchronization for stochastic delayed neural networks. Some appropriate
parameters analysis and update laws are found via the adaptive feedback control
techniques. We also present an illustrative numerical example to demonstrate the
effectiveness of theM-matrix-based synchronization condition derived in this paper.
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1 Introduction
As we know, the stochastic delayed neural networks (SDNNs) with Markovian switch-
ing have played an important role in the fields of science and engineering for their many
practical applications, including image processing, pattern recognition, associative mem-
ory, and optimization problems [, ]. In the past several decades, the characteristics of
the SDNNs with Markovian switching, such as the various stability [, ], have received
a lot of attention from scholars in various fields of nonlinear science. Wang et al. in []
considered exponential stability for delayed recurrent neural networks with Markovian
jumping parameters. Zhang et al. investigated stochastic stability for Markovian jumping
genetic regulatory networks with mixed time delays []. Huang et al. investigated robust
stability for stochastic delayed additive neural networks with Markovian switching [].
The researchers presented a number of sufficient conditions to achieve the global asymp-
totic stability and exponential stability for the SDNNs with Markovian switching [–].
As is well known, time delays, as a source of instability and oscillations, always appear in
various aspects of neural networks. Recently, the time delays of neural networks have re-
ceived a lot of attention [–]. The linear matrix inequality (LMI, for short) approach is
one of the most extensively used in recent publications [, ].
In recent years, it has been found that the synchronization of the coupled neural net-

works has potential applications inmany fields such as biology and engineering [–]. In
the coupled nonlinear dynamical systems, many neural networks may experience abrupt
changes in their structure and parameters caused by some phenomena such as compo-
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nent failures or repairs, changing subsystem interconnections, and abrupt environmental
disturbances. The synchronization may help to protect interconnected neurons from the
influence of random perturbations which affect all neurons in the system. Therefore, from
the neurophysiological as well as theoretical point of view, it is important to investigate
the impact of synchronization on the SDNNs. Moreover, in the adaptive synchronization
for the neural networks, the control law needs to be adapted or updated in realtime. So,
the adaptive synchronization for neural networks has been used in real neural networks
control such as parameter estimation adaptive control, model reference adaptive control,
etc. Some stochastic synchronization results have been investigated. For example, in [],
an adaptive feedback controller is designed to achieve complete synchronization for uni-
directionally coupled delayed neural networks with stochastic perturbation. In [], via
adaptive feedback control techniques with suitable parameters update laws, several suf-
ficient conditions are derived to ensure lag synchronization for unknown delayed neural
networks with or without noise perturbation. In [], a class of chaotic neural networks is
discussed, and based on the Lyapunov stabilitymethod and theHalanay inequality lemma,
a delay independent sufficient exponential synchronization condition is derived. The sim-
ple adaptive feedback scheme has been used for the synchronization for neural networks
with or without time-varying delay in []. A general model of an array of N linearly cou-
pled delayed neural networks with Markovian jumping hybrid coupling is introduced in
[] and some sufficient criteria have been derived to ensure the synchronization in an
array of jump neural networks with mixed delays and hybrid coupling in mean square.
It should be pointed out that, to the best of our knowledge, the adaptive almost surely

asymptotically synchronization for the SDNNs withMarkovian switching is seldommen-
tioned although it is of practical importance. Motivated by the above statements, in this
paper, we aim to analyze the adaptive almost surely asymptotically synchronization for
the SDNNs with Markovian switching.M-matrix-based criteria for determining whether
adaptive almost surely asymptotically synchronization for the SDNNs with Markovian
switching are developed. An adaptive feedback controller is proposed for the SDNNs with
Markovian switching. A numerical simulation is given to show the validity of the devel-
oped results.
The rest of this paper is organized as follows: in Section , the problem is formulated

and some preliminaries are given; in Section , a sufficient condition to ensure the adaptive
almost surely asymptotically synchronization for the SDNNs withMarkovian switching is
derived; in Section , an example of numerical simulation is given to illustrate the validity
of the results; Section  gives the conclusion of the paper.

2 Problem formulation and preliminaries
Throughout this paper, E stands for the mathematical expectation operator, ‖x‖ is used
to denote a vector norm defined by ‖x‖ = ∑n

i= xi , ‘T ’ represents the transpose of amatrix
or a vector, In is an n-dimensional identical matrix.
Let {r(t)}t≥ be a right-continuous Markov chain on the probability space taking values

in a finite state space S = {, , . . . ,N} with generator Γ = (γij)N×N given by

P
{
r(t + δ) = j|r(t) = i

}
=

{
γijδ + o(δ) if i �= j,
 + γiiδ + o(δ) if i = j,
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where δ >  and γij ≥  is the transition rate from i to j if i �= j while

γij = –
∑
j �=i

γij.

We denote r() = r.
In this paper, we consider the neural network called drive system and represented by the

compact form as follows:

dx(t) =
[
–C

(
r(t)

)
x(t) +A

(
r(t)

)
f
(
x(t)

)
+ B

(
r(t)

)
f
(
x
(
t – τ (t)

))
+D

(
r(t)

)]
dt, ()

where t ≥  is the time, x(t) = (x(t),x(t), . . . ,xn(t))T ∈ Rn is the state vector associ-
ated with n neurons, f (x(t)) = (f(x(t)), f(x(t)), . . . , fn(xn(t)))T ∈ Rn denote the activation
functions of the neurons, τ (t) is the transmission delay satisfying that  < τ (t) ≤ τ̄ and
τ̇ (t) ≤ τ̂ < , where τ̄ , τ̂ are constants. As a matter of convenience, for t ≥ , we denote
r(t) = i and A(r(t)) = Ai, B(r(t)) = Bi, C(r(t)) = Ci, D(r(t)) = Di, respectively. In model (),
furthermore, ∀i ∈ S, Ci = diag{ci, ci, . . . , cin} (i.e., Ci is a diagonal matrix) has positive and
unknown entries cik > , Ai = (aijk)n×n and Bi = (bijk)n×n are the connection weight and the
delayed connectionweightmatrices, respectively.Di = (di

,di
, . . . ,di

n)T ∈ Rn is the constant
external input vector.
For the drive system (), a response system is constructed as follows:

dy(t) =
[
–C

(
r(t)

)
y(t) +A

(
r(t)

)
f
(
y(t)

)
+ B

(
r(t)

)
f
(
y
(
t – τ (t)

))
+D

(
r(t)

)
+U(t)

]
dt

+ σ
(
t, r(t), y(t) – x(t), y

(
t – τ (t)

)
– x

(
t – τ (t)

))
dω(t), ()

where y(t) is the state vector of the response system (),U(t) = (u(t),u(t), . . . ,un(t))T ∈ Rn

is a control input vector with the form of

U(t) = K(t)
(
y(t) – x(t)

)
= diag

{
k(t),k(t), . . . ,kn(t)

}(
y(t) – x(t)

)
, ()

ω(t) = (ω(t),ω(t), . . . ,ωn(t))T is an n-dimensional Brown moment defined on a complete
probability space (�,F ,P) with a natural filtration {Ft}t≥ (i.e., Ft = σ {ω(s) :  ≤ s ≤ t} is
a σ -algebra) and is independent of the Markovian process {r(t)}t≥, and σ : R+ × S×Rn ×
Rn → Rn×n is the noise intensity matrix and can be regarded as a result of the occurrence
of eternal random fluctuation and other probabilistic causes.
Let e(t) = y(t) –x(t). For the purpose of simplicity, we mark e(t– τ (t)) = eτ (t) and f (x(t) +

e(t)) – f (x(t)) = g(e(t)). From the drive system () and the response system (), the error
system can be represented as follows:

de(t) =
[
–C

(
r(t)

)
e(t) +A

(
r(t)

)
g
(
e(t)

)
+ B

(
r(t)

)
g
(
eτ (t)

)
+U(t)

]
dt

+ σ
(
t, r(t), e(t), eτ (t)

)
dω(t). ()

The initial condition associated with system () is given in the following form:

e(s) = ξ (s), s ∈ [–τ̄ , ]
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for any ξ ∈ LF
([–τ̄ , ],Rn), where LF

([–τ̄ , ],Rn) is the family of all F-measurable
C([–τ̄ , ];Rn)-value random variables satisfying that sup–τ̄≤s≤ E|ξ (s)| < ∞, and C([–τ̄ , ];
Rn) denotes the family of all continuous Rn-valued functions ξ (s) on [–τ̄ , ] with the norm
‖ξ‖ = sup–τ̄≤s≤ |ξ (s)|.
To obtain the main result, we need the following assumptions.

Assumption  The activation functions of the neurons f (x(t)) satisfy the Lipschitz con-
dition. That is, there exists a constant L >  such that

∣∣f (u) – f (v)
∣∣ ≤ L|u – v|, ∀u, v ∈ Rn.

Assumption  The noise intensity matrix σ (·, ·, ·, ·) satisfies the linear growth condition.
That is, there exist two positives H and H such that

trace
(
σ
(
t, r(t),u(t), v(t)

))T(
σ
(
t, r(t),u(t), v(t)

)) ≤ H
∣∣u(t)∣∣ +H

∣∣v(t)∣∣
for all (t, r(t),u(t), v(t)) ∈ R+ × S × Rn × Rn.

Assumption  In the drive system ()

f ()≡ , σ (t, r, , )≡ .

Remark  Under Assumption ∼Assumption , the error system () admits an equilib-
rium point (or trivial solution) e(t, ξ ), t ≥ .

The following stability concept and synchronization concept are needed in this paper.

Definition  The trivial solution e(t, ξ ) of the error system () is said to be almost surely
asymptotically stable if

P
(
lim
t→∞

∣∣x(t; i, ξ )∣∣ = 
)
= 

for any ξ ∈ LpL
([–τ̄ , ];Rn).

The response system () and the drive system () are said to be almost surely asymptot-
ically synchronized if the error system () is almost surely asymptotically stable.

Themain purpose of the rest of this paper is to establish a criterion of the adaptive almost
surely asymptotically synchronization of system () and response system () by using the
adaptive feedback control andM-matrix techniques.
To this end, we introduce some concepts and lemmas which will be frequently used in

the proofs of our main results.

Definition  [] A square matrix M = (mij)n×n is called a nonsingular M-matrix if M
can be expressed in the form M = sIn – G with some G ≥  (i.e., each element of G is
nonnegative) and s > ρ(G), where ρ(G) is the spectral radius of G.

Lemma  [] If M = (mij)n×n ∈ Rn×n with mij <  (i �= j), then the following statements are
equivalent:

http://www.advancesindifferenceequations.com/content/2013/1/211


Ding et al. Advances in Difference Equations 2013, 2013:211 Page 5 of 12
http://www.advancesindifferenceequations.com/content/2013/1/211

() M is a nonsingular M-matrix.
() Every real eigenvalue ofM is positive.
() M is positive stable. That is,M– exists andM– >  (i.e., M– ≥  and at least one

element ofM– is positive).

Lemma  [] Let x ∈ Rn, y ∈ Rn. Then

xTy + yTx≤ εxTx + ε–yTy

for any ε > .

Consider an n-dimensional stochastic delayed differential equation (SDDE, for short)
with Markovian switching

dx(t) = f
(
t, r(t),x(t),xτ (t)

)
dt + g

(
t, r(t),x(t),xτ (t)

)
dω(t) ()

on t ∈ [,∞) with the initial data given by

{
x(θ ) : –τ̄ ≤ θ ≤ 

}
= ξ ∈ LL

(
[–τ̄ , ];Rn).

If V ∈ C,(R+ × S × Rn;R+), define an operator L from R+ × S × Rn to R by

LV (t, i,x,xτ ) = Vt(t, i,x) +Vx(t, i,x)f (t, i,x,xτ )

+ (/) trace
(
gT (t, i,x,xτ )Vxx(t, i,x)g(t, i,x,xτ )

)
+

N∑
j=

γijV (t, j,x),

where

Vt(t, i,x) =
∂V (t, i,x)

∂t
,

Vx(t, i,x) =
(

∂V (t, i,x)
∂x

,
∂V (t, i,x)

∂x
, . . . ,

∂V (t, i,x)
∂xn

)
,

Vxx(t, i,x) =
(

∂V (t, i,x)
∂xj ∂xk

)
n×n

.

For the SDDE with Markovian switching, we have the Dynkin formula as follows.

Lemma  (Dynkin formula) [, ] Let V ∈ C,(R+ × S × Rn;R+) and τ, τ be bounded
stopping times such that ≤ τ ≤ τ a.s. (i.e., almost surely). If V (t, r(t),x(t)) andLV (t, r(t),
x(t),xτ (t)) are bounded on t ∈ [τ, τ] with probability , then

EV
(
τ, r(τ),x(τ)

)
= EV

(
τ, r(τ),x(τ)

)
+ E

∫ τ

τ

LV
(
s, r(s),x(s),xτ (s)

)
ds.

For the SDDE with Markovian switching again, the following hypothesis is imposed on
the coefficients f and g .
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Assumption  Both f and g satisfy the local Lipschitz condition. That is, for each h > ,
there is an Lh >  such that

∣∣f (t, i,x, y) – f (t, i, x̄, ȳ)
∣∣ + ∣∣g(t, i,x, y) – g(t, i, x̄, ȳ)

∣∣ ≤ Lh
(|x – x̄| + |y – ȳ|)

for all (t, i) ∈ R× S and those x, y, x̄, ȳ ∈ Rn with x∨ y∨ x̄∨ ȳ≤ h. Moreover,

sup
{∣∣f (t, i, , )∣∣ ∨ ∣∣g(t, i, , )∣∣ : t ≥ , i ∈ S

}
< ∞.

Now we cite a useful result given by Yuan and Mao [].

Lemma  [] Let Assumption  hold. Assume that there are functions V ∈ C,(R+ × S×
Rn;R+), γ ∈ L(R+;R+) and w,w ∈ C(Rn;R+) such that

LV (t, i,x, y) ≤ γ (t) –w(x) +w(y), ∀(t, i,x, y) ∈ R+ × S × Rn × Rn, ()

w() = w() = , w(x) > w(x), ∀x �=  ()

and

lim|x|→∞ inf
≤t<∞,i∈SV (t, i,x) = ∞. ()

Then the solution of Eq. () is almost surely asymptotically stable.

3 Main results
In this section, we give a criterion of the adaptive almost surely asymptotically synchro-
nization for the drive system () and the response system ().

Theorem  Assume that M := –diag{η,η, . . . ,η︸ ︷︷ ︸
N

} – Γ is a nonsingular M-matrix, where

η = –γ + α + L + β +H,

γ =min
i∈S min

≤j≤n
cij , α =max

i∈S
(
ρ
(
Ai)), β =max

i∈S
(
ρ
(
Bi)), p≥ .

Let m >  and 
m = (m,m, . . . ,m︸ ︷︷ ︸
N

)T (in this case, (q,q, . . . ,qN )T := M– 
m � , i.e., all

elements of M– 
m are positive by Lemma ). Assume also that

(
L +H

)
q̄ < –

(
ηqi +

N∑
k=

γikqk

)
, ∀i ∈ S, ()

where q̄ =maxi∈S qi.
Under Assumptions ∼, the noise-perturbed response system () can be adaptive almost

surely asymptotically synchronized with the delayed neural network () if the update law
of the feedback control gain K(t) of the controller () is chosen as

k̇j = –qiαjej , ()

where αj >  (j = , , . . . ,n) are arbitrary constants.
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Proof Under Assumptions ∼, it can be seen that the error system () satisfies Assump-
tion .
For each i ∈ S, choose a nonnegative function as follows:

V (t, i, e) = qi|e| +
n∑
j=


αj
kj .

Then it is obvious that condition () holds.
Computing LV (t, i, e, eτ ) along the trajectory of the error system (), and using (), one

can obtain that

LV (t, i, e, eτ ) = Vt +Ve
[
–Cie +Aig(e) + Big(eτ ) +U(t)

]
+ (/) trace

(
σT (t, i, e, eτ )Veeσ (t, i, e, eτ )

)
+

N∑
k=

γikV (t,k, e)

= 
n∑
j=


αj
kjk̇j + qieT

[
–Cie +Aig(e) + Big(eτ ) +U(t)

]

+ qi trace
(
σT (t, i, e, eτ )σ (t, i, e, eτ )

)
+

N∑
k=

γikqk|e|

= qieT
[
–Cie +Aig(e) + Big(eτ )

]
+ qi trace

(
σT (t, i, e, eτ )σ (t, i, e, eτ )

)
+

N∑
k=

γikqk|e|. ()

Now, using Assumptions ∼ together with Lemma  yields

–eTCie ≤ –γ |e|, ()

eTAig(e) ≤ eTAi(Ai)Te + gT (e)g(e) ≤ (
α + L

)|e|, ()

eTBig(eτ ) ≤ eTBi(Bi)Te + gT (eτ )g(eτ ) ≤ β|e| + L|eτ | ()

and

qi trace
(
σT (t, i, e, eτ )σ (t, i, e, eτ )

) ≤ qi
(
H|e| +H|eτ |

)
. ()

Substituting ()∼() into () yields

LV (t, i, e, eτ ) ≤
(

ηqi +
N∑
k=

γikqk

)
|e| + (

L +H
)
qi|eτ |

≤ –m|e| + (
L +H

)
q̄|eτ |, ()

wherem = –(ηqi +
∑N

k= γikqk) by (q,q, . . . ,qN )T =M– 
m.
Let w(e) =m|e|, w(eτ ) = (L + H)q̄|eτ |. Then inequalities () and () hold by using

(), where γ (t) =  in (). By Lemma , the error system () is adaptive almost surely
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asymptotically stable, and hence the noise-perturbed response system () can be adaptive
almost surely asymptotically synchronized with the drive delayed neural network (). This
completes the proof. �

Remark  In Theorem , condition () of the adaptive almost surely asymptotically syn-
chronization for the SDNN with Markovian switching obtained by using M-matrix and
the Lyapunov functionalmethod is generator-dependent and very different to othermeth-
ods such as the linear matrix inequality method. And it is easy to check the condition if
the drive system and the response system are given and the positive constant m is well
chosen. To the best of the authors’ knowledge, this method is the first development in the
research area of synchronization for neural networks.

Now, we are in a position to consider two special cases of the drive system () and the
response system ().

Special case  The Markovian jumping parameters are removed from the neural net-
works () and the response system (). In this case, N =  and the drive system, the re-
sponse system and the error system can be represented, respectively, as follows:

dx(t) =
[
–Cx(t) +Af

(
x(t)

)
+ Bf

(
x
(
t – τ (t)

))
+D

]
dt, ()

dy(t) =
[
–Cy(t) +Af

(
y(t)

)
+ Bf

(
y
(
t – τ (t)

))
+D +U(t)

]
dt

+ σ
(
t, y(t) – x(t), y

(
t – τ (t)

)
– x

(
t – τ (t)

))
dω(t) ()

and

de(t) =
[
–Ce(t) +Ag

(
e(t)

)
+ Bg

(
eτ (t)

)
+U(t)

]
dt

+ σ
(
t, e(t), eτ (t)

)
dω(t). ()

For this case, one can get the following result that is analogous to Theorem .

Corollary  Let

η = –γ + α + L + β +H,

γ = min
≤j≤n

cj, α =
(
ρ(A)

), β =
(
ρ(B)

), p ≥ .

Assume that

η < 

and

L +H < –η. ()

Under Assumptions ∼, the noise-perturbed response system () can be adaptive al-
most surely asymptotically synchronized with the delayed neural network () if the update

http://www.advancesindifferenceequations.com/content/2013/1/211
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law of the feedback gain K(t) of the controller () is chosen as

k̇j = –αjej , ()

where αj >  (j = , , . . . ,n) are arbitrary constants.

Proof Choose the following nonnegative function:

V (t, e) = |e| +
n∑
j=


αj
kj .

The rest of the proof is similar to that of Theorem , and hence omitted. �

Special case  The noise-perturbation is removed from the response system (), which
yields the noiseless response system

dy(t) =
[
–Ĉ

(
r(t)

)
y(t) + Â

(
r(t)

)
f
(
y(t)

)
+ B̂

(
r(t)

)
f
(
y
(
t – τ (t)

))
+D

(
r(t)

)
+U(t)

]
dt ()

and the error system

de(t) =
[
–C

(
r(t)

)
e(t) +A

(
r(t)

)
g
(
e(t)

)
+ B

(
r(t)

)
g
(
eτ (t)

)
+U(t)

]
dt, ()

respectively.

In this case, one can get the following results.

Corollary  Assume that M := –diag{η,η, . . . ,η︸ ︷︷ ︸
N

} – Γ is a nonsingular M-matrix, where

η = –γ + α + L + β .

Let m >  and 
m = (m,m, . . . ,m︸ ︷︷ ︸
N

)T (in this case, (q,q, . . . ,qN )T := M– 
m �  by

Lemma ). Assume also that

Lq̄ < –

(
ηqi +

N∑
k=

γikqk

)
, ∀i ∈ S, ()

where q̄ =maxi∈S qi.
Under Assumptions ∼, the noiseless-perturbed response system () can be adaptive

almost surely asymptotically synchronized with the unknown drive delayed neural network
() if the update law of the feedback gain K(t) of the controller () is chosen as

k̇j = –qiαjej , ()

where αj >  are arbitrary constants.

http://www.advancesindifferenceequations.com/content/2013/1/211
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Proof For each i ∈ S, choose a nonnegative function as follows:

V (t, i, e) = qi|e| +
n∑
j=


αj
kj .

The rest of the proof is similar to that of Theorem , and hence omitted. �

4 Numerical example
In the section, an illustrative example is given to support our main results.

Example  Consider a delayed neural network (), and its response system () with
Markovian switching and the following network parameters:

C =

[
 
 .

]
, C =

[
. 
 

]
, A =

[
. –.
–. .

]
,

A =

[
. –.
–. .

]
, B =

[
. –.
 .

]
, B =

[
–. –.
. .

]
,

D =

[
.
.

]
, D =

[
.
.

]
, Γ =

[
–. .
. –.

]
,

σ
(
t, e(t), e(t – τ ), 

)
=

(
.e(t – τ ), .e(t)

)T ,
σ
(
t, e(t), e(t – τ ), 

)
=

(
.e(t), .e(t – τ )

)T ,
f
(
x(t)

)
= g

(
x(t)

)
= tanh

(
x(t)

)
, τ = ., L = .

It can be checked that Assumption ∼Assumption  and inequality () are satisfied and
the matrix M is a nonsingular M-matrix. So, the noise-perturbed response system ()
can be adaptive almost surely asymptotically synchronized with the drive delayed neural
network () by Theorem . The simulation results are given in Figures ∼. Figure  shows
that the state response e(t) and e(t) of the errors system converge to zero. Figure  shows

Figure 1 The response curve of the state variable e1(t) and e2(t) of the errors system.

http://www.advancesindifferenceequations.com/content/2013/1/211
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Figure 2 The dynamic curve of the feedback gain k1 and k2.

the dynamic curve of the feedback gain k and k. From the simulations, it can be seen
that the stochastic delayed neural networks withMarkovian switching are adaptive almost
surely asymptotically synchronization.

5 Conclusions
In this paper, we have proposed the concept of adaptive almost surely asymptotically syn-
chronization for the stochastic delayed neural networks with Markovian switching. Mak-
ing use of the M-matrix and Lyapunov functional method, we have obtained a sufficient
condition, under which the response stochastic delayed neural network with Markovian
switching can be adaptive almost surely asymptotically synchronized with the drive de-
layed neural networks with Markovian switching. The method to obtain the sufficient
condition of the adaptive synchronization for neural networks is different to that of the
linear matrix inequality technique. The condition obtained in this paper is dependent on
the generator of theMarkovian jumpingmodels and can be easily checked. Extensive sim-
ulation results are provided to demonstrate the effectiveness of our theoretical results and
analytical tools.
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