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1 Introduction
The stability of deterministic control systems has been widely developed in the past few
decades (see, for instance, Sontag andWang [], Grune [], Karafyllis and Tsinias [], Ning
et al. []). In these papers, necessary and sufficient conditions for input-to-state stability at
the equilibrium state of deterministic control systems were provided. On the other hand,
the asymptotic stability, exponential stability and input-to-state stability in probability at
the equilibrium state of stochastic control systems (SCS) were established byMao [], Liu
and Raffool [], Lan and Dang [], Abedi et al. [, ], Abedi and Leong [], Khasminiskii
[], Kushner [], Tsinias [], Ito [], Liu et al. [], Duan et al. [] and Yu and Xie [].
Particularly, Ito [] developed the properties of input-to-state stability and gave the de-
sign of controller by using nonlinear small-gain conditions. While Liu et al. [] discussed
the property of practical stochastic input-to-state stability and its application to stabil-
ity of cascaded nonlinear systems. The concept of integral input-to-state stability to the
stochastic nonlinear systems was generalized by Yu and Xie [] and Duan et al. [] and
state feedback controller that guarantees that all the signals of the resulting closed-loop
system are bounded almost surely was also given.
Michel [] developed exponential stability in probability of a continuous and discrete

parameters composite stochastic system. Later, Boulanger [] derived sufficient condi-
tions for asymptotic stability in probability and exponential stability in mean square for
a special case of our composite stochastic control system (CSCS). The sufficient condi-
tions for exponential stability in probability of nonlinear stochastic systems, which are the
special case of our CSCS, were established by Rusinek [].
The purpose of the paper is to fill the gaps in the literature by studying the exponential

input-to-state stability in probability in rth mean (REISSP) and the almost sure exponen-
tial input-to-state stability in probability (AEISSP) of a CSCS. We take this fact into ac-
count to extend the REISSP and AEISSP results established by Spiliotis and Tsinias []
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for SCS to the broader class of CSCS driven by two independent Wiener processes that
were considered in Boulanger [] and Rusinek []. The main results of our work enable
us to derive sufficient conditions for REISSP and AEISSP of the CSCS. We also establish
the existence of an explicit formula for a feedback law exhibiting the REISSP and AEISSP
property.
The rest of the paper is organized as follows. In Section , we introduce a wider class

of CSCS and we also recall some basic definitions and results relating the REISSP and
AEISSP property. Finally in Section , we use the results of Section  and prove that the
CSCS satisfies the REISSP and AEISSP property. We also provide a numerical example to
illustrate our results.

2 Assumptions and preliminaries
The aim of this section is to introduce a class of stochastic differential systems (SDS) and
recall some basic definitions and theorems concerning an exponential control Lyapunov
function for the exponential stability in probability of this system that we are dealing
with in the rest of the paper. We also focus on the properties of the exponential control
Lyapunov function, which plays an important role in the exponential stability, in Section .
Let (�,F ,P) be a complete probability space, and denote by (wt)t≥ a standardRm-valued

Wiener process defined on this space.
Consider the multi-input SDS in R

n

dx = f (x)dt + h(x)dwt , ()

where the state space is Rn, f and h are Lipschitz functionals mapping from R
n into R

n

and R
n×m, respectively, vanishing at the origin and there exists a nonnegative constant C

such that for any x ∈ R
n, the following growth condition holds:

∣∣f (x) – f (y)
∣∣ + ∣∣h(x) – h(y)

∣∣ ≤ C|x – y|, ∀x, y ∈R
n. ()

Assume that for a C function � :Rn → R
+,

D�(x) =
n∑
i=

f i(x)
∂�(x)
∂xi

+



n∑
i,j=

m∑
k=

hik(x)h
j
k(x)

∂�(x)
∂xi ∂xj

()

is the infinitesimal generator for the stochastic process solution of SDS (). Then we can
recall the definition of exponential stability in probability in mean square and the stochas-
tic version of the converse Lyapunov theorem established by Khasminskii [] as follows.

Definition . We say that the origin is exponentially stable in probability inmean square
with respect to SDS () if and only if there exist constants c, c >  such that

E
(∣∣xt(t, t,x)∣∣) ≤ c|x|e–c(t–t), ∀x ∈R

n, t ≥ t.

Theorem. Suppose that the origin is exponentially stable in probability inmean square
with respect to SDS (). Then there exist a Lyapunov function � : Rn → R

+ and positive
constants ai,  ≤ i≤ , such that

a|x| ≤ �(x)≤ a|x|, ()
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∣∣∇�(x)
∣∣ ≤ a|x|,

∣∣∇�(x)
∣∣ ≤ a, ()

D�(x) =
n∑
i=

f i(x)
∂�(x)
∂xi

+



n∑
i,j=

m∑
k=

hik(x)h
j
k(x)

∂�(x)
∂xi ∂xj

≤ –a|x|, ()

where ∇ is the gradient operator and D is given in ().

Assume that (βt)t≥ is a standardRq-valuedWiener process defined on a complete prob-
ability space (�,F ,P). Now, consider the multi-input SCS in R

r

dυ = F(υ,u)dt +G(υ,u)dβt , ()

where the state space is Rr and the following conditions hold:
() u is an R

p-valued measurable control law,
() F and G are Lipschitz functionals mapping from R

r ×R
p into R

r , and R
r ×R

q,
respectively, such that they are vanishing at the origin and there exists constant
C ≥  such that for any υ ∈ R

r and u ∈R
p, the following growth condition holds:

∣∣F(υ,u)∣∣ + ∣∣G(υ,u)∣∣ ≤ C
(
 + |υ| + |u|). ()

Under restriction on growth () (see, for instance, Arnold []), for every input u ∈ R
p,

υ ∈ R
r and t ∈ R, there exists a unique solution V (t, t,υ,u) of () starting from υ at

time t = t which is defined for all t ≥ t and almost all β ∈ �. In the following we assume
V (t) = V (t, t,υ,u) and we recall the definition of RESP, AESP and the stochastic version
of the converse Lyapunov theorem proved by Spiliotis and Tsinias [] as follows.

Definition . We say that the origin is RESP with respect to SCS () for some r >  if
and only if there exist constants c, c >  such that

E
(∣∣V (t)

∣∣r) ≤ c|υ|re–c(t–t), ∀υ ∈ R
r , t ≥ t. ()

Definition . SCS () is said to satisfy the exponential Lyapunov condition if there exists
a Lyapunov function � :Rr →R

+ of class C(Rr\{}) and positive constants ai,  ≤ i≤ ,
such that

a|υ|r ≤ �(υ)≤ a|υ|r , ()∣∣∇�(υ)
∣∣ ≤ a|υ|r–, ∣∣∇�(υ)

∣∣ ≤ a|υ|r–, ()

Y�(υ) =
n∑
i=

F(υ,u)
∂�(υ)
∂υi

+



n∑
i,j=

G(υ,u)G(υ,u)T
∂�(υ)
∂υi ∂υj

≤ –a|υ|r , ()

where Y is the infinitesimal generator for the stochastic process solution of SCS ().

Theorem . Suppose that the origin is RESP with respect to SCS (). Then there exists a
Lyapunov function � :Rr →R

+ of class C(Rr\{}) which satisfies all conditions ()-().
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Definition . We say that the origin is AESP with respect to SCS () if and only if there
exist a constant c >  and a random variable ≤ Bυ,u <∞ such that

∣∣V (t)
∣∣ ≤ Bυ,ue–c(t–t), ∀υ ∈R

r , t ≥ t. ()

Note that Definition . and Theorem . in Spiliotis and Tsinias [] are an extension
of Definition . and Theorem ., respectively, established in Khasminskii []. Now, we
recall the definition of REISSP and AEISSP exposed in [] as follows.

Definition . We say that the origin is REISSP with respect to SCS () if there exist a
positive definite function γ :R+ →R

+ and constants c, c >  such that () holds and

∣∣u(t)∣∣ ≤ γ
(∣∣V (t)

∣∣), ∀υ ∈R
r , t ≥ t. ()

Definition . We say that the origin is AEISSP with respect to SCS () if, there exist a
positive definite function γ : R+ → R

+, constant c > , and a random variable Bυ,u < ∞
such that () and () hold for any υ ∈ R

r , and t ≥ t.

We shall now turn the attention to a broader class of CSCS and provide some results
related to the REISSP and AEISSP of this system.
Let us first introduce a general composite stochastic system.
Assume that {βt , t ∈ R

+} is a standard R
q-valuedWiener process defined on a complete

probability space (�,F ,P) independent of a standard R
m-valued Wiener process {wt , t ∈

R
+}. Consider the multi-input CSCS

{
dx = (f (x) + g(x,υ)Dυ)dt + (h(x) + q(x,υ)Dυ)dwt ,
dυ = F(υ,u)dt +G(υ,u)dβt ,

()

where the following conditions hold:
(H) x ∈R

n, υ ∈ R
r , and D is a matrix function with value inMr×r(R),

(H) f and h are functionals in C(Rn,Rn) and C(Rn,Rn×m), respectively, such that
f () = h() = ,

(H) g :Rn ×R
r →R

n×r and q :Rn ×R
r → R

n×m are Lipschitz functionals such that
there exists a nondecreasing scalar function α(|υ|) ≥  bounded for all υ such that

∣∣g(x,υ)∣∣ + ∣∣q(x,υ)∣∣ ≤ α
(|υ|)|x|, ∀(x,υ) ∈R

n ×R
r ,

(H) u is an R
p-valued measurable control law,

(H) F :Rr ×R
p →R

r and G :Rr ×R
p →R

n×q are Lipschitz functionals, vanishing at
the origin and there exists a nonnegative constant C such that the following
growth condition holds:

∣∣F(υ,u)∣∣ + ∣∣G(υ,u)∣∣ ≤ C
(
 + |υ| + |u|), ∀(υ,u) ∈R

r ×R
p.

Suppose that there exist functionals F : Rr → R
r , F : Rr → R

r×p, G : Rr → R
r×q and

G :Rr →R
r×p×q such that

F(υ,u) = F(υ) + F(υ)u, G(υ,u) =G(υ) +G(υ)u,
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and

dυ =
(
F(υ) + F(υ)u

)
dt +

(
G(υ) +G(υ)u

)
dβt ()

for any (υ,u) ∈R
r ×R

p. Then CSCS () is rewritten as
{
dx = (f (x) + g(x,υ)Dυ)dt + (h(x) + q(x,υ)Dυ)dwt ,
dυ = (F(υ) + F(υ)u)dt + (G(υ) +G(υ)u)dβt .

()

By considering the results on EISSP exposed in [], we can establish the following out-
come.

Lemma . CSCS () satisfies the REISSP and AEISSP property if and only if  ∈ R
n is

RESP and AESP, respectively, for the system
{
dx = (f (x) + g(x,υ)Dυ)dt + (h(x) + q(x,υ)Dυ)dwt ,
dυ = (F(υ) + F(υ)γ (|υ|)θ )dt + (G(υ) +G(υ)γ (|υ|)θ )dβt ,

()

where θ ∈ I = {θ ∈R
p : |θ | ≤ }.

Proof The proof of this lemma is a direct consequence of Definitions ., .-. and the
fact that each solution (x(t),υ(t)) of () that corresponds to some u(·) coincides with
the solution of () with the same initial x, υ and t and corresponding to u = γ (|υ|)θ ,
namely, satisfying (). Conversely, each solution (x(t),υ(t)) of () under restriction ()
is a solution of () with input θ = u/γ (|υ|) and the same initial value. �

In the next section we establish the state feedback law that guarantees the satisfaction
of the REISSP and AEISSP property for CSCS ().

3 Main stability results
The REISSP and AEISSP results proved in this paper employ the technique which is a
combination of those by Sontag and Wang [, ], i.e., decomposition for a deterministic
control system, and Spiliotis and Tsinias [], i.e., decomposition in stochastic case for the
SCS. We use these decompositions to obtain the existing exponential stability results for
the CSCS. In the following theorem, we assume that the functions g and q are bounded on
R

n×R
p andU is the set of admissible control. To establish sufficient conditions for REISSP

and AEISSP of CSCS (), we use Lemma . and show that the origin is RESP and AESP
for CSCS (). Theorem . can be viewed as a stochastic extension of Proposition .
and Theorem . stated in Spiliotis and Tsinias [] and Boulanger [], respectively, to a
general composite stochastic system. Both the results and the tools used in this theorem,
however, are different from those in [, ]. Furthermore, we can consider the exponential
stability results of Boulanger [] as a special case of our REISSP results (Theorem .)
where r = .

Theorem . Consider CSCS (). Assume that the function γ : R+ → R
+ is positive def-

inite with bounded first derivative γ (), and for all |u| ≤ γ (|υ|), there exists a C(Rr\{})
function � satisfying the exponential Lyapunov condition. Furthermore, assume that

Dυ = F(υ)T∇�(υ) +∇�(υ)G(υ)T . ()

http://www.advancesindifferenceequations.com/content/2013/1/208
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Then the state control law

k(x,υ) = k(υ) – g(x,υ)T∇�(x) – q(x,υ)T∇�(x), ()

where � is a smooth Lyapunov function corresponding to SDS () and k : Rr → R
p is

a state control law corresponding to the resulting closed-loop system deduced from (),
renders CSCS () satisfying the REISSP and AEISSP property.

Proof For the proof of this theorem, we shall use Lemma . and show that REISSP and
AISSP are satisfied for CSCS () if and only if the origin is RESP and AESP for CSCS
(). Assume that the function �(V (t)) satisfies the exponential Lyapunov condition with
respect to CSCS (). Obviously, by our hypothesis, the function �(V (t)) satisfies the ex-
ponential Lyapunov condition with respect to CSCS (). We now show that the origin
satisfies RESP and AESP for CSCS (). First we prove that the equilibrium of CSCS ()
is satisfied in the RESP property. Since the exponential Lyapunov condition is fulfilled for
CSCS (), there exists a Lyapunov function �(V (t)) and positive constants ai,  ≤ i ≤ ,
such that ()-() hold. Consider the composite function

�
(
V (t)

)
= �(x) +�(υ), ∀(x,υ) ∈R

n ×R
r , ()

where � and � are the Lyapunov functions corresponding to SDS () and SCS (), re-
spectively. By substituting θ (x,υ) = k(x,υ)

γ (|υ|) into the closed-loop system deduced from CSCS
(), we have

dx =
(
f (x) + g(x,υ)Dυ

)
dt +

(
h(x) + q(x,υ)Dυ

)
dwt ,

dυ =
(
F(υ) + F(υ)k(υ) – F(υ)g(x,υ)T∇�(x)

– F(υ)q(x,υ)T∇�(x)
)
dt +

(
G(υ) +G(υ)k(υ)

–G(υ)g(x,υ)T∇�(x) –G(υ)q(x,υ)T∇�(x)
)
dβt . ()

DenotingDυ as the infinitesimal generator of the stochastic process solution of the result-
ing closed-loop system (), we obtain

Dυ�
(
V (t)

)
=D�(x) +∇�(x)Tg(x,υ)Dυ +∇�(x)Tq(x,υ)Dυ +Y�(υ)

–∇�(υ)TF(υ)g(x,υ)T∇�(x)

–∇�(υ)TF(υ)q(x,υ)T∇�(x)

–∇�(υ)TG(υ)g(x,υ)T∇�(x)

–∇�(υ)TG(υ)q(x,υ)T∇�(x) ()

for any (x,υ) ∈R
n ×R

r . Substituting () into (), we get

Dυ�
(
V (t)

)
=D�(x) +Y�(υ). ()

http://www.advancesindifferenceequations.com/content/2013/1/208
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Then, from () and (), we get

d
dt

E�
(
V (t)

)
= E

(
Dυ�

(
V (t)

))
= E

(
D�(x) +Y�(υ)

)
≤ –aE

(|x|r) – a′
E

(|υ|r). ()

Hence, the desired condition () is a direct consequence of inequalities () and ().
Therefore, CSCS () satisfies the RESP property at the origin. It turns out by Lemma .
that CSCS () satisfies the REISSP property.
Finally, suppose that there exists a positive composite function

�
(
V (t)

)
= �(x) exp

( aa t) +�(υ) exp
(
a′
a′

t)
, ()

such that CSCS () satisfies the exponential Lyapunov condition. Then, by taking into
account ()-(), (), () and (), we obtain

Dυ�
(
V (t)

)
=D�(x) exp

( aa t) +Y�(υ) exp
(
a′
a′

t) ≤ . ()

From ()-() and the fact �(V (t)) ≥ , we have �t = �(V (t)) is a supermartingale.
Therefore, for some random Bx,υ , it yields

lim
t→∞�

(
V (t)

) ≤ Bx,υ < ∞ a.s. ()

From () we have �(V (t)) ≤ Kx,υ < ∞ for all t ≥ , almost surely, for some random
Kx,υ ≥ Bx,υ . The latter in conjunction with (), () and () implies (). Thus, CSCS
() satisfies the AESP property at the origin. It turns out by Lemma . that CSCS ()
will also satisfy the AEISSP property, which completes the proof. �

The following proposition (Proposition .) is a stochastic extension of Proposition .
stated in Spiliotis and Tsinias [] to a general composite stochastic system.

Proposition . Consider CSCS (). Assume that conditions (H)-(H) hold and the ori-
gin is RESP with zero input (namely, () holds with u = ). Then REISSP holds for certain
linear positive definite function γ̄ , where, for some linear function γ̄ ,

(REISSP)γ ⇒ (REISSP)γ̄ ⇒ (AEISSP)γ̄ .

Proof Suppose that the origin of CSCS () satisfies the RESP property. From () it turns
out, by the converse Lyapunov theorem (Theorem .), that there exist positive constants
ai,  ≤ ai ≤ , and a′

 such that conditions ()-() hold and

Dυ�
(
V (t)

)
=D�(x) +Y�(υ) ≤ –a|x|r – a′

|υ|r , υ �= ,x �= , ()

where D, Y, Dυ are the infinitesimal generators for the stochastic process solutions of
systems (), (), (), respectively, and �(x), �(υ), �(V (t)) are the Lyapunov functions
corresponding to the systems (), (), (), respectively. It then follows from () that

Dυ�
(
V (t)

) ≤ –c|x|r – c′|υ|r , ∀|u| ≤ γ̄
(|x| + |υ|) = k

(|x| + |υ|)
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for some positive constant k and certain  < c < a,  < c′ < a′
. The rest of the proof is a

consequence of Theorem . and is, therefore, omitted. �

Remark . Comparing ourmain results to the existing ones in [–], we canmake the
following summaries:

(i) Theorem . is the stochastic extension of Proposition . and Theorem . stated
in Spiliotis and Tsinias [] and Boulanger [], respectively, to a general composite
stochastic system. Both the results and the tools used in this theorem, however, are
different from those in [, ]. Furthermore, we can consider the exponential
stability results of Boulanger [] as a special case of our REISSP results
(Theorem .) where r = .

(ii) Proposition . is the stochastic extension of Proposition . stated in Spiliotis and
Tsinias [] to a general composite stochastic system. In addition, the existing
exponential stability results established in [, ] and [] do not permit us to make
a conclusion about REISSP and AEISSP for the broader class of CSCS () at the
origin, whereas the results of this paper are still valid.

Finally, we conclude the paper by designing a numerical example to validate our results.

Example . Consider the CSCS

{
dx = (–x + υ)dt + (x + υ)dwt ,
dυ = (–υ + υu)dt + (υ + u)dβt ,

()

where {wt , t ∈ R
+} and {βt , t ∈R

+} are two independent standard real-valuedWiener pro-
cesses, x,υ ∈R, u is a real-valued measurable control law, g(x,υ) = q(x,υ) =  and D = I is
the identity matrix inMr×r(R). Consider the Lyapunov function candidate

�
(
V (t)

)
= �(x) +�(υ) =



(
x + υ).

A simple calculation shows that �(V (t)) satisfies the exponential Lyapunov condition and

k(υ) = –
Dz�(υ)

 + (sup≤z,r≤pDz,r�(υ))
= –



(
υ + υ

)

is the state control law corresponding to the resulting closed-loop system deduced from

dυ = (–υ + υu)dt + (υ + u)dβt ,

where

Dz�(υ) =
n∑
i=

Ki
z(υ)

∂�(υ)
∂υi

+
n∑

i,j=

m∑
k=

Mi
kN

j
k,z

∂�(υ)
∂υi ∂υj

= υ + υ,

Dz,r�(υ) =



n∑
i,j=

m∑
k=

Ni
k,zN

j
k,r

∂�(υ)
∂υi ∂υj

=


,
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and H(υ) = –υ , K(υ) = υ , M(υ) = υ , N(υ) = . (For more information about the state
control law k(υ), one can refer to Theorem . established by Abedi et al. [].) Then,
according to Theorem ., the state control law

k(x,υ) = k(υ) – g(x,υ)T∇�(x) – q(x,υ)T∇�(x) = –


(
υ + υ

)
– x,

guarantees that CSCS () satisfies the REISSP and AEISSP property.

4 Conclusions
We have developed the exponential input-to-state stability in probability of a larger class
of multi-input composite system (). We have used the stochastic version of converse
Lyapunov theorems derived by Khasminiskii [] and Spiliotis and Tsinias [] to the con-
cept of stochastic control Lyapunov function and extended the REISSP and the AEISSP
results provided by Spiliotis and Tsinias [] for a stochastic system to the larger class
of composite stochastic systems driven by two independent Wiener processes that were
considered in Boulanger [] and Rusinek []. The main results of our work enable us to
derive the sufficient conditions for REISSP and AEISSP of a composite stochastic system.
We have also established the existence of an explicit formula of a feedback law exhibiting
the REISSP and AEISSP property of a composite stochastic system.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements
The authors thank the referees for valuable comments and suggestions which improved the presentation of this
manuscript.

Received: 13 March 2013 Accepted: 26 June 2013 Published: 11 July 2013

References
1. Sontag, DE, Wang, Y: Lyapunov characterizations of input to output stability. SIAM J. Control Optim. 39(1), 351-359

(2000)
2. Grune, L: Input-to-state dynamical stability and its Lyapunov characterization. IEEE Trans. Autom. Control 47(9),

1499-1504 (2002)
3. Karafyllis, I, Tsinias, J: A converse Lyapunov theorem for nonuniform in time global asymptotic stability and its

application to feedback stabilization. SIAM J. Control Optim. 42, 936-965 (2003)
4. Ning, C, He, Y, Wu, M, Liu, Q, She, J: Input-to-state stability of nonlinear systems based on an indefinite Lyapunov

function. Syst. Control Lett. 61, 1254-1259 (2012)
5. Mao, X: Exponential Stability of Stochastic Differential Equations. Dekker, New York (1994)
6. Liu, R, Raffoul, Y: Boundedness and exponential stability of highly nonlinear stochastic differential equations. Electron.

J. Differ. Equ. 2009, 143 (2009)
7. Lan, TTT, Dang, NH: Exponential stability of nontrivial solutions of stochastic differential equations. Scientia, Ser. A,

Math. Sci. 21, 97-106 (2011)
8. Abedi, F, Abu Hassan, M, Arifin, MN: Lyapunov function for nonuniform in time global asymptotic stability in

probability with application to feedback stabilization. Acta Appl. Math. 116(1), 107-117 (2011)
9. Abedi, F, Abu Hassan, M, Suleiman, M: Feedback stabilization and adaptive stabilization of stochastic nonlinear

systems by the control Lyapunov function. Stoch. Int. J. Probab. Stoch. Process. 83(2), 179-201 (2011)
10. Abedi, F, Leong, JW: Dynamic robust stabilization of stochastic differential control systems. IMA J. Math. Control Inf.

(2013). doi:10.1093/imamci/dns040
11. Khasminskii, ZR: Stochastic Stability of Differential Equation. Sijthoff & Noordhoff, Alphen aan den Rijn (1980)
12. Kushner, JH: On the stability of processes defined by stochastic difference-differential equation. J. Differ. Equ. 4,

424-443 (1968)
13. Tsinias, J: Stochastic input-to-state stability and applications to global feedback stabilization. Int. J. Control 71,

907-931 (1998)
14. Ito, H: State-dependent scaling problems and stability of interconnected iISS and ISS systems. IEEE Trans. Autom.

Control 51(10), 1626-1643 (2006)

http://www.advancesindifferenceequations.com/content/2013/1/208
http://dx.doi.org/10.1093/imamci/dns040


Abedi et al. Advances in Difference Equations 2013, 2013:208 Page 10 of 10
http://www.advancesindifferenceequations.com/content/2013/1/208

15. Liu, SJ, Zhang, JF, Jiang, ZP: A notion of stochastic input-to-state stability and its application to stability of cascaded
stochastic nonlinear systems. Acta Math. Appl. Sin. 24(1), 141-156 (2008)

16. Duan, N, Xie, XJ, Yu, X: State feedback stabilization of stochastic nonlinear systems with SiISS inverse dynamics. Int.
J. Robust Nonlinear Control 21, 1903-1919 (2011)

17. Yu, X, Xie, XJ: Output feedback regulation of stochastic nonlinear systems with stochastic iISS inverse dynamics. IEEE
Trans. Autom. Control 55(2), 304-320 (2010)

18. Michel, NA: Stability analysis of stochastic composite systems. IEEE Trans. Autom. Control 20(2), 246-250 (1975)
19. Boulanger, C: Stabilization of a class of nonlinear composite stochastic systems. Stoch. Anal. Appl. 18(5), 723-735

(2000)
20. Rusinek, RL: String stability of singularly perturbed stochastic systems. Ann. Math. Sil. 16, 43-55 (2003)
21. Spiliotis, J, Tsinias, J: Notions of exponential robust stochastic stability, ISS and their Lyapunov characterizations. Int.

J. Robust Nonlinear Control 13, 173-187 (2003)
22. Arnold, L: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)
23. Sontag, DE, Wang, Y: On characterizations of input-to-state stability properties. Syst. Control Lett. 24, 226-231 (1995)

doi:10.1186/1687-1847-2013-208
Cite this article as: Abedi et al.: Exponential input-to-state stability of composite stochastic systems. Advances in
Difference Equations 2013 2013:208.

http://www.advancesindifferenceequations.com/content/2013/1/208

	Exponential input-to-state stability of composite stochastic systems
	Abstract
	MSC
	Keywords

	Introduction
	Assumptions and preliminaries
	Main stability results
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References


