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Abstract

We consider a class of nonlinear models associated with erythropoiesis and establish
a global asymptotic stability result for the trivial steady state, which extends
essentially some previous results. Moreover, we give numerical simulations to
illustrate this theoretical result.
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1 Introduction

Erythropoiesis is the process by which red blood cells (erythrocytes) are formed. It is a
complex process, stimulated by decreased O, in circulation. Detecting this decrease, the
kidneys then secrete the hormone erythropoietin. This hormone stimulates proliferation
and differentiation of red cell precursors, which activates increased erythropoiesis in the
hemopoietic tissues, ultimately producing red blood cells. This process (erythropoiesis) is
based upon the differentiation of the hematopoietic stem cells. The hematopoietic stem
cells are undifferentiated cells in a self-maintained stem cell compartment (located in the
bone morrow), which are either proliferating or nonproliferating cells and have unique
capacities of producing cells committed to one of the three blood cell types: red blood
cells, white cells or platelets, and self-renewal. Erythrocytes (red blood cells) carry out the
exchange of oxygen and carbon dioxide between the lungs and the body tissues. To effec-
tively combine with oxygen, the erythrocytes must contain a normal amount of the red
protein pigment hemoglobin (cf. [1]), the amount of which in turn depends on the iron
level in the body. Erythrocytes are biconcave in shape, which increases the cell’s surface
area and facilitates the diffusion of oxygen and carbon dioxide. From [2] and the related
literature, one can get to know the following information on erythrocytes. Erythrocytes
are produced primarily from the CD34* pluripotent hematopoietic stem cells of bone
marrow. CD34* progenitors are isolated from adult peripheral blood or cord blood and
grown in liquid medium in fibronectin-coated wells. These progenitor stem cells consti-
tute approximately 0.1% of nucleated cells in the bone marrow, only about 5% of which
are in cycle at any one time. Cell differentiation along the erythroid lineage occurs over
a two-week span in humans. The earliest erythroid progenitor, the BFU-E (burst forming
unit-erythroid), is small and without distinguishing histologic characteristics. BFU-Es ex-
press the cell surface antigen, CD34, as do all other early hematopoietic progenitors. The
stage after the BFU-E is the CFU-E (colony forming unit-erythroid), which is larger and
is the stage right before hemoglobin production begins. Immature erythroblasts, which
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start producing hemoglobin, also start condensing their nuclei. Mature erythroblasts are
smaller with tightly compacted nuclei which are expelled as the cells become reticulocytes.
Cell division ceases with the formation of the orthochromatic erythroblast. Division rate,
death rate, and maturation rate are influenced by the level of erythropoietin. The erythro-
cyte lineage shares the precursor CFU-GEMM (granulocyte, erythrocyte, macrophage,
megakaryocyte) with other types of blood cells (white blood cells, platelets, etc.). The pro-
cess of erythropoiesis has been modeled in many physiological scenarios. For more infor-
mation about erythropoiesis and the differentiation of the hematopoietic stem cells, we
refer the reader to [1-6] and references therein.

To the best of our knowledge, the first mathematical model of hematopoietic stem cells’
dynamics was established by Mackey [4], which is an uncoupled system of two nonlinear
delay differential equations, describing the dynamics of proliferating and nonproliferat-
ing hematopoietic stem cells. The time delay, which is constant, accounts for an average
cell cycle duration. Since then, Mackey’s model has been improved and studied by many
authors (cf. [3, 5-10]). Stimulated and inspired by these works, especially by [7], we inves-
tigate the following general nonlinear system with time delay 7, corresponding to the cell
cycle duration where the cells in cycle are divided only in two groups: proliferating and
nonproliferating cells,

S'(t)=-8S(t) + e B(S(t-1))f(N(t-7)), t=0, (1.1)
N'() = =SN(®) - B(S()f (N(2)) + 26 B(S(t - 1)) (N(¢ - 1)), £>0. (1.2)

Here, S(t) and N(¢) stand for the total number of hematopoietic stem cells and nonpro-
liferating cells at time ¢ respectively, § > O is the rate of differentiation of nonproliferating

-3 then describes

cells, 7 is the average duration of the proliferating phase and the term e
the survival rate of proliferating cells, 8(-) is a continuously differentiable, positive, and

decreasing function with
lim B(x) =0, (1.3)
X—> +00

denoting the rate of cell movement from nonproliferating cell compartment into the pro-
liferation, which depends on the total number of hematopoietic stem cells, and f(-) is a
continuously differentiable function with

0<f(x) <Lx (Vx>0), fx)>0 (Vx>0) (1.4)

(L is a positive constant) describing the nonlinear change of the number of nonprolifer-
ating cell compartments. This nonlinear system is more general than those in the previ-
ous literature since we take the change (being nonlinear in many cases) of the number of
nonproliferating cell compartments into account. A typical example of f is the following

function:

Tkt

f(x)

where 11 > 0, k>0, and r > 1 are constants. This is a single-humped function of x, which
was first considered for modeling the hematopoietic stem cells’ dynamics in [6] by Mackey
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and Glass. With such a nonlinear term, the study of system (1.1)-(1.2), which is a gener-
alized Mackey-Glass-type model, is more complicated than that of previous models. The
purpose of the paper is to establish a global asymptotic stability result for the trivial steady
state of this class of systems, which shows that in many cases, the hematopoietic stem cell
population is definitely extinct. The next section is devoted to proving this criterion. In
the last section, we give numerical simulations to illustrate this phenomenon.

2 Asymptotic behavior of solutions

It follows from many books on delay equations (e.g., [9]) that for each continuous initial
condition, system (1.1)-(1.2) has a unique continuous solution (S(¢), N(¢)) for ¢t > 0. For
more information on delay equations, see, e.g., [7, 11-15].

Theorem 2.1 Let (S(t), N(t)) be a solution of (1.1)-(1.2) for a positive initial datum. Then
S(t) and N(t) are positive for t > 0.

Proof To obtain the required conclusion, we will show that if (S(¢), N(¢)) is a solution of
(1.1)-(1.2) for a positive initial datum, then the following situations:

(i) neither S(¢) nor N(¢) is positive;

(i) N(¢) is positive but not S(¢);

(iii) S(#) is positive but not N (¢);
do not appear definitely.

Step 1: We show that it is impossible that neither S(¢) nor N(¢) is positive.

Suppose that neither S(¢) nor N(t) is positive. Then S(¢) has one zero point in [0, +00)
at least, and so does N(¢). Let ty and #; be the first zero point of S(¢) and N(¢) in [0, +00),
respectively. Then, by S(0) > 0 and N(0) > 0, we know that £, > 0 and ; > 0.

Casel: ty < t.

In this case, by the definition of ¢, and #;, we have
S@)>0 (Veel0,t)), S(ty) =0,
and
N@®) >0 (Vee(0,t)).

Hence,

ooy e Sl +h) =Sk) . S(to+h)
Slto) = hlin([)lf h N hli%lf o 0-

(2.1)

Moreover, it follows from (1.2)-(1.4) and the positivity of the initial datum (i.e., S(¢) > 0
and N(¢) > 0 for ¢t € [-7,0]) that

S'(to) = —8S(t0) + € B(S(to — 7))f (N (2o — 7))
= e B(S(to - T))f(N(to - 7))
> 0. (2.2)

This contradicts (2.1).


http://www.advancesindifferenceequations.com/content/2013/1/207

Liang Advances in Difference Equations 2013, 2013:207 Page 4 of 11
http://www.advancesindifferenceequations.com/content/2013/1/207

Case 2: 1 < ty.

In this case, by the definition of ¢y and ¢, we have
N(@)>0 (Vte[0,1)), N(t) =0,
and
S@#)>0 (Vee[0,n)).

Therefore,

N(ti+h
=1img<o

N(t; + h) - N(t)
— 5 jm 4 < (2.3)

N/(tl) = lim

h—0-

Furthermore, (1.2)-(1.4) and the positivity of the initial datum (i.e., S(t) > 0 and N(¢) > 0
for t € [-7,0]) imply that

N'(t) = =8N(#) - B(S(t))f (N (1)) + 27" B(S(t — ))f (N(t1 - 7))
=2e"B(S(t - 7))f (N(t - 7))
> 0. (2.4)

This contradicts (2.3).

Consequently, it is impossible that neither S(¢) nor N(t) is positive.

Step 2: We prove that it is impossible that N(¢) is positive but not S(z).

Suppose that N(¢) is positive but not S(¢). Then S(¢£) has one zero point in [0, +00) at
least. Let £y be the first zero point of S(¢) in [0, +00). Then S(0) > 0 implies that £, > 0 and

S@t)>0 (vre[0,t)), S(ty) = 0.

So, (2.1) is true. Moreover, by the positivity of the initial datum and N(¢), we get (2.2) from
(1.2)-(1.4), which contradicts (2.1). Hence, it is impossible that N (¢) is positive but not S(¢).
Step 3: We prove that it is impossible that S(¢) is positive but not N (¢).
Suppose that S(¢) is positive but not N(¢). Then N(¢) has one zero point in [0, +00) at
least. Let # be the first zero point of N(¢) in [0, +00). Then N(0) > 0 implies that #; > 0 and

N(@)>0 (Vte[0,1)), N(t)=0.

Thus, we get (2.3). On the other hand, by the positivity of the initial datum and S(z), we
have (2.2) from (1.2)-(1.4), which contradicts (2.4). Therefore, it is impossible that S(¢) is

positive but not N ().
In conclusion, if (S(¢), N(¢)) is a solution of (1.1)-(1.2) for a positive initial datum, then
S(t) and N(¢) are positive. O

Theorem 2.2 Let (S(), N(t)) be a solution of (1.1)-(1.2) for a positive initial datum. If N(t)
is bounded, then so is S(t).
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Proof By Theorem 2.1, we know that (S(¢), N(t)) is positive.
Multiplying two sides of (1.1) by €%/, we have

&S/ (t) = —8S(t) + €V B(S(E- 1)) (N(t - 1)), t=0,
that is,

(€"S@) = B(S(t-1))f(N(-1)), t>0.
Hence,

eS(t) — e S(r) = / te‘s(s")ﬁ(S(s ~D))f(NGs—1))ds, t=>t.

Thus, for t > 7,

t
S@) =e?CIS(z) + e / EIB(S(s - 1)) (N(s— 1)) ds. (2.5)
T
If N(t) is bounded, that is, there is a constant M > 0 such that
0<N@®) <M (vt=0), (2.6)

then it follows from (2.5), (1.4), and (2.6) that

-8t _ =8t -3t

0 < S(t) < S(z) + BO)LMS ; SS(r)+ﬂ(0)LMe(S,

t>1,

since B is decreasing. This means that S(¢) is bounded. (]

Theorem 2.3 Let (S(¢), N(t)) be a solution of (1.1)-(1.2) for a positive initial datum, and
lim;_, 0o N(£) = 0. Then lim,_, .o, S(¢) = 0.

Proof From lim;_, ., N(¢) = 0, it follows that (2.6) holds for some positive constant M.
By using (1.4), (2.6) and the condition that 8(-) is a continuously differentiable, positive,
and decreasing function, we deduce that for £ > 7,

t+T

S@) = e“”(e‘”S(r) + /T SIB(S(s - 1)) (N(s— 1)) ds)

+e—8t/t EIB(S(s—1))f(N(s— 1)) ds

t+T

2

Y
<t (e‘”S(r) + LMB(0)e>2") 5 ‘ >

t
+eLB(0) EIN(s - 1) ds
t

add
2

+T t -
< e?IS(7) + LMB(0)e 20 5 ¢
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t

+ e LB(O)N(E - r)/ & ds by the mean value theorem
4T
7

+T t -
< e?E08(1) 4 LMB(0)e 5 Tt

T
—0T 6—8 =5

+ Lﬁ(O)%N(s 1),

where & € [&5,£].
Letting ¢ — +o00 on both sides of the above inequality and noting that § > 0 and
t-t

lim N() =0, lim (%9 -0,

t—+00 t—+00 2

we have

lim S(t) =0.
t—>+00

O

Theorem 2.4 Let (S(t), N(t)) be a solution of (1.1)-(1.2) for a positive initial datum, and

Y(t) = N(£) + 2¢7%° /t ﬁ(S(s))f(N(s)) ds, t>rt.
-t
Assume that
(2¢7°7 —1)B(0)L < 6.
Then
Y@ =0, t=r7,
and
Y()<0, t>rt.
Proof By Theorem 2.1, we see that
S(t) >0, N()>0, t>0.

Hence, (2.9) is true.
By (1.2) and (2.7), we have

Y'(£) = N'(£) + 2¢°° [ B(S(0))f (N () = B(S(t = D)f (N (£ - 1))]
= —3N(t) - B(S@))f(N@)) + 27" B(S@®))f (N(2))
= —3N(t) + (2¢7°7 = 1) B(S(0))f (N ().

Casel:2e7%7-1<0.

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Page 6 of 11
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In this case, by the property of 8, (2.11), (1.4) and (2.12), we get
Y'(£) = -8N(t) + (2¢°" = 1) B(S())f(N(®) <0, t>7. (2.13)

Case2:2e7%7 —1>0.
In this case, by the property of 8, (2.11), (1.4), (2.12) and (2.8), we obtain

Y'(#) = -8N(8) + (2¢°" = 1) B(S@®))f (N(2))
< —8N(t) + (267" = 1) B(0)LN(?)
= [(2¢7°" - 1) B(0)L - 5N (2)

<0, t>r. (2.14)
Combining the two cases above, we know that if (2.8) holds, then
Y()<0, t>r. 0

Theorem 2.5 Let (S(¢), N(£)) be a solution of (1.1)-(1.2) for a positive initial datum, and
Y(t) be given by (2.7). Assume that (2.8) holds. Then

lim Y'(¢) = 0. (2.15)

t—>+00

Proof It follows from Theorem 2.4 that Y (¢) is decreasing and lower bounded by 0 for
t > 7. So, inf;>, Y (¢) exists.
Set

Yo = inf Y(t).

Then, it is clear that yo > 0 by (2.9), and for any ¢ > 0, there exists Ty > 7 such that Y (7)) <
¥ + €. Since Y(¢) is a decreasing function, for every ¢ > Ty,

Yo—€<yo <Y(t) <Y(Tp) <yo +e.
This implies that

tggnoo Y(t) = yo. (2.16)
Hence, Y (¢) is bounded on [t, +00). Consequently, N(t) is bounded on [0, +00), and The-
orem 2.2 shows that S(¢) is also bounded on [0, +00).

Moreover, it follows from (1.1) and (1.2) that N’(¢) and S’(¢) are bounded on [0, +00).
Thus, N(t) and S(¢) are Lipschitz continuous on [0, +00), and consequently N(¢) and S(¢)
are uniformly continuous on [0, +00). Combining these facts with (2.14) and the continuity
of B and f, we know that

Y'(¢) is bounded and uniformly continuous on [z, +00).

Page 7 of 11
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By virtue of (2.16), we know that (2.15) is true, owing to the following known result by
Barbilat (see Gopalsamy [15]):

Let g:[a,+00) — R, a € R, be a differentiable function. If lim,_, ., g(t) exists and g'(t) is
uniformly continuous on (a, +00), then

lim g'(¢) = 0. O

t—>+00

Theorem 2.6 Let (S(t), N(t)) be a solution of (1.1)-(1.2) for a positive initial datum, and
let (2.8) hold. Then (S(t), N(t)) tends to (0,0).

Proof First, we prove that

lim N(¢) =0. (2.17)

t—>+00

Actually, if this is not true, then there exists an &y > 0 such that for every positive integer

n, there is t,, > n such that
N(t,) > €.

By the boundedness of N(t) on [0, +00), we infer that there exists a subsequence {z,, } of
{t,} such that

ty >t forall k> ko,
where ky is a fixed positive integer, and

lim N(,)=0a>eg >0,
k—+00
where « is a constant. Therefore, we have the following observations.
Casel:2¢%"-1<0.
In this case, by (2.13) we get

lim Y'(t,) < —Sklim N(ty) = -8 <0,
—+00

k—+00

which contradicts (2.15).
Case 2: 2797 —1> 0.
In this case, by the property of 8, (2.11), (1.4), (2.12) and (2.8), we have

lim Y'(t,) < kgrpoo[—sz\f(tnk) + (277 =1)B(0)LN(t,,,)]

k—+00

lim [(2¢7°7 —1)B(0)L - §]N ()

k—+00
af(2¢7 -1)B(0)L - 8]
<0,

which also contradicts (2.15).
Consequently, (2.17) holds. This, together with Theorem 2.1, shows that

lim S(¢) = 0. O

t—+00
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3 Numerical simulations

With Matlab software we give two numerical simulations of the main result, Theorem 2.6.
Figure 1, where S(¢) is the right (blue) curve and N(¢) is the left (green) curve, is plotted

with the following case for v = 0.5 of (1.1)-(1.2)

() = —S(0) e 0b AN(t-0.5) .
= —, + X ) ’
1+107125(t - 0.5)1%5 ~ 1+4 x 10-8N(¢ - 0.5)" ~ —
, AN(t)
N'(t) = -N(¢) -
© ® (1 +10125(£)125)(1 + 4 x 10-8N(¢))
2¢705 AN(t-0.5)
+ X ) Z O,
1+107128(t - 0.5)125 = 1+ 4 x 10-8N(¢ — 0.5)
with A = 0.60653e%°.
For the following case for v = 0.4 of (1.1)-(1.2),
e 04 AN(t-0.4)
S'(t) =-S(t , t>0,
) ==S0) + 7050 —0.015 * T1ax10°NG_0a) ‘=
AN(2)
N'(t)=-N(t) -
® ® (1 +107125(¢)1-25)(1 + 4 x 10-8N(¢))
2e704 AN(t—0.4)

+ X ’ t=> 0)
1+107125(t-0.4)125  1+4 x 108N (£ —0.4) -

with A = 0.60653¢e%*, we have Figure 2, where S(¢) is the right (blue) curve and N(¢) is the
left (green) curve.

Both numerical simulations illustrate our result very well and show that for these cases,
the hematopoietic stem cell population is definitely extinct.

In this paper, we investigated the asymptotic behavior of solutions of some nonlinear
delay models of hematopoietic stem cell dynamics. The nonlinearity depends upon the

entire hematopoietic stem cell population as well as the nonlinear change of the number

Model fort=05
100 T T T

_I Sit) |
o0 Nt 1

80 1
?’D\_ -
60 | g

501 4

S, Nt

40 R 4

200 ¢ \ .

— L L I 1 L
0 20 40 B0 80 100 120 140 160 180 200
time t

Figure 1 Simulations of solutions of the model for 7 = 0.5.
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Model for 1 =104,
100 T T T T T T T T T

5()
ap——nw 1

S(t), Nity

1] 1 i L 1 I L ' L
0 20 40 B0 g0 a0 120 140 160 180 200
time t

Figure 2 Simulations of solutions of the model for 7 = 0.4.

of nonproliferating cell compartments, which is different from the models considered in
the previous literature on blood cell production models (¢f. [7] and references therein).
Moreover, this class of models covers essentially those in the previous works. By using ar-
guments different from [7], we proved Theorems 2.1 and 2.3. By employing a new analysis
process, we overcame the difficulty caused by the nonlinear term f and proved Theo-
rem 2.6. As special cases, we can deduce the corresponding results given in these works
from Theorems 2.1-2.6. Finally, by giving a numerical investigation, we illustrated effi-
ciently the asymptotic stability of the solutions to some models of the cell population dy-
namics. For further analysis, the stability of the models with appropriate feedback controls

is a good issue.
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