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Abstract
For switched discrete-time systems, switching behavior always affects the finite-time
stability property, which was neglected by most previous research. This paper
investigates the problem of H∞ control for a switched discrete-time system with
average dwell time. Based on the results on finite-time boundned and average dwell
time, sufficient conditions for finite-time bounded and finite-time H∞ control under
arbitrary switching are derived, and the closed-loop system trajectory stays within a
prescribed bound. Finally, an example is given to illustrate the efficiency of the
proposed method.
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1 Introduction
During the last few decades, the problem ofH∞ control for continuous time systems with
time delays has been extensively investigated [, ]. In the discrete-time context, there is
rapidly growing interest in H∞ control for a discrete-time system due to its being fre-
quently encountered in many practical engineering systems such as chemical, electronics,
process control systems and networked control systems [–]. Furthermore, in the state
feedback case, the augmentation approach generally leads to a static output feedback con-
trol problem, which is non-convex []. Control of stochastic systems is a research topic of
both practical and theoretical importance, which has receivedmuch attention [, ].Many
results related to stochastic systems have been reported in the literature. For instance, an
optimal stochastic linear-quadratic control problem was investigated by a stochastic alge-
braic Riccati equation approach in infinite-time horizon in [], where the diffusion term
in dynamics depends on both the state and the control variables. It is important to invest
H∞ control problem.
In recent years, there has been increasing interest in the analysis of hybrid and switched

systems due to their significance both in theory and applications. Switched linear con-
trol systems, as an important class of hybrid systems, comprise a collection of linear sub-
systems described by differential/difference equations and a switching law to specify the
switching among these subsystems. A switched system is a type of a hybrid system which
is a combination of discrete and continuous dynamical systems. These systems arise as
models for phenomena which cannot be described by exclusively continuous or exclu-
sively discrete processes. Moreover, control design remains open for the switched systems
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that exhibit switching jumps and subsystem models. Most recently, on the basis of Lya-
punov functions and other analysis tools, the control design for linear switched systems
has been further investigated and many valuable results have been obtained; for a recent
survey on this topic and related questions one can refer to [–].
It well known that most of the existing literature has focused on Lyapunov asymptotic

stability for switched systems, the behavior of which is over an infinite time interval. On
the other hand, many concerned problems are the practical ones which described system
state which does not exceed some bound over a time interval. To deal with the above
problem, in , Dorato proposed the concept of finite-time stability in [].
Over the years, many research efforts have been devoted to the study of finite-time sta-

bility (FTS) of systems. In the study of the transient behavior of systems, FTS concerns the
stability of a system over a finite interval of time and plays an important role. It is worth
pointing out that finite-time stability and Lyapunov asymptotic stability are different con-
cepts, and they are independent of each other. Therefore, it is important to emphasize the
distinction between classical Lyapunov stability and finite-time stability. The problem of
finite-time stability has been accordingly studied in the literature [–].
Recently, some papers related to finite-time stability for switched systems can be found.

For example, based on the average dwell time technique, the problemof finite-time bound-
edness for a switched linear system with time-delay was investigated in [], and [] dis-
cussed the static-state feedback anddynamic output feedback finite-time stabilization. But
to the best of our knowledge, the finite-time H∞ control problems for switched discrete-
time systems with average dwell time have not been studied, and this motivates us to con-
sider this interesting and challenging problem.
The main contribution of this paper lies in that we present a novel approach to finite-

time stability of a switched system.Moreover, several sufficient conditions ensuring finite-
time stability and boundness are proposed with different information fromwhat we know
about the switching signal. It is shown that less conservative results can be derived when
more information about the switching signal is available. By selecting the appropriate
Lyapunov-Krasovskii functional, the sufficient conditions are derived to guarantee finite-
time boundness of the systems. The finite-time boundness (FTB) criteria can be tackled in
the formof LMIs. Finally, an example is used to illustrate the effectiveness of the developed
techniques.
Notations: Throughout this paper, we let P >  (P ≥ , P < , P ≤ ) denote a symmet-

ric positive definite matrix P (positive-semi definite, negative definite and negative-semi
definite). For any symmetricmatrix P, λmax(P) and λmin(P) denote themaximum andmini-
mum eigenvalues ofmatrix P, respectively.Rn denotes the n-dimensional Euclidean space
andRn×m refers to the set of all n×m real matrices. The identity matrix of order n is de-
noted as In. * represents the elements below themain diagonal of a symmetric matrix. The
superscripts ᵀ and – stand for matrix transposition and matrix inverse, respectively.

2 Preliminaries
In this section, we give a mathematical description of the problem under the study, fol-
lowed by a definition of the average dwell time for a discrete switched system.
Consider the following switched discrete-time system:

{
x(k + ) = Aσ (k)x(k) + Bσ (k)u(k) +Cσ (k)ω(k),
z(k) = Lσ (k)x(k) +Dσ (k)u(k),

()
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where x(k) ∈ Rn is the discrete state vector of the system, u(k) ∈ Rl is the control input,
z(k) ∈Rm is the controlled output, ω(k) ∈Rq is the noise signal which satisfies

N∑
k=

ωᵀ(k)ω(k) < d. ()

σ (k) : Z+ → N = {, , . . . ,N} is called a switching law or switching signal, which is a
piecewise constant function of discrete-time k and takes its values in the finite set N .
N >  is the number of subsystems. For simplicity, at any arbitrary discrete-time k ∈ Z

+,
the switching signal σ (k) is denoted by σ . Matrices Aσ (k), Bσ (k), Cσ (k), Dσ (k) and Lσ (k) are
constant real matrices with appropriate dimensions for all σ (k) = i ∈ N . We denote the
matrices associated with Aσ (k) = Ai, Bσ (k) = Bi, Cσ (k) = Ci, Dσ (k) =Di and Lσ (k) = Li.

Definition . [] For any k ≥ k and any switching signal σ (l), k ≤ l < k, let Nσ (k,k)
denote the number of switchings of σ (k). If

Nσ (k,k)≤ N +
k – k
Ta

()

holds for N ≥  and Ta > , then Ta is called the average dwell time and N is the chatter
bound.

Remark  The concept of average dwell time has been modified to fit the discrete-time
ones in some existing literature [–]. The definition of average dwell time in Defini-
tion . is borrowed from these existing results. For simplicity, but without loss of gener-
ality, we choose N =  in what follows.

Definition . [] The discrete-time linear system

x(k + ) = Ax(k), k ∈N ,

is said to be finite-time stable (FTS) with respect to (c, c,R,N), where R >  is a pos-
itive definite matrix,  < c < c and N ∈ N , if xᵀ()Rx() ≤ c ⇒ xᵀ(k)Rx(k) < c, ∀k ∈
{, , . . . ,N}.

Definition . [] The discrete-time linear system

x(k + ) = Ax(k) +Gω(k), k ∈N ,

subject to an exogenous disturbance ω(k) satisfying (), is said to be finite-time bounded
(FTB) with respect to (c, c,R,d,N), where R >  is a positive definite matrix,  < c < c
and N ∈N , if xᵀ()Rx()≤ c ⇒ xᵀ(k)Rx(k) < c, ∀k ∈ {, , . . . ,N}.

Definition . [] For γ > ,  ≤ c < c, R is a positive definite matrix, system () is said
to be H∞ finite-time bounded with respect to (c, c,d,γ ,R,N), the following condition
should be satisfied:

N∑
k=

zᵀ(k)z(k) < γ 
N∑
k=

ωᵀ(k)ω(k). ()
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Under zero initial condition, it holds for all nonzero ω:
∑N

k= ωᵀ(k)ω(k) < d.

In this paper, applying state feedback control u(k) = Kσ (k)x(k) to (), we get

{
x(k + ) = (Aσ (k) + Bσ (k)Kσ (k))x(k) +Cσ (k)ω(k),
z(k) = (Lσ (k) +Dσ (k)Kσ (k))x(k).

()

3 Finite-time stability analysis
Theorem . Consider switched system () for given positive scalars c and c with c < c,
μ > , τa > , α > . Let Pi = R– 

 P̄iR– 
 for all admissible ω(k) subject to condition (), if

there exist symmetric positive definite matrices Pi, Qi,  ≤ i ≤ N , and λ = λmin(P̄i), λ =
λmax(P̄i), λ = λmax(Qi), such that the linear matrix inequalities

⎡
⎢⎣
–( + α)Pi  Aᵀ

i Pj

* –Qi Cᵀ
i Pj

* * –Pj

⎤
⎥⎦ < , ()

Pi ≤ μPj, ∀i ∈N , ()[
–P–

i λP–
i R

* –λR

]
< ,

[
–λR I
* –P–

i

]
< , ∀i ∈N , ()

λc
( + α)N (λc + λd)

>  ()

hold, and the average dwell time of the switched discrete-time signal σ (k) satisfies

τa > τ *
a =

N lnμ

ln(λc) –N ln( + α) – ln(λc + λd)
. ()

Then switched discrete-time system () with z(k) =  is finite-time bounded with respect
to (c, c,d,R,N).

Proof We consider the following Lyapunov-Krasovskii functional:

V
(
xk ,σ (k)

)
= xᵀ(k)Pσ (k)x(k). ()

Taking the difference between the Lyapunov function candidates for two consecutive
time instants yields

�V
(
xk ,σ (k)

)
= V

(
xk+,σ (k + )

)
–V

(
xk ,σ (k)

)
= xᵀ(k)

[
(Ai + BiKi)ᵀPjAi – Pi

]
x(k) + xᵀ(k)Aᵀ

i PjCiω(k)

+ωᵀ(k)Cᵀ
i PjCiω(k)

=

[
x(k)
ω(k)

]ᵀ [
Aᵀ
i PjAi – Pi Aᵀ

i PjCi

* Cᵀ
i PjCi

][
x(k)
ω(k)

]
. ()
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From condition (), we can obtain

�V
(
xk ,σ (k)

)
< αV

(
xk ,σ (k)

)
+ωᵀ(k)Qiω(k). ()

Equations () and () yield

V
(
xk ,σ (k)

)
< ( + α)V

(
xk–,σ (k – )

)
+ sup

i∈N

{
λmax(Qi)

}
ωᵀ(k – )ω(k – )

< ( + α)V
(
xk–,σ (k – )

)
+ sup

i∈N

{
λmax(Qi)

}
( + α)ωᵀ(k – )ω(k – )

+ sup
i∈N

{
λmax(Qi)

}
ωᵀ(k – )ω(k – ) < · · ·

< ( + α)k–klV
(
xkl ,σ (kl)

)

+ sup
i∈N

{
λmax(Qi)

} k–∑
s=kl

( + α)k––sωᵀ(s)ω(s). ()

Noticing (), we know that

V
(
xk ,σ (k)

)
< μV

(
xk ,σ (k)

)
. ()

Thus

V
(
xk ,σ (k)

)
< ( + α)k–klV

(
xkl ,σ (kl)

)

+ sup
i∈N

{
λmax(Qi)

} k–∑
s=kl

( + α)k––sωᵀ(s)ω(s)

< μ( + α)k–kl–V
(
xkl– ,σ (kl–)

)

+ sup
i∈N

{
λmax(Qi)

} k–∑
s=kl

( + α)k––sωᵀ(s)ω(s)

+μ sup
i∈N

{
λmax(Qi)

} kl∑
s=kl–

( + α)k––sωᵀ(s)ω(s)

< · · ·
< μNσ (,k)( + α)kV

(
x,σ ()

)

+μNσ (,k) sup
i∈N

{
λmax(Qi)

} k∑
s=

( + α)k––sωᵀ(s)ω(s)

+μNσ (k,k) sup
i∈N

{
λmax(Qi)

} k∑
s=k

( + α)k––sωᵀ(s)ω(s)

+ · · ·
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+ sup
i∈N

{
λmax(Qi)

} k–∑
s=kl

( + α)k––sωᵀ(s)ω(s)

< μNσ (,k)( + α)kV
(
x,σ ()

)
+μNσ (,k) sup

i∈N

{
λmax(Qi)

}

×
k–∑
s=

( + α)k––sωᵀ(s)ω(s)

< μNσ (,k)( + α)k
{
V

(
x,σ ()

)
+ sup

i∈N

{
λmax(Qi)

}
d
}
. ()

Define Pi = R– 
 P̄iR– 

 , i ∈N , then ∀k ∈ {, , . . . ,N}, we have

V
(
xk ,σ (k)

)
= xᵀ(k)R


 P̄iR


 x(k)≥ inf

i∈N
{
λmin(P̄i)

}
xᵀ(k)Rx(k). ()

Using the fact α ≥  and xᵀ()Rx()≤ c, for ∀i ∈N , we have

V
(
x,σ ()

) ≤ sup
i∈N

{
λmax(P̄i)

}
xᵀ()Rx()≤ sup

i∈N

{
λmax(P̄i)

}
c. ()

Then we can obtain

xᵀ(k)Rx(k)

<
μNσ (,k)( + α)N {supi∈N {λmax(P̄i)}c + supi∈N {λmax(Qi)}d}

infi∈N {λmin(P̄i)}

<
μ

N
τa ( + α)N {supi∈N {λmax(P̄i)}c + supi∈N {λmax(Qi)}d}

infi∈N {λmin(P̄i)}
. ()

From (), we have

λR < Pi < λR ⇒ λI < P̄i < λI. ()

Define supi∈N {λmax(Qi)} = λ, since supi∈N {λmax(P̄i)} ≤ λ, infi∈N {λmin(P̄i)} ≥ λ and by
condition (), we can obtain

xᵀ(k)Rx(k) <
μ

N
τa ( + α)N (λc + λd)

λ
. ()

When μ = , which is the trivial case, from (), xᵀ(k)Rx(k) < c. When μ > , from (),
ln(λc) –N ln( + α) – ln(λc + λd) > . By virtue of (), we have

N
τa

<
ln(λc) –N ln( + α) – ln(λc + λd)

lnμ
. ()

Substituting () into () yields

xᵀ(k)Rx(k)

<
μ

ln(λc)–N ln(+α)–ln(λc+λd)
lnμ ( + α)N (λc + λd)

λ
= c. ()
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Thus we can conclude that switched discrete-time system () with u(k) =  is finite-time
bounded with respect to (c, c,d,R,N). The proof is completed. �

4 Finite-time H∞ performance analysis
Theorem . Consider switched discrete-time system (). If there exist symmetric positive
definite matrices Pi,  ≤ i ≤ N , and positive scalars κ > , α > ,  ≤ c < c, d > , α > ,
such that ∀i ∈N , the linear matrix inequalities

⎡
⎢⎢⎢⎢⎣
–( + α)Pi  (Ai + BiKi)ᵀPj (Li +DiKi)ᵀ

* – γ I
(+μ)N Cᵀ

i Pj 
* * –Pj 
* * * –I

⎤
⎥⎥⎥⎥⎦ < , ()

Pi ≤ μPj, ∀i ∈N , ()[
–P–

i P–
i R

* –R

]
< ,

[
–κR I
* –P–

i

]
< , ∀i ∈N , ()

[
–c

√c
* –( + α)Nκ

]
< , ()

hold, and the average dwell time of the switched discrete-time signal σ (k) satisfies

τa > τ *
a =

N lnμ

ln c – ln(γ d)
. ()

Then switched system () is finite-time bounded with H∞ performance level γ for any
switching discrete-time signal with respect to (c, c,N ,d,R,σ ).

Proof We will show the H∞ performance of system (), from Theorem ., we have

�V
(
xk ,σ (k)

)
=

[
x(k)
ω(k)

]ᵀ [
(Ai + BiKi)ᵀPj(Ai + BiKi) – Pi (Ai + BiKi)ᵀPjCi

* Cᵀ
i PjCi

][
x(k)
ω(k)

]
. ()

Define

J(k) = zᵀ(k)z(k) –
γ 

( +μ)N
ωᵀ(k)ω(k). ()

From () it follows

�V
(
xk ,σ (k)

)
+ J(k)

=

[
x(k)
ω(k)

]ᵀ [

, (Ai + BiKi)ᵀPjCi

* Cᵀ
i PjCi

][
x(k)
ω(k)

]
, ()

where


, = (Ai + BiKi)ᵀPj(Ai + BiKi)(Li +DiKi)ᵀ(Li +DiKi) – Pi.
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From () and the Schur complement, we have

�V
(
xk ,σ (k)

)
+ J(k) < μV

(
xk ,σ (k)

)
. ()

It follows from () that

�V
(
xk ,σ (k)

)
< αV

(
xk ,σ (k)

)
– J(k), ()

which means

V
(
xk ,σ (k)

)
< ( + α)V

(
xk–,σ (k – )

)
+ J(k – )

< ( + α)V
(
xk–,σ (k – )

)
+ J(k – ) + ( + α)J(k – )

< · · · < ( + α)kV
(
x,σ ()

)
–

k–∑
s=

( + α)k–s–J(s). ()

Under the zero-initial condition, we have V (x,σ ()) = , and due to the fact V (xk ,
σ (k))≥ , it yields

k–∑
s=

( + α)k–s–J(s)≥ , ()

which means

( + α)N
γ 

( + α)N

k–∑
s=

ωᵀ(s)ω(s)≥
k–∑
s=

zᵀ(s)z(s)

⇒ γ 
N∑
s=

ωᵀ(s)ω(s)≥
N∑
s=

zᵀ(s)z(s). ()

According to Definition ., we know that Theorem . holds. This completes the
proof. �

5 Finite-time H∞ control design
Theorem . Consider finite-time switched discrete-time system () and a given scalar
γ > . Then there exists a switched H∞ control in the form of u(k) = Kσ (k)x(k) such that
switched discrete-time system () is finite-time bounded with H∞ performance level γ , if
there exist symmetric positive-definite matrixes Pi, Xi, Yi and Zi such that ∀i ∈N ,

⎡
⎢⎢⎢⎢⎣
–( + α)Yi  YiAᵀ

i +Xᵀ
i B

ᵀ
i YiLᵀi +Xᵀ

i D
ᵀ
i

* – γ I
(+α)N Cᵀ

i 
* * –Zj 
* * * –I

⎤
⎥⎥⎥⎥⎦ < , ()

Pi ≤ μPj, ∀i ∈N , ()
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[
–Yi YiR
* –R

]
< ,

[
–κR I
* –Yi

]
< , ∀i ∈N , ()

c
( + α)Nκc + γ d

> , ()

hold, and the average dwell time of the switched discrete-time signal σ (k) satisfies

τa > τ *
a =max

{
N lnμ

ln c – ln(γ d)
,
lnμ

α

}
. ()

Then the set of state feedback controllers is given by

Xi = KiP–
i , ∀i, j ∈N . ()

Proof Pre- and post-multiplying ()with diag{P–
i , I,P–

j , I} and diag{P–
i , I,P–

j , I}, respec-
tively, then () is transformed into

⎡
⎢⎢⎢⎢⎣
–( + α)P–

i  P–
i Aᵀ

i + P–
i Kᵀ

i B
ᵀ
i P–

i Lᵀi + P–
i Kᵀ

i D
ᵀ
i

* – γ I
(+α)N Cᵀ

i 
* * –P–

j 
* * * –I

⎤
⎥⎥⎥⎥⎦ < . ()

Denote

Yi = P–
i , Zj = P–

j , Xi = KiP–
i , ∀i, j ∈N .

Therefore, we can obtain (). The proof is completed. �

Remark  In our paper, finite-time stability and Lyapunov asymptotic stability are inde-
pendent concepts: a systemwhich is finite-time stablemaybe not Lyapunov asymptotically
stable. On the contrary, a Lyapunov asymptotically stable system could be not finite-time
stable, and during the transients, its state exceeds the prescribed bounds.

Remark  In many actual applications, the minimum value of γ 
min is of interest. In The-

orem ., as for finite-time stability and boundness, once the state bound c is not ascer-
tained, the minimum value cmin is of interest. With fixed α and μ, defining λ = , λ = κ ,
we then can formulate the following optimization problem to get theminimumvalue cmin:

min c

s.t. (), () and ().

Therefore, the optimal value of ρ(θ ) can be derived through the convex combination of
γ 
min and cmin, i.e., denote  ≤ ϑ ≤ , ρ(ϑ) = ϑγ 

min + ( – ϑ)cmin, which can be obtained
through

minρ(ϑ)

s.t. (), () and ().
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The optimized controller gains Xi = KiP–
i , ∀i, j ∈N can be derived by optimization pro-

cedure minκ≥ κ subject to () and () with fixed γ and minimum c.

Remark  In this paper, if we can find a feasible solution with the parameter μ = ,
through the discussion above, we know that the designed controller can ensure both finite-
time and asymptotical stability of the delayed switched system. While in most situations
we obtain controller with μ > , and only finite-time stability can be established. There-
fore, in real applications, asymptotical stabilizing controller for each subsystem should be
designed to ensure asymptotical stability, which can be easily obtained by existing results
for a non-switched system.

6 Illustrative example
Example  Consider a finite-time stabilization of the switched system as follows:

A =

⎡
⎢⎣
. –. –.
. –. –.
–. . –.

⎤
⎥⎦ ,

A =

⎡
⎢⎣
–. . –.
. . .
. . –.

⎤
⎥⎦ ,

B =

⎡
⎢⎣
–. . .
–. –. –.
. –. .

⎤
⎥⎦ ,

B =

⎡
⎢⎣
. . –.
–. . .
–. . –.

⎤
⎥⎦ ,

C =

⎡
⎢⎣

. –. .
. . –.
–. –. .

⎤
⎥⎦ ,

C =

⎡
⎢⎣
. . –.
. –. .
. . .

⎤
⎥⎦ ,

D =

⎡
⎢⎣

. . .
–. . –.
–. . –.

⎤
⎥⎦ ,

D =

⎡
⎢⎣
–. –. –.
–. . –.
–. –. –.

⎤
⎥⎦ ,

L =

⎡
⎢⎣
–. –. –.
. . .
–. . –.

⎤
⎥⎦ ,
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L =

⎡
⎢⎣
. –. –.
. . .
. –. .

⎤
⎥⎦ .

In this paper, disturbance
∑∞

k= ωᵀ(k)ω(k) < . The control objective is to find a feed-
back controller ensuring system () is finite-time bounded with respect to (c, c,d,R,N)
and minimum value of γ 

min + cmin. Choose c = , d =  and α = .. According to Theo-
rem ., the optimal value of γ 

min + cmin depends on parameter μ. Through LMI then we
see that the feasible solution is γ = ., c = . and μ = ..
The state feedback controllers are given as

K =

⎡
⎢⎣

. . –.
–. . .
. –. –.

⎤
⎥⎦ ,

K =

⎡
⎢⎣

. . .
–. –. .
–. . .

⎤
⎥⎦ .

According to (), for any switching signal σ (k) with average dwell time τa > τ *
a = .,

system () is finite-time stochastically bounded with respect to the above parameters. Fig-
ure  shows the switching signal σ (k) with average dwell time τa = ..
Choose the initial condition [–., .], then switched discrete-time system () is finite-

time bounded. The state responses of a filtering error system is shown in Figure . It can
be seen that the designed filter meets the specified requirement. The state trajectory of
system () is shown in Figure , where the initial state x() = [. – .]. From Figure , it
is easy to see that system () is finite-time bounded.

Figure 1 Switching signal σ (k).
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Figure 2 State trajectory of system (5).

7 Conclusions
In this paper, we have examined the problems of finite-time H∞ control of a switched
discrete-time system with average dwell time. Based on the analysis result, the static state
feedback control of finite-time boundness is given. Although the derived result is not in
an LMIs form, we can turn it into the LMIs feasibility problem by fixing some parameters.
A numerical example has also been given to demonstrate the effectiveness of the proposed
approach. It should be noted that one of future research topics would be to investigate the
problems of synchronous or asynchronous estimation for the switched neural network
under the dwell time over a finite-time horizon.
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