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Abstract
In this paper we present the numerical method for the solution of the Riemann
problem for the second-order improperly elliptic equation. First, we reduce this
problem to boundary value problems for properly elliptic equations, and after that we
solve these problems by the grid method.
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1 Introduction
Let D be a rectangle D = {(x, y) : a < x < b, c < y < d} in a complex plane with boundary
� = ∂D. We consider in D the equation

n∑
k=

Ak
∂nu

∂xk ∂yn–k
(x, y) = , (x, y) ∈D, ()

where Ak are complex constants (A �= ) such that the characteristic equation

n∑
k=

Akλ
n–k =  ()

has no real roots (i.e., elliptic equation). Let the roots of () λk withmultiplicitiesmk satisfy
the condition �λk >  and the roots μj with multiplicities lj satisfy the condition �μj < .
We suppose that

∑
k mk >

∑
j lk , so () is an improperly elliptic equation. It was shown in

[] that for the equation uz̄z̄ =  (now known as a Bitzadze equation) the corresponding
Dirichlet problem is not correct. It was shown later ([–]) that for arbitrary improperly
elliptic equation () all of the classical boundary value problems are not correct (we say
that the problem is correct if the corresponding homogeneous problem has a finite num-
ber of linearly independent solutions and the inhomogeneous problem is solvable if and
only if the finite number of linearly independent conditions for the boundary functions
are satisfied). Therefore another kind of boundary conditions must be introduced. In the
works [–], different types of boundary conditions, whose number depends on the num-
ber of the roots of () with positive and negative imaginary parts, were introduced. In this
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paper we consider in D the Bitzadze equation

∂u
∂ z̄

(x, y) ≡ 


(
∂

∂x
+ i

∂

∂y

)

u(x, y) = , (x, y) ∈D. ()

We seek the unknown function u ∈ C(D)∩C(,α)(D∪�) in the class of two times continu-
ously differentiable in D functions which satisfy Hölder condition in D∪� with their first
degree derivatives. We suppose that the function u satisfies the Riemann-type boundary
conditions

�u|� = f (x, y), �∂u
∂ν

∣∣∣∣
�

= g(x, y), (x, y) ∈ �. ()

Here f ∈ C(,α)(�), g ∈ C(α)(�) are the given functions on the boundary, ∂
∂ν
-differentiation

with respect to inner normal to �. Problem (), () is well posed [] and has a solution for
arbitrary boundary functions. The corresponding homogeneous problem (when f ≡ g ≡
) has four linearly independent pure imaginary solutions

u(x, y) = i, u(x, y) = ix, u(x, y) = iy, u(x, y) = i
(
x + y

)
. ()

Therefore, the realization of the grid method for the solution of problem ()-() is con-
nected with some difficulties. The grid method (or finite-difference method) is an effec-
tive and widely applicable method for the solution of boundary value problems for elliptic
equations with real coefficients (see, for example, []). But even in this case, it is neces-
sary to do some modifications for the solution of the Neumann problem, because in this
case we must get around difficulties connected with non-uniqueness of the solution ([],
p. ). Application of this method to complex elliptic equations was considered in [],
but only for properly elliptic equations (linear and non-linear). In this paper we suggest
a scheme of the realization of the grid method for the solution of problem ()-(). If, de-
noting u = P + iQ (P = P̄, Q = Q̄), we consider equation () as a system of the real partial
differential equations,

Pxx –Qyy – Qxy = , Qxx –Qyy + Pxy = ,

then straightforward finite-difference realization of this system

Pj
i+ + Pj

i– – Pj+
i – Pj–

i – 
(
Qj+

i+ –Qj+
i+ –Qj–

i+ +Qj–
i–

)
= ,

Qj
i+ +Qj

i– –Qj+
i –Qj–

i + 
(
Pj+
i+ – Pj+

i+ – Pj–
i+ + Pj–

i–
)
= 

reduces to ill-conditioned linear systemwith zeroes on themain diagonal, so we introduce
another variant of the solution.

2 Description of the algorithm of solution
The general solution of equation () may be represented in the form []:

u(x, y) = z̄�(z) +�(z), z = x + iy, (x, y) ∈D, ()
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where �, � are arbitrary analytic functions in D. Therefore, problem ()-() reduces to
determination of the analytic functions �, � by the condition (). For this goal, we men-
tion that if the function u is a solution of problem ()-(), then the complex conjugate
function ū satisfies the equalities

∂ū
∂z

(x, y) = , z = x + iy, (x, y) ∈D, ()

�ū|� = f (x, y), �∂ū
∂ν

∣∣∣∣
�

= g(x, y), (x, y) ∈ �. ()

Hence, taking into account identity 	 ≡  ∂

∂z ∂ z̄ , we get that the function U ≡ �u is a
solution of the Dirichlet problem for the biharmonic equation

	U(x, y) = , (x, y) ∈D;

U|� = f (x, y),
∂U
∂ν

∣∣∣∣
�

= g(x, y), (x, y) ∈ �, ()

which is uniquely solvable [, ]. Solving this problem by the gridmethod, we find approx-
imate values of the function U in the grid nodes:

Uj
i ≈U(xi, yj), i = , . . . ,n; j = , . . . ,m. ()

Now we must find �u. From () we have

U(x, y) = .
(
z̄�(z) +�(z) + z�(z) +�(z)

)
, z = x + iy. ()

So, applying the Laplace operator to both sides of (), we get

	U(x, y) = 
(
�′(z) +�′(z)

)
= �(

�′(z)
)

or

∂

∂x
��(z) = .	U(x, y). ()

The function ϕ(z) ≡ ��(z) is harmonic in D; therefore, adding equalities () on the
boundary of D, we get the following problem with angled derivative for the Laplace equa-
tion:

	ϕ = , (x, y) ∈D;
∂ϕ

∂x

∣∣∣∣
�

= ϕ(x, y) ≡ .	U(x, y), (x, y) ∈ �. ()

Solving this problem,we get the function ϕ - the real part of�. To determine the imaginary
part of �, the function ω = ��, we have the similar boundary value problem

	ω = , (x, y) ∈D;
∂ω

∂y

∣∣∣∣
�

= ω(x, y) ≡ .	U(x, y), (x, y) ∈ �. ()

Here () and the Cauchy-Riemann condition ϕx = ωy were used. Solving the problems
() and (), we find the function �. Now, we use () to determine the function � . This
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function is also analytic in D; therefore, we have the Dirichlet problem for the Laplace
equation to determine the real part of this function ψ = �� :

	ψ = , (x, y) ∈D, ψ |� = ψ(x, y), (x, y) ∈ �. ()

Here a function ψ is the already known function ψ = U – �(z̄�(z)). After determining
the function ψ , we get the boundary value problem, analogous to (), to determine the
imaginary part of the function � .
Thus, the main idea of this algorithm is to reduce the previous problem for an improp-

erly elliptic equation to the boundary value problems for properly elliptic equations (in
our case, to boundary value problems for biharmonic and Laplace equations). In the next
section we describe the realization of this algorithm by the grid method.

3 Solution of problem (3), (4) by the grid method
Without loss of generality, we may suppose that a, b, c, d are rational numbers. In this
case we can divide the rectangle D by (N – )(M – ) equidistant straight lines, parallel to
coordinate axes and denote

xk = a + kh, yj = c + jh, h =
b – a
N

=
d – c
M

,k = ,N , j = ,M. ()

Wewant to find the approximate values of unknown function {u(xk , yj)}N ,M
k,j= (u is a solution

of problem (), ()) in the mesh points (xk , yj). First, we consider problem () to determine
the function U(x, y) = �u(x, y). Passing to the discrete analogue of the Laplace operator

	hUh =
Uj

k+ – Uj
k +Uj

k– +Uj+
k – Uj

k +Uj–
k

h
, ()

where Uh = {Uj
k} is a grid function, we replace problem () by grid equations

	h	hUh = , Uh|�h = fh, δhUh|�h = gh. ()

Here

	h	hUh =

h

Uj
i –


h

(
Uj

i+ +Uj
i– +Uj–

i +Uj+
i

)

+

h

(
Uj+

i+ +Uj+
i– +Uj–

i+ +Uj–
i–

)
+


h

(
Uj

i+ +Uj
i– +Uj–

i +Uj+
i

)
, ()

and δh is a standard grid analogue (forward divided difference) of the operator ∂
∂ν
, fh and

gh are values of the functions f and g in boundary points of the grid. This problem approx-
imates problem (), and the rate of approximation is O(h) for a biharmonic equation and
O(h) for boundary conditions (see []). Therefore, from the stability of problem (), we
get the convergence of the grid function to {U(xk , ym)} ([], p., Theorem .). From the
last two equations of (), we get the values of the function Uh in the points (xk , ym) for
k = , ,N – ,N ;m = , , . . . ,M and k = , , . . . ,N ;m = , ,M – ,M, and we find the val-
ues Um

k in interior nodes from the linear system with a symmetric pentadiagonal matrix.
Hence, we get the stability of () from the positive definiteness of the main matrix of this
system, and an algorithm for the solution of this system may be found in [].
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Now, let us consider problem (). First, replacing the Laplace operator by the grid
operator (), we find the values .	hUh in the points �h = {(xk , yj) : k = ,N – , j =
,M –  or k = ,N – , j = ,M – }. It will be values of the grid function ϕ in the bound-
ary condition (). Problem () is always solvable and the corresponding homogeneous
problem has two linearly independent solutions. Therefore, if we get two arbitrary con-
stants L and L, and get

ϕ(a + h,d – τ ) = L, ϕ(b – h, c + τ ) = L, ()

then from the grid boundary conditions

ϕl
k+ – ϕl

k
h

= .(	hUh)lk , l = ,M – ;k = , . . . ,N – , ()

we find values of the grid function ϕm
k for m = ,N –  on the sides of �h parallel to OX

axis. Values of ϕm
k inside �h and on the sides �h parallel toOY axis will be found from the

system of linear equations. The main matrix of this system may be reduced to the block
tridiagonal form

� =

⎛
⎜⎜⎜⎝
A B . . . 
B A . . . 
. . . . . . . . . . . .
  . . . A

⎞
⎟⎟⎟⎠ , ()

where

A =

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

–    · · ·  
 –   . . .  
  –  . . .  
. . . . . . . . . . . . . . . . . . . . .
    . . . – 
    . . .  –

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B =

h

⎛
⎜⎜⎜⎜⎜⎜⎝

  · · ·  
  . . .  
. . . . . . . . . . . . . . .
  . . .  
  . . .  

⎞
⎟⎟⎟⎟⎟⎟⎠
.

()

To this matrix, the maximum principle may be applied []; therefore this system is
uniquely solvable. Then we must solve problem (). We get the problem analogous to
(), and here we must get one more real constant L. After solution of this problem, we
get the function � in the form

�(z) = �(z) + iLz + (L + iL) ()

in the grid points, here L, L, L are the real constants. And at the final step, we must find
the function� . First, we solve theDirichlet problem for the Laplace equation to determine
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the real part of � , and then we determine the imaginary part of � solving the problem
analogous to (). Here we get the last arbitrary constant L.
Summing up, we can say that the previous problem may be reduced to boundary value

problems for properly elliptic equations.
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