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Abstract
In this study, we consider some power series with rational coefficients and investigate
transcendence of the values of these series for Liouville number arguments. It is
proved that these values are either a Liouville number or a rational number under
certain conditions.
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1 Introduction
A real number α is algebraic if it is a zero of a polynomial with integer coefficients. The
real numbers which are not algebraic are known as transcendental. The theory of tran-
scendental numbers has a long history and was originated back to Liouville in his famous
paper [] where he explicitly constructed a number and proved that it is transcendental.
Later, Cantor [] gave another proof of the existence of transcendental numbers by estab-
lishing the denumerability of the set of algebraic numbers. It follows from this that almost
all real numbers are transcendental. Further, the development of the theory of transcen-
dental numbers has proved to have a strong influence on some new studies in Diophantine
equations; see [, ].
A classification of the set of all transcendental numbers into three disjoint classes,

termed S,T andU , whichwas introduced byMahler [], proved to be of considerable value
in the general development of the subject. The first classification of this kind was outlined
byMaillet in [], and others were described by Perna in [] andMorduchai-Boltovskoj [],
but Mahler’s classification receives most of the interest. Mahler described this classifica-
tion in the following way.
Let P(x) = anxn+ · · ·+ax+a be a polynomial with integer coefficients. The heightH(P)

of the polynomial P is defined by

H(P) =max
n

(|an|, . . . , |a|)

and if the degree of P is denoted by deg(P), then deg(P) = n, and for a given arbitrary
complex number ξ , it can be written as

ωn(H , ξ ) =min
n

{∣∣P(ξ )∣∣ : deg(P) ≤ n,H(P) ≤ H ,P(ξ ) �= 
}
,
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where n and H are positive integers; see []. Next, Mahler puts

ωn(ξ ) = lim
H→∞

– logωn(H , ξ )
logH

and

ω(ξ ) = lim
n→∞

ωn(ξ )
n

.

The inequalities  ≤ ωn(ξ )≤ ∞ and  ≤ ω(ξ )≤ ∞ hold. Fromωn+(H , ξ )≤ ωn(H , ξ ), we
get ωn+(ξ ) ≥ ωn(ξ ). If index ωn(ξ ) = ∞, then the μ(ξ ) is defined as the smallest of them;
otherwise μ(ξ ) = ∞. Thus, μ(ξ ) is uniquely determined. Furthermore, the two quantities
μ(ξ ) and ω(ξ ) are never finite simultaneously, for the finiteness of μ(ξ ) implies that there
is an n < ∞ such that ωn = ∞, hence ω = ∞.
Therefore, there are the following four possibilities for ξ : it is said to be

Class-A if ω(ξ ) = ,μ(ξ ) = ∞,

Class-S if  < ω(ξ ) < ∞,μ(ξ ) = ∞,

Class-T if ω(ξ ) = ∞,μ(ξ ) = ∞,

Class-U if ω(ξ ) = ∞,μ(ξ ) < ∞.

In [], Koksma introduced an analogous classification of complex numbers. He divided
the complex numbers into four classes A*, S*, T * and U*. More information may be found
in [].
In [], Wirsing proved that both classifications are equivalent. Namely, A, S, T and

U numbers are the same as A*, S*, T * and U* numbers. The class A is precisely the set
of algebraic numbers. The ξ is called a U-number of degree m if μ(ξ ) = m. The set of
U-numbers of degree m is denoted by Um. It is obvious that for any m ≥ , the Um is a
subclass of U , and U is the union of all disjoint sets Um.
Leveque proved that Um is not empty for any m ≥  in []. Later, in [, ], Oryan

considered a class of power series with algebraic coefficients and proved that under certain
conditions these series take values in the subclass Um for algebraic arguments and in the
set of Liouville numbers for Liouville number arguments, respectively.
Now, consider the infinite convergent sum T =

∑∞
n=

P(n)
Q(n) , where P(x) ∈ Q̄[x], Q(x) ∈

Q[x] and Q(x) has only simple rational zeros. Then, Saradha and Tijdeman have obtained
the sufficient and necessary conditions for the transcendence of T if the degree of Q(x)
is ; see []. Similarly, Ping and Yuan gave sufficient and necessary conditions for the
transcendence of T if the degree of Q(x) is  and Q(x) is reduced; see [].
We also note that a transcendental function is an analytic function having a single value

or many values, and to calculate the values, we need a limiting process. However, an an-
alytic function is transcendental if and only if its Riemann surface is non-compact; see
[].
In the present work, we consider certain power series with rational coefficients and show

that these series take values of either the set of Liouville numbers or rational numbers
under certain conditions. Thus, we give a new result for obtaining U-numbers.
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2 Preliminaries
In this paper, |x| means the absolute value of x and the least common multiple of
x,x, . . . ,xn is denoted by [x,x, . . . ,xn].

Definition . A real number ξ is called Liouville number if and only if for every positive
integer n, there exist integers pn, qn (qn > ) with

 <
∣∣∣∣ξ –

pn
qn

∣∣∣∣ < 
qnn

.

The set of all Liouville numbers is identical with the U subclass. More information
about Liouville numbers may be found in [, ] and [].
Now, in order to prove our main theorem, we need the following lemma which was

proved in [].

Lemma . Let ξ be a real number. If there exist a sequence ω,ω,ω, . . . of real
numbers tending to infinity and a sequence p

q
, pq ,

p
q
, . . . of rational numbers satisfy-

ing

 <
∣∣∣∣ξ –

pn
qn

∣∣∣∣ < 
qnωn

(qn > ,n = , , , . . .),

then ξ is a Liouville number.

3 Main theorem
Theorem . Let

g(x) =
∞∑
n=

fn
en
xn

be a power series with non-zero rational coefficients fn
en (en, fn ∈ Z, en > ) which satisfies the

following conditions:

lim
n→∞

log en+
log en

= η > , (.)

lim
n→∞

log en+
log en

= ∞, (.)

lim
n→∞

log |fn|
log en

= μ < . (.)

Further, let ξ be a Liouville number and satisfy the following two properties:
() The ξ has an approximation with rational numbers pn

qn (qn > ) so that the following
inequality holds for sufficiently large n:

∣∣∣∣ξ –
pn
qn

∣∣∣∣ < 
qnnsn

(
lim
n→∞ sn = +∞

)
. (.)
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() There exist two positive real numbers γ and γ with η

η– < γ < γ and

eγ
n ≤ qnn ≤ eγ

n (.)

for sufficiently large n.
Then g(ξ ) is either a Liouville number or a rational number.

Proof It follows from (.) that

log en+ > η log en (.)

for sufficiently large n, where η = η–ε and ε is chosen as  < ε < η– γ
γ–

. Then it follows
from (.) that the sequence {en} is strictly increasing, thus we have

lim
n→∞ en = +∞, (.)

lim
n→∞

log en
n

= ∞ and lim
n→∞

log en
n

= ∞. (.)

Now, by using equation (.), we get

en < e

η
n+. (.)

Let En = [e, e, . . . , en]. Then on using (.), we obtain

en ≤ En ≤ e
ε+

η
η–

n , (.)

where ε is chosen as  < ε < γ – η
η–

.
Now, if we consider the following polynomials:

gn(x) =
n∑

ν=

fν
eν

xν (n = , , , . . .),

then we have

gn(ξ ) – gn
(
pn
qn

)
=

n∑
ν=

fν
eν

(
ξ –

pn
qn

)(
ξν– + ξν– pn

qn
+ · · · + pν–

n
qν–
n

)
, (.)

and from (.) it follows that

∣∣∣∣pnqn
∣∣∣∣ ≤ |ξ | + . (.)

Further, on using equations (.), (.) and (.), we get

∣∣∣∣gn(ξ ) – gn
(
pn
qn

)∣∣∣∣ ≤ 
qnsnn

n∑
ν=

|fν |
eν

ν
(|ξ | + 

)ν–. (.)
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Now, define

Fn =max
n

(|f|, |f|, . . . , |fn|).
Then we obtain

n∑
ν=

|fν |
eν

ν
(|ξ | + 

)ν– ≤ nFn
(|ξ | + 

)n– (.)

for sufficiently large n.
On the other hand, we can easily deduce from (.) and μ < μ+

 that

log |fn|
log en

<
μ + 


, (.)

and since the sequence {en} is strictly increasing, then it follows that

logFn
log en

<
μ + 


. (.)

On using  < ε < γ – η
η–

, and from (.), (.) and (.), we get

nFn
(|ξ | + 

)n– ≤ 

e
(γ–ε–

η
η–

) sn
n .

That is, on using (.), (.) and (.),

n∑
γ=

|fγ |
eγ

γ
(|ξ | + 

)γ– ≤ (qnn)
sn


(En)
sn


for sufficiently large n. Then on using (.), we have

∣∣∣∣gn(ξ ) – gn
(
pn
qn

)∣∣∣∣ ≤ 
(Enqnn)

sn


(.)

for sufficiently large n.
Moreover, the following inequality holds:

∣∣g(ξ ) – gn(ξ )
∣∣ ≤

∞∑
i=

|fn+i|
en+i

|ξ |n+i. (.)

It follows from (.) that

|fn|
en

<


e(
–μ
 )

n

for sufficiently large n. We get from here and (.)

∣∣g(ξ ) – gn(ξ )
∣∣ ≤ |ξ |n+

e(
–μ
 )

n+

[
 +

(
en+
en+

) –μ
 |ξ | +

(
en+
en+

) –μ
 |ξ | + · · ·

]
.
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Thus, we can deduce from (.) that

 <
en+
en+

<


e
(– 

η
)

n+

.

Since (.) holds, we then obtain

lim
n→∞

en+
en+

= .

Similarly, since –μ

 > , we have

(
en+
en++k

) –μ
 |ξ |k <

(



)k

(k = , , , . . .),

and therefore

∣∣g(ξ ) – gn(ξ )
∣∣ ≤ |ξ |n+

e(
–μ
 )

n+

.

On the other hand, from (.) we get

|ξ |n+ ≤ e(
–μ
 )

n+

for sufficiently large n. From here we obtain

∣∣g(ξ ) – gn(ξ )
∣∣ ≤ 

e(
–μ
 )

n+

(.)

for sufficiently large n. Now, if further we define

rn =
log en+
log en

,

then we have

∣∣g(ξ ) – gn(ξ )
∣∣ ≤ 

ern(
–μ
 )

n

.

Using (.) then it follows that there exists a subsequence {rnk } of {rn} such that

lim
k→∞

rnk = ∞.

Therefore,

∣∣g(ξ ) – gnk (ξ )
∣∣ ≤ 

e
rnk (

–μ
 )

nk

(.)
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for sufficiently large nk . On using (.), (.) and (.), we deduce that there exists a suit-
able sequence {r′nk } with limk→∞ r′nk = +∞. Then from (.) for r′nk we obtain



e
rnk (

–μ
 )

nk

≤ 

(Enkq
nk
nk )

r′nk
,

and therefore

∣∣g(ξ ) – gnk (ξ )
∣∣ ≤ 

(Enkq
nk
nk )

r′nk
(.)

for sufficiently large nk . On the other hand, using (.) we get

∣∣∣∣gnk (ξ ) – gnk

(
pnk
qnk

)∣∣∣∣ ≤ 

(Enkq
nk
nk )

snk


(.)

for sufficiently large nk .
Let

ωnk =min
k

(
r′nk ,

snk


)
.

It follows from (.) and (.) that

∣∣∣∣g(ξ ) – gnk

(
pnk
qnk

)∣∣∣∣ ≤ 
(Enkq

nk
nk )

ωnk
, (.)

where limk→∞ ωnk = ∞. Moreover,

gnk

(
pnk
qnk

)
=

znk
Enk q

nk
nk

are rational numbers with znk integers. It follows from (.) that

lim
k→∞

gnk

(
pnk
qnk

)
= g(ξ ).

Thus, if the sequence {gnk (
pnk
qnk

)} is constant, then g(ξ ) is a rational number. Otherwise,
using Lemma . we get from (.) that g(ξ ) is a Liouville number. �

Corollary . If fn >  (n = , , , . . .) and ξ >  in Theorem ., then f (ξ ) is a Liouville
number.

Proof Since ξ > , it is possible to choose a subsequence { pnk tqnk t
} of { pnkqnk

} so that the terms
pnk t
qnk t

are positive and strictly increasing or decreasing. Let us assume that { pnk tqnk t
} is strictly

increasing. From fn
en >  it follows

gnkt+

(pnkt+
qnkt+

)
– gnkt

(pnkt
qnkt

)
> . (.)
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From (.)we deduce that the sequence {gnk (
pnk
qnk

)} is not constant. Thus, g(ξ ) is a Liouville
number. In the case of strictly decreasing { pnk tqnk t

}, the proof follows similarly. �

4 Conclusion
In this paper, the series with rational coefficients are treated and it is shown that under
certain conditions these series take values belonging to either the set of Liouville numbers
or the rational number field for Liouville number arguments.
The similar results can be proved for the power series which are defined in the p-adic

field Qp and in the field of formal Laurent series.
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