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1 Introduction
Consider the following nonlinear difference system:

⎧⎨
⎩�x(n) = α(n)x(n + ) + β(n)|y(n)|μ–y(n),

�y(n) = –γ (n)|x(n + )|ν–x(n + ) – α(n)y(n),
(.)

where μ,ν >  and 
μ
+ 

ν
= , α(n), β(n) and γ (n) are real-valued functions defined on Z,

� denotes the forward difference operator defined by �x(n) = x(n+ ) – x(n). Throughout
this paper, we always assume that

β(n) ≥ , ∀n ∈ Z. (.)

When μ = ν = , system (.) reduces to a discrete linear Hamiltonian system

�x(n) = α(n)x(n + ) + β(n)y(n), �y(n) = –γ (n)x(n + ) – α(n)y(n). (.)

Similar to [], we first give the following two definitions.

Definition . [] A function f : Z → R is said to have a generalized zero at n ∈ Z pro-
vided either f (n) =  or f (n)f (n + ) < .

Definition . [] Let a,b ∈ Z with a ≤ b – . A function f : Z[a,b] → R is said to be
disconjugate if it has at most a generalized zero on Z[a,b]; otherwise, it is conjugate on
Z[a,b].
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In addition, the definition that system (.) is relatively disconjugate here is the same as
Definition  in [].
For system (.), there are some generalizations and extensions related to Lyapunov-

type inequalities; and for recent work in the literature on discrete and continuous cases
as well as its special case, i.e., system (.), we refer to [–] and the references therein.
Based on [] and [], we further discuss system (.) in this paper and establish some new
Lyapunov-type inequalities. In [], the authors have gained many interesting results about
Lyapunov-type inequalities and their applications for system (.) including developing
several disconjugacy criteria by adopting some techniques. As an application, we also de-
velop disconjugacy criteria in the last section.Moreover, wemake a comparisonwith some
existing ones.
Now, we state several relative results in [] and [].

Theorem . [] Suppose that (.) holds and

 – α(n) > , ∀n ∈ Z. (.)

Let n ∈ Z[a,b] with a ≤ b – . Assume (.) has a real solution (x(n), y(n)) satisfying

x(a) =  or x(a)x(a + ) < ;

x(b) =  or x(b)x(b + ) < ; max
a+≤n≤b

∣∣x(n)∣∣ > .
(.)

Then one has the following Lyapunov-type inequality:

b–∑
n=a

∣∣α(n)∣∣ +
( b∑

n=a
β(n)

)/μ( b–∑
n=a

γ +(n)

)/ν

≥ , (.)

where, and in what follows, Z[a,b] = {a,a + , . . . ,b + ,b} for any a,b ∈ Z with a < b and
γ +(n) =max{γ (n), }.

Theorem . [] Suppose that (.) and (.) hold and let n ∈ Z[a,b] with a ≤ b – . As-
sume (.) has a real solution (x(n), y(n)) such that x(a) =  or x(a)x(a + ) <  and x(b) = 
and x(n) is not identically zero on [a,b].Then one has the following Lyapunov-type inequal-
ity:

b–∑
n=a

∣∣α(n)∣∣ +
( b–∑

n=a
β(n)

)/μ( b–∑
n=a

γ +(n)

)/ν

≥ . (.)

Theorem . [] Suppose that (.) holds and

β(n) > , ∀n ∈ Z[a,b]. (.)

If

( b∑
n=a

β(n)e–α(n, τ )

)( b–∑
n=a

γ +(n)

)
≤  (.)

holds for all τ ∈ Z[a + ,b], then system (.) is relatively disconjugate on Z[a,b + ].
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Regarding the discrete exponential function e–α(n, τ ) of (.), we refer the reader to [].

2 Lyapunov-type inequalities
In this section, we establish some new Lyapunov-type inequalities.
Denote

ζ (n) :=

{ n∑
τ=a

β(τ )
n∏
s=τ

[
 – α(s)

]–μ

} ν
μ

, (.)

η(n) :=

{ b∑
τ=n+

β(τ )
τ–∏
s=n+

[
 – α(s)

]μ

} ν
μ

, (.)

and for λ ∈ [, ), denote

ζλ(n) :=

{
( – λ)β(a)

n∏
s=a

[
 – α(s)

]–μ +
n∑

τ=a+

β(τ )
n∏
s=τ

[
 – α(s)

]–μ

} ν
μ

, (.)

ηλ(n) :=

{
λβ(a)

b–∏
s=n+

[
 – α(s)

]μ +
b–∑

τ=n+

β(τ )
τ–∏
s=n+

[
 – α(s)

]μ

} ν
μ

. (.)

Theorem . Suppose that (.) and (.) hold, and let n ∈ Z[a,b] with a ≤ b – . As-
sume (.) has a real solution (x(n), y(n)) such that (.) holds. Then one has the following
inequality:

b–∑
n=a

ζ (n)η(n)
ζ (n) + η(n)

γ +(n)≥ . (.)

Proof It follows from (.) that there exist ξ, ξ ∈ [, ) such that

( – ξ)x(a) + ξx(a + ) =  (.)

and

( – ξ)x(b) + ξx(b + ) = . (.)

Multiplying the first equation of (.) by y(n) and the second one by x(n + ), and then
adding, we get

�[
x(n)y(n)

]
= β(n)

∣∣y(n)∣∣μ – γ (n)
∣∣x(n + )

∣∣ν . (.)

Summing equation (.) from a to b – , we can obtain

x(b)y(b) – x(a)y(a) =
b–∑
n=a

β(n)
∣∣y(n)∣∣μ –

b–∑
n=a

γ (n)
∣∣x(n + )

∣∣ν . (.)

From the first equation of (.), we have

[
 – α(n)

]
x(n + ) = x(n) + β(n)

∣∣y(n)∣∣μ–y(n). (.)

http://www.advancesindifferenceequations.com/content/2013/1/16
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Combining (.) with (.), we have

x(a) = –
ξβ(a)

 – ( – ξ)α(a)
∣∣y(a)∣∣μ–y(a). (.)

Similarly, it follows from (.) and (.) that

x(b) = –
ξβ(b)

 – ( – ξ)α(b)
∣∣y(b)∣∣μ–y(b). (.)

Substituting (.) and (.) into (.), we have

b–∑
n=a

β(n)
∣∣y(n)∣∣μ –

b–∑
n=a

γ (n)
∣∣x(n + )

∣∣ν

= –
ξβ(b)

 – ( – ξ)α(b)
∣∣y(b)∣∣μ +

ξβ(a)
 – ( – ξ)α(a)

∣∣y(a)∣∣μ,
which implies that

( – ξ)[ – α(a)]
 – ( – ξ)α(a)

β(a)
∣∣y(a)∣∣μ +

b–∑
n=a+

β(n)
∣∣y(n)∣∣μ +

ξβ(b)
 – ( – ξ)α(b)

∣∣y(b)∣∣μ

=
b–∑
n=a

γ (n)
∣∣x(n + )

∣∣ν . (.)

Denote that

β̃(a) =
( – ξ)[ – α(a)]
 – ( – ξ)α(a)

β(a), β̃(b) =
ξ

 – ( – ξ)α(b)
β(b) (.)

and

β̃(n) = β(n), n ∈ Z[a + ,b – ]. (.)

Then we can rewrite (.) as

b∑
n=a

β̃(n)
∣∣y(n)∣∣μ =

b–∑
n=a

γ (n)
∣∣x(n + )

∣∣ν . (.)

From (.), (.), (.) and (.), we obtain

x(n + ) = x(a)
n∏
s=a

[
 – α(s)

]– + n∑
τ=a

β(τ )
∣∣y(τ )∣∣μ–y(τ ) n∏

s=τ

[
 – α(s)

]–

= –
ξβ(a)

 – ( – ξ)α(a)
∣∣y(a)∣∣μ–y(a) n∏

s=a

[
 – α(s)

]–

+
n∑

τ=a
β(τ )

∣∣y(τ )∣∣μ–y(τ ) n∏
s=τ

[
 – α(s)

]–

=
n∑

τ=a
β̃(τ )

∣∣y(τ )∣∣μ–y(τ ) n∏
s=τ

[
 – α(s)

]–, n ∈ Z[a,b – ]. (.)
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Similarly, from (.), (.), (.) and (.), we have

x(n + ) = x(b)
b–∏
s=n+

[
 – α(s)

]
–

b–∑
τ=n+

β(τ )
∣∣y(τ )∣∣μ–y(τ ) τ–∏

s=n+

[
 – α(s)

]

= –
ξβ(b)

 – ( – ξ)α(b)
∣∣y(b)∣∣μ–y(b) b–∏

s=n+

[
 – α(s)

]

–
b–∑

τ=n+

β(τ )
∣∣y(τ )∣∣μ–y(τ ) τ–∏

s=n+

[
 – α(s)

]

= –
b∑

τ=n+

β̃(τ )
∣∣y(τ )∣∣μ–y(τ ) τ–∏

s=n+

[
 – α(s)

]
, n ∈ Z[a,b – ]. (.)

Since

 ≤ β̃(n) ≤ β(n), n ∈ Z[a,b], (.)

it follows from (.) and (.) and the Hölder inequality that

∣∣x(n + )
∣∣ν ≤

{ n∑
τ=a

β̃(τ )
∣∣y(τ )∣∣μ– n∏

s=τ

[
 – α(s)

]–}ν

≤
( n∑

τ=a
β̃(τ )

n∏
s=τ

[
 – α(s)

]–μ

) ν
μ n∑

τ=a
β̃(τ )

∣∣y(τ )∣∣μ

≤
( n∑

τ=a
β(τ )

n∏
s=τ

[
 – α(s)

]–μ

) ν
μ n∑

τ=a
β̃(τ )

∣∣y(τ )∣∣μ

= ζ (n)
n∑

τ=a
β̃(τ )

∣∣y(τ )∣∣μ, n ∈ Z[a,b – ]. (.)

Similarly, it follows from (.), (.), (.) and the Hölder inequality that

∣∣x(n + )
∣∣ν ≤

{ b∑
τ=n+

β̃(τ )
∣∣y(τ )∣∣μ– τ–∏

s=n+

[
 – α(s)

]}ν

≤
( b∑

τ=n+

β̃(τ )
τ–∏
s=n+

[
 – α(s)

]μ

) ν
μ b∑

τ=n+

β̃(τ )
∣∣y(τ )∣∣μ

≤
( b∑

τ=n+

β(τ )
τ–∏
s=n+

[
 – α(s)

]μ

) ν
μ b∑

τ=n+

β̃(τ )
∣∣y(τ )∣∣μ

= η(n)
b∑

τ=n+

β̃(τ )
∣∣y(τ )∣∣μ, n ∈ Z[a,b – ]. (.)

From (.) and (.), we obtain

∣∣x(n + )
∣∣ν ≤ ζ (n)η(n)

ζ (n) + η(n)

b∑
τ=a

β̃(τ )
∣∣y(τ )∣∣μ, n ∈ Z[a,b – ]. (.)

http://www.advancesindifferenceequations.com/content/2013/1/16
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Combining (.) with (.), we have

b–∑
n=a

γ +(n)
∣∣x(n + )

∣∣ν ≤
b–∑
n=a

ζ (n)η(n)
ζ (n) + η(n)

γ +(n)
b∑

n=a
β̃(n)

∣∣y(τ )∣∣μ

=
b–∑
n=a

ζ (n)η(n)
ζ (n) + η(n)

γ +(n)
b–∑
n=a

γ (n)
∣∣x(n + )

∣∣ν

≤
b–∑
n=a

ζ (n)η(n)
ζ (n) + η(n)

γ +(n)
b–∑
n=a

γ +(n)
∣∣x(n + )

∣∣ν . (.)

We claim that

b–∑
n=a

γ +(n)
∣∣x(n + )

∣∣ν > . (.)

If (.) is not true, then

b–∑
n=a

γ +(n)
∣∣x(n + )

∣∣ν = . (.)

From (.) and (.), we have

 ≤
b∑

n=a
β̃(n)

∣∣y(n)∣∣μ =
b–∑
n=a

γ (n)
∣∣x(n + )

∣∣ν ≤
b–∑
n=a

γ +(n)
∣∣x(n + )

∣∣ν = . (.)

It follows that

β̃(n)
∣∣y(n)∣∣μ = , n ∈ Z[a,b]. (.)

Combining (.) with (.), we obtain that x(a + ) = x(a + ) = · · · = x(b) = , which
together with (.) implies that x(a) = . This contradicts (.). Therefore, (.) holds.
Hence, it follows from (.) and (.) that (.) holds. �

In the case x(b) = , i.e., ξ = , and so β̃(b) = , we have the following equation:

b–∑
n=a

β̃(n)
∣∣y(n)∣∣μ =

b–∑
n=a

γ (n)
∣∣x(n + )

∣∣ν (.)

and inequality

∣∣x(n + )
∣∣ν ≤

{ b–∑
τ=n+

β̃(τ )
∣∣y(τ )∣∣μ– τ–∏

s=n+

[
 – α(s)

]}ν

≤
( b–∑

τ=n+

β̃(τ )
τ–∏
s=n+

[
 – α(s)

]μ

) ν
μ b–∑

τ=n+

β̃(τ )
∣∣y(τ )∣∣μ

http://www.advancesindifferenceequations.com/content/2013/1/16
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≤
( b–∑

τ=n+

β(τ )
τ–∏
s=n+

[
 – α(s)

]μ

) ν
μ b–∑

τ=n+

β̃(τ )
∣∣y(τ )∣∣μ

= η(n)
b–∑

τ=n+

β̃(τ )
∣∣y(τ )∣∣μ, n ∈ Z[a,b – ] (.)

instead of (.) and (.), respectively. Similar to the proof of Theorem ., we have the
following theorem.

Theorem . Suppose that (.) and (.) hold, and let n ∈ Z[a,b] with a≤ b–. Assume
(.) has a real solution (x(n), y(n)) such that x(a) =  or x(a)x(a + ) <  and x(b) =  and
x(n) is not identically zero on Z[a,b]. Then one has the following inequality:

b–∑
n=a

ζ (n)η(n)
ζ (n) + η(n)

γ +(n) ≥ , (.)

where ζ (n) and η(n) are defined by (.) and (.), respectively.

Corollary . Suppose that (.) and (.) hold, and let n ∈ Z[a,b] with a ≤ b – . As-
sume (.) has a real solution (x(n), y(n)) such that (.) holds. Then one has the following
inequality:

b–∑
n=a

γ +(n)

[ n∑
τ=a

β(τ )
b∑

τ=n+

β(τ )

] ν
μ

≥ 

{b–∏
n=a

�
[
α(n)

]} ν


, (.)

where, and in the sequel,

�
[
α(n)

]
=min

{
 – α+(n),

[
 + α–(n)

]–}
and

α+(n) =max
{
α(n), 

}
, α–(n) =max

{
–α(n), 

}
.

Proof Since

ζ (n) + η(n)≥ 
[
ζ (n)η(n)

] 
 ,

it follows that

 ≤
b–∑
n=a

ζ (n)η(n)
ζ (n) + η(n)

γ +(n)

≤ 


b–∑
n=a

[
ζ (n)η(n)

] 
 γ +(n)

=



b–∑
n=a

γ +(n)

{ n∑
τ=a

β(τ )
n∏
s=τ

[
 – α(s)

]–μ
b∑

τ=n+

β(τ )
τ–∏
s=n+

[
 – α(s)

]μ

} ν
μ

http://www.advancesindifferenceequations.com/content/2013/1/16
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≤ 


b–∑
n=a

γ +(n)

{ n∑
τ=a

β(τ )
n∏
s=τ

[
 – α+(s)

]–μ
b∑

τ=n+

β(τ )
τ–∏
s=n+

[
 + α–(s)

]μ

} ν
μ

≤ 


b–∑
n=a

γ +(n)

[ n∑
τ=a

β(τ )
b∑

τ=n+

β(τ )

] ν
μ n∏

s=a

[
 – α+(s)

]– ν


b–∏
s=n+

[
 + α–(s)

] ν


≤ 


b–∑
n=a

γ +(n)

[ n∑
τ=a

β(τ )
b∑

τ=n+

β(τ )

] ν
μ

{b–∏
s=a

�
[
α(s)

]}– ν


, (.)

which implies (.) holds. �

Since

[ n∑
τ=a

β(τ )
b∑

τ=n+

β(τ )

] 


≤ 


b∑
n=a

β(n),

we have the following result.

Corollary . Suppose that (.) and (.) hold, and let n ∈ Z[a,b] with a ≤ b – . As-
sume (.) has a real solution (x(n), y(n)) such that (.) holds. Then one has the following
Lyapunov-type inequality:

( b∑
n=a

β(n)

) 
μ
( b–∑

n=a
γ +(n)

) 
ν

≥ 

{b–∏
n=a

�
[
α(n)

]} 


. (.)

In a fashion similar to the proofs of Corollaries . and ., we can prove the following
corollaries by using Theorem . instead of Theorem ..

Corollary . Suppose that (.) and (.) hold, and let n ∈ Z[a,b] with a ≤ b–.Assume
(.) has a real solution (x(n), y(n)) such that x(a) =  or x(a)x(a + ) <  and x(b) =  and
x(n) is not identically zero on Z[a,b]. Then one has the following inequality:

b–∑
n=a

γ +(n)

[ n∑
τ=a

β(τ )
b–∑

τ=n+

β(τ )

] ν
μ

≥ 

{b–∏
n=a

�
[
α(n)

]} ν


. (.)

Corollary . Suppose that (.) and (.) hold, and let n ∈ Z[a,b] with a≤ b–.Assume
(.) has a real solution (x(n), y(n)) such that x(a) =  or x(a)x(a + ) <  and x(b) =  and
x(n) is not identically zero on Z[a,b].Then one has the following Lyapunov-type inequality:

( b–∑
n=a

β(n)

) 
μ
( b–∑

n=a
γ +(n)

) 
ν

≥ 

{b–∏
n=a

�
[
α(n)

]} 


. (.)

Remark . While the coefficient α(n) ≤  and μ = ν =  in system (.), inequality (.)
of Theorem . can be derived from inequality (.). Similarly, for inequality (.) of The-
orem . and inequality (.), this result also holds.

http://www.advancesindifferenceequations.com/content/2013/1/16
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On the one hand, when α(n)≤ , according to the definition of �[α(n)], we have

�
[
α(n)

]
=min

{
 – α+(n),

[
 + α–(n)

]–} = [
 +

∣∣α(n)∣∣]–. (.)

On the other hand, for any u≥ , we have

ln( + u) ≤ u (.)

and

e–u ≥  – u. (.)

Using above inequalities (.), (.) and (.), we obtain



{b–∏
n=a

�
[
α(n)

]} 


= 

{b–∏
n=a

[
 +

∣∣α(n)∣∣]–
} 



=  exp

{
– ln

[b–∏
n=a

(
 +

∣∣α(n)∣∣) 


]}

≥  exp

{
–



b–∑
n=a

∣∣α(n)∣∣
}

≥ 

[
 –




b–∑
n=a

∣∣α(n)∣∣
]
=  –

b–∑
n=a

∣∣α(n)∣∣. (.)

Then Remark . holds immediately.

3 Disconjugacy criteria
Let a,b ∈ Z with a ≤ b – . For system (.), we develop the following disconjugacy crite-
rion on Z[a,b] in this section.

Theorem . Assume that (.) and (.) hold. If

( b∑
n=a

β(n)

) 
μ
( b–∑

n=a
γ +(n)

) 
ν

< 

{b–∏
n=a

�
[
α(n)

]} 


(.)

holds, then system (.) is relatively disconjugate on Z[a,b + ].

Proof Suppose that system (.) is not relatively disconjugate onZ[a,b+]. Then there is a
real solution (x, y) with x nontrivial and containing two generalized zeros at least.Without
loss of generality, we assume that x(a) =  or x(a)x(a+) <  and the next generalized zero
at c ∈ Z[a + ,b], i.e., x(c) =  or x(c)x(c + ) < . Hence, applying Corollary ., we have

( c∑
n=a

β(n)

) 
μ
( c–∑

n=a
γ +(n)

) 
ν

≥ 

{ c–∏
n=a

�
[
α(n)

]} 


, (.)

which clearly contradicts (.). �

http://www.advancesindifferenceequations.com/content/2013/1/16
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When μ = ν =  in system (.), then for system (.), the corresponding disconjugate
condition (.) reduces to

b∑
n=a

β(n)
b–∑
n=a

γ +(n) < 
b–∏
n=a

�
[
α(n)

]
. (.)

While α(n) = , system (.) reduces to

�x(n) = β(n)y(n), �y(n) = –γ (n)x(n + ). (.)

Then disconjugate conditions (.) and (.) reduce to

b∑
n=a

β(n)
b–∑
n=a

γ +(n)≤  (.)

and

b∑
n=a

β(n)
b–∑
n=a

γ +(n) < , (.)

respectively.

Remark . For system (.), it is obvious that disconjugate condition (.) implies that
disconjugate condition (.) holds, but (.) cannot be derived from (.). Moreover, con-
dition (.) is weaker than condition (.).

It is well-known that the second-order difference equation

�x(n) + q(n)x(n + ) =  (.)

is just a special case of system (.) when β(n) = , γ (n) = q(n). And so, we have the fol-
lowing corollary.

Corollary . Assume that (.) and (.) hold. If inequality (.) holds, then equation
(.) is relatively disconjugate on Z[a,b + ].
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