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Abstract
In this paper, we study the advanced differential equations

[ O X O] + > pilo)x(t+ To)|* x(t + 1) =0
i=1

and

n

[0 -POYE-T)] + Y pidf (vt +0)) =0,

=1

By using the generalized Riccati transformation and the Schauder-Tyichonoff
theorem, we establish the conditions for the existence of positive solutions of the
above equations.
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1 Introduction
In the last years, oscillation and nonoscillation of differential equations attracted a consid-
erable attention. Many results have been obtained, and we refer the reader to the papers
[1-20].

In 2008, Luo et al. [11] investigated the existence of positive periodic solutions of the

following two kinds of neutral functional differential equations:

(x(8) = cx(t — () = —a(t)x(t) + £ (t,x(t - T (t)))

and
0 / 0
(x(t) - c/ Q(r)x(t +7) dr) = —a(t)x(t) + b(t)f Q()f (¢, x(t + r)) dr,

where a,b € C(R,(0,00)), T € C(R,R), f € C(R x R,R), and a(t), b(t), t(¢), f(¢,x) are
w-periodic functions, w > 0, Q(r) € C((-00, 0], [0, 00)), ff)oo Q(r)dr =1, and w,|c| <1 are
constants.
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Péics et al. [15] obtained the existence of positive solutions of half-linear delay differen-
tial equations

n

[ @%@ + > pue)|w(t - @) x(t - () =0,

i=1

where t > tg and a > 0, 7;(¢) < t.
Zhang et al. [19] obtained the existence of nonoscillatory solutions of the first-order
linear neutral delay differential equation

[x(6) + P(O)x(t - )] + QuO)x(t — 1) — Qa(E)x(t — 03) = 0,

where P € C([ty,00),R), T € (0,00), 01,05 € [0,00), Q1, Qs > 0.
In this paper, we consider the advanced differential equation

[rOF O KO + 3 p®x(t + ()| x(t + () = 0, (L)

i=1
where ¢t >ty and o > 0.

Throughout this work, we always assume that the following conditions hold:

(Hl) Pi € C([t0,00),R), i= 1; 2) 3;-“’”;
(Hy) 1€ C([tg,00),R*),i=1,2,3,...,m,and 0 < r(¢) < k.

For convenience, we introduce the notation
n* =[n*"'n, «>0. (12)

It is convenient to rewrite (1.1) in the form

[r(t)|x/(t)|a&], + Zpi(t)|x(t +7(t)) |a* =0. (1.3)

i=1

Definition 1.1 A function x is said to be a solution of Eq. (1.1) if x € C}([T, 00),R), T > to,
which has the property |x'|*x" € C}([T, o0), R) and it satisfies Eq. (1.1) for ¢ > T. We say
that a solution of Eq. (1.1) is oscillatory if it has arbitrarily large zeros. Otherwise, it is
nonoscillatory.

One of the most important methods of the study of nonoscillation is the method of
generalized characteristic equation [6]. The method was applied to second-order half-
linear equations without delay, for example, in [8, 9]. Concerning cases with advanced, let
us apply the Riccati-transformation

x(t) = exp(/t(w(s))(‘if ds). (1.4)

to

By (1.4), we have

x'(t) = (exp(/tw(s)(é)t ds)) = w(t)(é)% exp(/ta}(s)(é)i ds>,
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. t+7;(2) 1w
(x(t+ ()" = exp(a*‘/ w(s)@ ds).

0

From (1.3), we obtain

t . / n t+7;(t) L
|:r(t)a)(t) exp<a*/ w(s)(‘%) ds):| + ZP;‘(ﬂexp(a*/ w(s)@ ds) =0. (15)
b i=1 to

Since

|:r(t)a)(t) exp(a*/ta)(s)(é)’ ds)],
= (r(t)a)(t))/exp (oz* /tw(s)(é)* ds) + r(t)w(t) (exp(oﬁ /tw(s)(é)* ds))/

= (r/(t)a)(t) + r(t)w’(t)) exp(oﬁ /tw(s)(;)“ ds) N 0t*r(t)|a)(t)|l+é

t #
X exp(a*f w(s)(é) ds),
to

it is convenient to rewrite (1.5) in the form

1 n t+7;(8) .
¥ )w(t) + rt)w' (£) +ar(t)|a)(t)|1+°_‘ + Z pi(t) exp((x / w(s)'@) ds) =0. (1.6)

i=1

2 Preliminaries
Lemma 2.1 Suppose that (H;) and (Hy) hold. Then the following statements are equiva-
lent:
(i) Eq.(1.1) has an eventually positive solution;
(i) There is a function w € CY([T,00),R), T > to, such that w solves the Riccati
equation (1.6).

Proof (i) = (ii). Let x be an eventually positive solution of Eq. (1.1) such that x(¢) > 0 for
t > T > ty. The function w defined by

wlt) = (’“”)a =T,

x(t)

is continuous.
We will show that it is a solution of (1.6) on [T, 00). By (1.2) and observing that
/ o a-1 4
t t
o) = (¥ O\ _ ®( )’
x(t) x(t)

x'(¢)
x(t)

x/(t) 1 (l)*
= t)|* t) =w(t)«,
0 lo(@®)|* " w(t) = w(t)
it follows that

x(8) = x(T) exp< /T tw(s)%f ds>.
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Dividing both sides of (1.1) by |x(¢)|*'x(¢) gives that

)X O X @] lx(t + T:(8)|“ L (t + Ti(2)) B
FOTEFARAP D () [ (2) =0

i=1
From the definition of w, we obtain

a-1

[ (0)|" % (0) = w(0) |x(8) T 2(2) = w(B)a® (0).
Further

(O @)% @) = (r(O)o)x*(2))

=¥ ()w()x*(t) + r()e ©)x% (t) + art)w@®)x* 1 (H)x'(¢)

and

. t+7;() *
M = exp(/ CU(S)(%) ds) >0,
t

x(t)
o t+7;(t) L
:exp<a/ w(s)@) ds).
t

x(t + ti(t))
By substituting (2.2), (2.3) into (2.1), we get

x()

rOK O X @] ¢ (it + ()" x(t + 7(2))
o e 2P0 R
_ P (Dw(@)x(£) + r(t)w’ (£)x(£) + ar(t)w(®)x* 1 (t)x (t)
x*(¢)

n t+1’i(t) .
+ Zpi(t)exp<a/ a)(s)(é) ds)
i=1 ¢

=0.

We obtain (1.6), and the proof of (i) = (ii) is complete.

(ii) = (i). Let w be a continuously differentiable solution of Eq. (1.6) for t > T' > &,.

We show that a function x defined by

x(t) = exp(/Tt a)(s)(é)“ ds)

is the solution of Eq. (1.1).

Since

x'(¢)
x(t)

@) = (1)) () =Dl

L
= (@)@,

2.1)

(2.2)

(2.3)

Page 4 of 13
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By (1.6), we obtain

[FOE®) ] = (B ®)
=7 (O)w@®)x%(8) + rt)w’ )% (&) + ar(®)w)a*"1(#)x' (£)

1+1

=7 (O)w(t)x” (t) + r(t)o' ()2 (£) + ar()x () |w(@)|[ @

= ipi(t) eXp(“ /tﬂi(t) w(s)(é)* ds) exp (a /‘tw(s)@)* ds)
i1 ¢ .
t+7;(t) Lo
(e[

——Zp,(t t+rl )

thus,
[r(®) (% (8)" Z pit)x*(t+ () =0, t=>T.
i=1
The proof of (ii) = (i) is complete. The proof is complete. d

Lemma 2.2 Suppose that (H;) and (Hy) hold. The following statements are equivalent:
(a) There is a solution w € CY([T,00), R) of the Riccati equation (1.6) for some T > t,
such that

co| s+T5(8) Lo
/ |: E pi(s) exp(a/ a)(g)(a) dé):| ds < 0. (2.4)
U s

(b) There is a function u € C([T,00), R) for some T > ty such that

u(t) = %{a/ r(5)|uls)[ ¥ ds

. f m[gjpi(g exp(a / " )@ ds)} ds}. (25)

Proof (a) = (b). Let w = u be a solution of Eq. (1.6) for £ > T > £, and with the property
(2.4). Let 1 > t > T be fixed arbitrarily and integrate (1.6) over [¢,t]:

u(ty)r(ty) — u()r(t) = —a/ ' F(S)|u(5)|1+$ s

nl n s+7;(s) 1
= / [Zpi(s)exp(a / |u(s)|5‘1u(s)dg)]ds. (2.6)
t i=1 s

We claim that

‘/OO r(s)|u(s)|1+é ds < 00. (2.7)

Page 50of 13
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Assuming the contrary, if ftoo r(s)|u(5)|1+§ ds = 00, then in view of (2.6) there is T7 > ¢
such that

u(t)r(t) +« /tl r(S)|u(s)|l+é ds
Ty

Ty 1
=u(t)r(t) - oc/ r(s)|u(s)|1+5 ds

f n s+7;(s) 1,
—/ [ZM(S)GXP<‘X/ |u(€)|® u(é)déﬂ ds
t i=1 s

<-1
for 4 > T > ¢, or equivalently,
f 141
—u(t)r(ty) > 1+ a/ r(s)|u(s)| “ds, t>T1. (2.8)
T

Then we have

u(t;) <0.

From u(t) = (x/(t) )"“‘, it follows that &'(#;) < 0, £ > T;. Dividing both sides of (2.8) by 1 +

x(t

o fT 7(s) ()" & ds > 0 gives that

()7 (1) - (cue))d = X

1+ ozf;i r(s)|u(s) e ds ' x(t)’

th>T. (29)

Integrating the above inequality over [T3,#] then yields

1 a 142 x(Th)
&ln(lﬂx/Tl r(s)|u(s)| ds) Zln(x(tl))

Combining with (2.8), we have

x(T1)
x(t1)’

R

(—r(t)u(tr))

=

h>T

and
1 U
—ra(t)x'(t) > x(T1).
Integrating the last inequality and using 0 < r(£) < k, we see that lim;_, o, x(¢) = —00, which

contradicts the assumption that x(¢) is eventually positive. Therefore (2.7) must hold.
Let t; — 00 in (2.6). Using (2.4) and (2.7), we get lim,, . 7(t;)u(t;) = 0. So,

u(t) = (t) { /‘X’r(s |u(s g ds +/ |:Zp, exp( /sw(s} u(g)(é) d“;‘):| ds}

must hold.
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(b) = (a). Assume that there is a function u(¢) satisfying Eq. (2.5) on [T, 00). Differen-
tiation of (2.5) then shows that uz = w is a solution of (1.6) for £ > T, and it satisfies (2.4).
The proof of (b) = (a) is complete. O

3 Main results
Theorem 3.1 Assume that there exist T > to and functions 8,y € C([T,00),R) such that

B@) <y (@),
cof M s+7;(s) 1
/ [le,-(s)l exp(a / y(e)® ds)} ds < 0. (3.1)
t i-1 s
B(t) < v(¢) < y(t) implies that Sv is defined and p(¢) < (Sv)(£) < y (¢) (3.2)

for every function v € C([T, 00), R), where

r(t)

| M s+7;(s
+/t [;pi(s)exp(a/s )u(.g)%) dg)}zs}. (3.3)

Then there exists a continuous solution u(t) of Eq. (2.5) which satisfies the inequality 5(t) <
u(t) <y (@).

(Sv)(0) = i{a [ oot as

Proof Let T; and T, be real numbers such that T < T} < T, < co. Then [T}, T5] is an

arbitrary compact subinterval of [T, 00) and set

L= max {max{ |,B(t)

T1<t<T,

’

y(t)|}}, T = max {max ri(t)},

T]StSTz 1<i<n

1
1_ & .
Ly = La~1e*™l® N= min r(z),
T1=t=<T

k(@ +1)Le + ML

, c
N

M= max ;Im(t)
Define
F={veC([T,00),R) | B(t) <v(t) < y(t),t € [T,00)}.

It follows from (3.1) and (3.2), that the operator S is defined for v € F and satisfies

| o] de <oo. (3.4)

By (3.2), we see that the functions in the image set SF are uniformly bounded on any finite
interval of [T, 00).
To prove that the functions in SF are equicontinuous on any finite interval of [T, 00),

we choose the finite interval [T1, T,] as before, and let t; and ¢, be two arbitrary numbers

Page 7 of 13
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from [T}, T5]. Since %[) is continuous on [T7, T»], Ve > 0, 381 > 0, such that for |# — £5] < &1,

we have

1 1

R !
r(t)  r(t)

= —<—+

p 1
2 r(t)  r(t)

N ®

Further,

|Sv(t) = Sv(t)|

00 1 | 7 s+74(s) 15
%{a / r(5)[v()[ ¥ ds + f [;pxs)exp(a f V() dé)}ds}
—%:a/ r(s)|v(s)’hré ds
cof n s+7i(s) 1ye
+ p,-(s)exp(a v(€)@) df;‘>1| ds}
[[5reel]
b . B[ snl
@{a / r(s)|v(s)] " ds + / [Z|p,-(s)|exp(a f v(E)@ ds)]ds}
t t i-1 s
€ *© 141 cof s+7i(s) 1y
+-{a r(s)|v(s)| * ds + |: |pi(s)|exp<a ()& dé)]ds}
g [ [Sporen(e]

2

=

1 1
< —(akL™ & + Me*™ " )|ty - 1,

Zz| -

+ —

e 00 1*% oo " s+7;(s) @y
5 =cz'/Lj r(s)|v(s)| ds+/tl |:i2=1:|pi(s)|exp<a/3 V(&) dé)]ds}

Due to (3.1) and (3.4), there exists 8, such that for |f; — t;| < 82, [Sv(t1) — Sv(£;)| < &, hence
SF is equicontinuous.

Let the sequence {v,(¢)} € F tend to v(¢) uniformly on any finite interval (n — o0). In
particular, the convergence is uniform on the interval [T}, T5]. Using the mean value the-

orem, we have

1
a

)

66 = r6)un@)] | = (14 2 )r©)]v(s) = v,9)||o(s)
o

where |0 (s)| is between |v(s)| and |v,(s)|, and similarly

exp(a / |vn(s)|é‘1vn(s)ds) —exp(a /

s+7;(s)

e / (Jo®)[ 7 0a(E) = [v(©)| ™ v(&)) e

s+7;(s) s+74(s)

|v(s>|é‘1v<s)ds)

foreveryi=1,2,3,...,nand T; <s < Ty, where o;(s) is between « fsmi(s) [v(£)|a v (E) dE
and @ [~ |v,(8)|5 v, (&) d.

Page 8 of 13
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1
Since |o;(s)| < atL« for T} <t < T,, we obtain

exp(a / \vn(s)!“vn(ads) —exp(a f

s+7;(s)

< ettt / [n®)]* " 0a(®) = [v&)|* " v(6)| dt

s+7;(s) s+7;(s)

|v(s>y“v(s)ds)‘

s+7;(s)

SLé_learLé/ [va(&) - v(&)| dE.

Hence,

‘Sv(t) —Sv,,(t)‘

n

1 Ty L1 L1 Ty
STliLnoo@{a/t ’7’(5)|V(5)’1 o _r(s)‘vn(s)‘l D“dS+K [Z’p;(s)|

i=1
exp(ot / |vn<s)|5‘1vn<s>ds) —exp(a /

T
< L|: lim (a+1)L$/ r(s)|v(s)—v,,(s)|ds

T r(t) | oo
Ty S+T
+ML1/ / ’v(s)—v,,(s)‘dé dsi|.

The uniform convergence v,(t) — v(£) — 0 on any finite interval of [T, co) implies that if »

s+7;(s) s+7;(s)

|v(s)|5‘1v(s>ds)

X

‘|

is sufficiently large,
(@) —va(0)| <8, Ty <t=<T>,

where § = T%' and hence we obtain

1
[Su(t) - Sva(8)] < —[ lim (o + 1)Lek8(Ty — ) +ML1r5(T2—r)]
r(t) Tr—00
. 1 1
< Tll_l)noo N[(oz +1)Lek + MLiT]8T,

1
< lim —[(a + l)Lék +ML1‘L’]8

T Ty

= Cc¢

for Ty <t < T5. Thus, Sv,(t) — Sv(¢) uniformly on a finite interval.

We obtained that the conditions of the Schauder-Tyichonoff theorem are satisfied, hence
the mapping S has at least one fixed point v in F, and because v(t) = (Sv)(¢) fort > T, v is
the continuous solution of Eq. (2.5). O

Theorem 3.2 Assume that (H;), (Hy) hold and there exists a positive function u(t) for
t> T >ty such that

1 o 1+ " @ s+7;(s) 1 d s < ut) is
m/t ar(s)u (s)+;lpis ]exp(a/S wa (& g) s < (3.5)
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holds for t large enough. Then Eq. (1.1) has a positive solution x(t) with the property | % | <
1
pe (8).

Proof Let wu(t) be given such that the conditions of the theorem hold. We show that the
conditions of Theorem 3.1 are satisfied with 8(¢) = —u(¢) and y (¢) = () for ¢ large enough.
Let v(¢£) be a continuous function such that |v(¢)| < u(¢). It follows from (3.5) that

o f“ 7(5)|v(s) @ ds + / |:Zpl exp< /Sm(S) v(g)‘é)* d§>j| s
00 oo N s+7;(s) .
< %[a/t r(S)M1+é(s)dS+/t ;|pi(s)|exp(a/5 ( ,U«(é) (g)d&) ds:|

< ult).

Therefore, by Theorem 3.1, Lemma 2.1 and Lemma 2.2, Eq. (1.1) has a positive solution,
and the proof is complete. d

Next, we consider neutral differential equations of the form
[ (y(®) - Pe)y(t - 7)) mef (t+0))=0, t>t. (3.6)
i=1

We assume that:
(i) T>0,0>0;
(i) r,P,p; € C([ty,00),(0,00)),i=1,2,...,n;
(iii) f is nondecreasing continuous function and xf(x) > 0, x # 0.
The following fixed point theorem will be used to prove the main results.

Lemma 3.1 (Schauder’s fixed point theorem) Let Q be a closed, convex and nonempty
subset of a Banach space X. Let T : Q — Q2 be a continuous mapping such that T2 is a
relatively compact subset of X. Then T has at least one fixed point in Q. That is, there
exists an x € Q such that Tx = x.

Theorem 3.3 Suppose that

f N > pit)dt=oo (3.7)
LU

and there exist { > 0, 0 < ky < ky such that
ko o 1
Cew|ta-k) [ Y pieyae| <1 33)
k fo=¢ i1

t-t 1 o 1 0o N
exp( /;_Z Zpl(t)dt) +exp<k2 /to_; izzlpi(s)ds>/t @fs izzlpi(é)

i=1

xf(exp( ki /5“’ Zp,»(z) dz)) dé ds
i=1

Page 10 0of 13
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<P(2)

t " t-t " o) 1 co I
sexp(—/q / ;pxt)dt) +exp(k1 /{ ;pi(s)ds> / = / e
E+o 1
xf(exp( kz/ Zpi(z)dz>>d$ds, t>tp.
i=1

Then Eq. (3.6) has a positive solution which tends to zero.

Proof First: Choose T>t+T1,

u(t):exp<_k2/t Zpi(t)dt), v(t)—exp( lq/ Zp,(t)dt) t>ty.
to—¢ i=1 to—¢

Let C([tg, 00), R) be the set of all continuous functions with the norm
ly@®)| = sup|y(®)] < o0
t>to

Then C([£9,00),R) is a Banach space. We define a closed, bounded convex subset Q of
C([t9,00),R) as follows:

= {y lye C([to,oo),R) cu(t) < y(t) < v(t),t > to}.
Define the map T : Q — C([to,00),R):

Pt)y(t—1) - " f YL piE) (€ +0))dE ds, t>T,

T ~
o= (Ty)(T)+V(t)—V(T) to<t=<T.

IA

We can show that for any y € Q, Ty € Q.

Second: We prove that T is continuous.

Third: We show that T<2 is relatively compact.

The proof is similar to Theorem 2.1 of [2], we omitted it. O

Corollary 3.1 Suppose that k > 0, (3.7) holds and

t-t " 00 1 0o N
P(t) = exp( k/ Zp, dt) +exp( ;pi(s)ds>ft @/S ;pi(é)
xf(exp( o Xn:pi(z)dz))déds, t>ty.
=1

Then Eq. (3.6) has a solution

y(t—eXP( /sz ) t>to.
-1

Page 11 0f 13
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Example 3.1 Consider the advanced differential equations
n
(@) + Y _piex2r) =0, t>2, (3.9)
i=1

where p; € C([tg,00),R) and Y, |p:(2)| = ﬁ. Choose u(t) = 5,

/w(1+ 1 . 1/251d$>d/°°3d<3<1
— +———exp| = - S = —as< — < —.
. \122 Tgvae P\2 ) & TR VY

All the conditions of Theorem 3.2 are satisfied. Equation (3.9) has a positive solution and
%| < % In fact, we can choose w(t) = 1/(nt), n € (4 — 24/2,4 + 2+/2), Eq. (3.9) has a

positive solution with |%| < u(2), and the solution satisfies x(2) - 217 - t 71" < x(¢) < x(2) -
2—1/7] . tl/n.
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