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Abstract

In this paper, we consider the Fourier spectral method for numerically solving the
modified Swift-Hohenberg equation. The semi-discrete and fully discrete schemes are
established. Moreover, the existence, uniqueness and the optimal error bound are
also considered.

1 Introduction
In [1], Doelman et al. studied the modified Swift-Hohenberg equation

uy = —k(1+ A)u + pu — b|Vul|* — u®. 1)
Setting a = k — u, considering (1) in 1D case, we find that

Uy + Kty + 2Ktk + aut + blug> + u® =0,  (x,8) € (0,1) x (0, T). 2)
On the basis of physical considerations, as usual, Eq. (2) is supplemented with the follow-

ing boundary value conditions:

u(x, t) = uee(x, ) =0, x=0,1 (3)
and the initial condition

u(x,0) = up(x), xe€(0,1), (4)

where k > 0 and a, b are constants. u((x) is a given function from a suitable phase space.
The Swift-Hohenberg equation is one of the universal equations used in the descrip-
tion of pattern formation in spatially extended dissipative systems (see [2]), which arise
in the study of convective hydrodynamics [3], plasma confinement in toroidal devices [4],
viscous film flow and bifurcating solutions of the Navier-Stokes [5]. Note that the usual
Swift-Hohenberg equation [3] is recovered for b = 0. The additional term b|u,|?, reminis-
cent of the Kuramoto-Sivashinsky equation, which arises in the study of various pattern
formation phenomena involving some kind of phase turbulence or phase transition (see
[6-8]), breaks the symmetry u — —u.
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During the past years, many authors have paid much attention to the Swift-Hohenberg
equation (see, e.g., [3, 9, 10]). However, only a few people have been devoted to the mod-
ified Swift-Hohenberg equation. It was Doelman et al. [1] who first studied the modified
Swift-Hohenberg equation for a pattern formation system with two unbounded spatial
directions that are near the onset to instability. Polat [7] also considered the modified
Swift-Hohenberg equation. In his paper, the existence of a global attractor is proved for
the modified Swift-Hohenberg equation as (2)-(4). Recently, Song et al. [2] studied the
long time behavior for the modified Swift-Hohenberg equation in an H* (k > 0) space. By
using an iteration procedure, regularity estimates for the linear semigroups and a classi-
cal existence theorem of a global attractor, they proved that problem (2)-(4) possesses a
global attractor in the Sobolev space H* for all k > 0, which attracts any bounded subset
of H*(Q2) in the H*-norm.

The spectral methods are essentially discretization methods for the approximate so-
lution of partial differential equations. They have the natural advantage in keeping the
physical properties of primitive problems. During the past years, many papers have al-
ready been published to study the spectral methods, for example, [11-14]. However, for
the other boundary condition, can we also use the Fourier spectral method? The answer
is “Yes! Choose a good finite dimensional subspace Sy (here, we set Sy = span{sinkmx; k =
0,1,...,N}), we can also have the basic results for the orthogonal projecting operator Py.

In this paper, we consider the Fourier spectral method for the modified Swift-Hohenberg
equation. The existence of a solution locally in time is proved by the standard Picard itera-
tion, global existence results are obtained by proving a priori estimate for the appropriate
norms of u(x, t). Adjusted to our needs, the results are given in the following form.

Theorem 1.1 Assume that ug € Hz(0,1) = {v;v € H*(0,1),v(0,t) = v(1,£) = 0} and b* < 8k,
then there exists a unique global solution u(x,t) of the problem (2)-(4) for all T > 0 such
that

u(x,t) € L*(0, T; H;(0,1)) N L*(0, T; H*(0, 1)).

Furthermore, it satisfies

(%7 V) + k(uxxy Vxx) - Zk(btx, Vx) + )/(M, V)

+b(Jusl*,v) + (4,v) =0, Vve HZ(0,1), (5)

(u(~,0),v) = (up,v), VYve HE(O,I).

This paper is organized as follows. In the next section, we consider a semi-discrete
Fourier spectral approximation, prove its existence and uniqueness of the numerical solu-
tion and derive the error bound. In Section 3, we consider the full-discrete approximation
for problem (2)-(4). Furthermore, we prove convergence to the solution of the associated
continuous problem. In the last section, some numerical experiments which confirm our
results are performed.

Throughout this paper, we denote L2, L?, L>°, H* norm in  simply by || - ||, || - llps I oo

and || - || y«.
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2 Semi-discrete approximation
In this section, we consider the semi-discrete approximation for problem (2)-(4). First
of all, we recall some basic results on the Fourier spectral method which will be used
throughout this paper. For any integer N > 0, introduce the finite dimensional subspace of
HZ(0,1)

Sy = span{sinkmx; k=1,...,N}.
Let Py : L?(0,1) — Sy be an orthogonal projecting operator which satisfies

(u—Pyu,v)=0, VveSy. (6)

For the operator Py, we have the following result (see [13, 15]):

(B1) Py commutes with derivation on HZ(0,1), i.e.,
Pty = (PNt)xx, VY € HE(0,1).
Using the same method as [15, 16], we can obtain the following result (B2) for problem

(2)-(4):

(B2) For any real 0 < u < 2, there is a constant ¢ such that
”u_PNu”pLECNM_2”uxx”1 VMGH%(Oxl)

Define the Fourier spectral approximation: Find ux(£) = Zﬁl a;(t) cosjmx € Sy such that

ou
<a_;\!, VN> + K(Unxs V) + 2k (N Vies) + aluin, Vi)

+b(|unel®, vn) + (43, vn) =0, Vv €Sy (7)

for all T > 0 with u5(0) = Pyisg.
Now, we are going to establish the existence, uniqueness etc. of the Fourier spectral ap-

proximation solution uy/(¢) for all T > 0.

Lemma 2.1 Let uy € L2(0,1) and b* < 8k, then problem (7) has a unique solution uy(t)
satisfying the following inequalities:

T
2 2 2 2
lun®)]” < cilluol®, f | ()| dT < € lluto 1%, ®)
0
where ¢ = 127 and ¢ = %for all T>0.

Proof Set vy = cosjrx in (7) for each j (1 <j < N) to obtain

d
240 =f(@(®),a0),....an(0), j=12,...N, (9)
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where all f; : RN — R (1 <j < N) are smooth and locally Lipschitz continuous. Noticing
that ux(0) = Pyug, then

a;(0) = (ug,cosjmrx), j=1,2,...,N. (10)
j J ]

Using the theory of initial-value problems of the ordinary differential equations, there is
a time Ty > 0 such that the initial-value problem (9)-(10) has a unique smooth solution
(a1(2),...,an(t)) for t € [0, Tn].

Setting vy = uy in (7), we have

1d
5%””N”2 + kel * + w3 < lallln||® + 2k x|l + 1B] (6], ). (1)
Noticing that
> bl . P 2
|b|(|74Nx| :MN) = _T(MN, MNxx) < llunlly + E”uNxx”

and
k
2kl|une|® = =2k (s, tnns) < 5 llanwx|* + 2K 2an |1

Summing up, we get

d b?
EIIMNII2 + (k— §) lonsell® < 2(al + 2k) e 1. 12)

Using Gronwall’s inequality, we deduce that
2
e 1 < €199 |y 0)| < €0 297 Juag |2 = e o |

Integrating (12) from O to ¢, we derive that

2 b2 T T
llun 1> = [ un (0) +(k—§)f ||uNxx||2dts(2|a|+4k)/ llun || dit.
0 0

Hence

b2 T
(/ - E)/ et 1> dt < 2(|al + 2K)er Tl ol + Il o]l
0

From the above inequality, we obtain the second inequality of (8) immediately. Therefore,
Lemma 2.1 is proved. O

Lemma2.2 Let ug € HY(0,1) and b* < 8k, then the solution ux(t) of problem (7) satisfying

T
@] < 2 / e i < € 13)
0

forall T > 0, where ¢, and c), are positive constants depending only on k, a, b, T and | uo|| 1.
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Proof Setting vy = unyy in (7), we obtain

2 dt
Notice that

(uil’ Z'iNxx) = —(BM?\,MN,C, uNx) = _BHMNMNx”2 <0
and

k

2k||uNxx||2 = =2k (Uns Unwx) < Z ”MNxmc”2 + 4||“Nx||2‘

On the other hand, by Nirenberg’s inequality, we have
5 7
lunslla < Cllstnsnx | 72 [l2en 1172,

where C is a positive constant independent of N. Hence

2 D] 2 . 10l 4
16] (|24nx |, e 57””Nxx” + TIIMNxIIA;
2
2 |b| 2 4 5 7
E_”uNxxx” + ”uNx” +C ”uNxxx” 3 ”uN” 3
8 2k
k LS 2
EZ”MNxxx” + 2—k||MNx|| +c(llunl)
L 2
leluNxxx“ + E”L‘Nx” +C(6l,k, T, ”uO”)

Summing up, we get

d b?
a”UNxHZ + ke |* < <2|a| +8+ ;) lunall® + 2¢(a, k, T, lluo ).

Using Gronwall’s inequality, we immediately obtain

2ke(a, k, T, ||uoll)
2kc(a, k, T, || uo||)

b2
el = €5 g (0) +
b2
< P gy |1 + < e (k a b, T, luolln).-
Integrating (16) from 0 to ¢, we obtain

T 9 1 bZ )
HuNxxx(r)” dt < —(|2lal +8+ — Jco T +2cT + |luxoll
0 k k

= C/z(k, a, b; T! “MO”H])

Then Lemma 2.2 is proved.

d
2 2 2 2 2 3
= NI+ Kl unme|” + @l unell” = 2K ||t +b(|uNx| 714Nxx) + (uN! uNxx)'

(14)

(15)

(16)

Page 5 of 19


http://www.advancesindifferenceequations.com/content/2013/1/156

Zhao et al. Advances in Difference Equations 2013, 2013:156 Page 6 of 19
http://www.advancesindifferenceequations.com/content/2013/1/156

Lemma2.3 Letuy € H3(0,1) and b* < 8k, then the solution un(t) of problem (7), satisfying

T
e @) < 5, / () |2 i < & 17)
0

for all T > 0, where c3 and ¢y are positive constants, depending only on k, a, b, T and

llo |22

Proof Setting vy = Upnyxxx in (7), we obtain

2 2
= — |l ttnx ™ + Kl e |

2dt

2 2 2 3
= 2| tnwnx |7 — all b I” = b(|uNx| :uNxxxx) - (MN’ uNxxxx)' (18)
Using Nirenberg’s inequality, we obtain
& 1 1 1
lunlle < Cllunmnnell 2 llun ] 12, lonella < Cll Nz | 2 260|172,

where C > 0 is a constant depending only on the domain. Therefore

k
2 2 4
|b|(|”Nx| ruNxxxx) =< E”uNxxxx” + E”I/{Nx”z}

k
2 2
< — | Unwenl” + [t ||~ + C((l, kb, T, ”uO”Hl)

=10 10!

and

k 5
3 2 6
(MN; uNxxxx) < — ot | + llunllg

— 10 2k

2 2
< —|lu + —|lu +cla, k, T,||uoll).
=10 ” Nxxxx” 10 " Nxxxx” ( EEAT I ] ” 0”)

On the other hand, we have

k
2k||uNxxx”2 = _Zk(uNxx; uNxxxx) = E ”MNxxxx”2 + ]-OHMNxx”2

Summing up, we get
d 2 2 2
E”uNxxH +k||MNxxxx” =< (20 +2|ﬂ|)”uNxx” +4C(6l,k,b, T, ”uO”Hl)‘ (19)

Using Gronwall’s inequality, we have

2¢(a, k,b, T, ||uol 1)
10 + |a|

2¢c(a, k,b, T, || uo || 1)
24 0lH _ c3 (ﬂ,k, bT, ||uxx0||)' (20)
10 + |a|

”L‘Nxx”2 = 6(20+2|u‘)t||uNxx(0)”2 +

< e(20+2|u\)T

2250
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Integrating (19) from O to ¢, we obtain

T
1
/ Junteee(0) "t < 2 (20 + 2lal)es T + 4Te(a, ko b, T, st 1) + e 0)])
0
=cy(k,a,b, T, |luo |l 2).
Therefore, Lemma 2.3 is proved. d

Remark 2.1 Basing on the above Lemmas 2.1-2.3, we can get the H?-norm estimate for
problem (7). Then, by Sobolev’s embedding theorem, we immediately conclude that

sup [un(x,8)| = |un(x,t)|, < ca(ka b, T, lluollz), (21)
x€[0,1]
sup |uns(x,8)| = || s (% t)||oc <cs(ka,b, T, lluoll2). (22)
x€[0,1]

Now, we give the following theorem.

Theorem 2.1 Suppose that u, € HE(O, 1) and b* < 8k. Suppose further that u(x,t) is the
solution of problem (2)-(4) and uy(x, t) is the solution of semi-discrete approximation (7).
Then there exist a constant ¢ depending on k, a, b, T and |\ug|| 2 such that

||u(x, t) — un(x, t) || < c(N‘2 + ||u0 —un(0) ||)
Proof Denote ny = u(t) — Pyu(t) and ey = Pyu(t) — un(t). From (2) and (7), we get

(ene V) + k(enwxs V) — 2k (enx V) + alen, vN)

+ b(|ux|2 - |uNx|2,vN) + (u3 —u, vn) =0, Vwy € Sy. (23)

Set vy = ey in (23), we derive that

d 2 2 2 2 2 2 3_ .3
EE”eN” + kllenwell® = 2kllen|* — allen||® = b(|uxl® — lunel* en) = (4” — uy, en).

By Theorem 1.1, we have

sup |u(x,t)| < co(k a, b, luo ).
x€[0,1]

Then

—(® - u3, en)
= —((eN + nN)(u2 + uuy + ujz\,),eN)

2 2 2
< sup (Jul® + [uun| +lun|?) - (lenll® + Innlllexl)
x€[0,1]

1 1
< (6 + cace + c§)<neN||2 + el + EnnNnZ).
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By Theorem 1.1, we have

Sl[lp]|”x(xr D <cr(kabluole)  |uw@® |’ <cs(kab luole)- (24)
x€[0,1

Using Sobolev’s embedding theorem, we have

sup |enx| < C'llenllz2 < Cllenll, (25)
x€[0,1]

where C’" and C are positive constants depending only on the domain. Then, using the

method of integration by parts, we have

_b(|ux|2 - |uNx|27 eN) = _b((eNx + an)(th + MNx): eN)
= b((en + 1) (hx + ne), Envc)

+ b((eN + NN ) (U + Unixx), eN)' (26)
Hence, by (24)-(26) and Holder’s inequality, we get

—b(luxl® = ||, en)

< |b| sup |uy +uny| - (llenllllensl + lnnlllensI)
x€[0,1]

+1b| sup len| - llex + nn Il ll2tx + snaxl
x€[0,1]

< |b| sup |uy + unyl - (llenll llenzll + Il llenzll)
x€[0,1]

+ Clblllenxl - llen + nn Il shxx + Unes |

1 1
=(e7 + C5)|b|<||eNx”2 + Ellez\zll2 + §||77N||2>

1 1
+2C(c3 +c)|bl( ellenxl* + —llen I* + —Illnn I
2e 2e

1 1 1
<(c7 + Cs)|b|<8||€1vxx||2 + (5 + 5) lleall? + 5||nN||2>

1 e 1
+2C(c3 + )bl ellenssl® + | — + = Jllex I + —llnnll* ),
2e 4 2e

where ¢ € R* is a constant. Summing up, we get

d
%newnz +2(k = [(c5 + ¢7)1b] +2C(cs + c3)|bl]€) lenax I

2 2 2
< 4kllen]l” + 2collen [|” + 2cro Il

= —4k(en, enxx) + 2¢ollen|* + 2cio lInn 1?

2 4k> 2 2
< ellenmxll” + T+2C9 llex|l” + 2ciollnn ]l (27)

Page 8 of 19


http://www.advancesindifferenceequations.com/content/2013/1/156

Zhao et al. Advances in Difference Equations 2013, 2013:156 Page 9 of 19
http://www.advancesindifferenceequations.com/content/2013/1/156

where

3 1 1 1 ¢
co=ly|+ E(Ci +CaCq + Cg) + <§ + E)“S +c7)|b| + <E + E)C(Cg +cg)|bl,

1 1 1
Clo = E(Ci +C4C6 + cé) + 5(07 +¢5)|b] + —Cl(cs + cg)|b|.
e
From Theorem 1.1 and (B2), we have
Inll < N llueell < eni(k,a, b, T, ol 2) N> (28)

Then a simple calculation shows that

d
EHEN”z +[2(k = [(cs + c7)1B] +2C(cs + cs)1bl]e) — &]llenll®

4k* 4> _
< (7 + 269) lex !l + 2ciolnnll* < (T + 209) lexl* + 2c10¢5, N 7%, (29)

where ¢ is small enough, it satisfies 2(k — [(c5 + ¢7)|b| + 2C(c3 + cg)|b|]e) — € > 0. Therefore,
by Gronwall’s inequality, we deduce that

(2

2
lew |12 < 2907 ey (0)]* + —AL N4,

1 +c9)e (30)

Hence, the proof is completed. d

3 Fully discrete scheme
In this section, we set up a full-discretization scheme for problem (2)-(4) and consider the
fully discrete scheme which implies the pointwise boundedness of the solution.

Let At be the time-step. The full-discretization spectral method for problem (2)-(4) is
read as: find u’}\, €Sn (=0,1,2,...,N) such that for any vy € Sy, the following holds:

S " "
(%, VN> + k(ux;x, vax) - 2k(u1,\+,x2 ) VNx)

_/‘+% _j+% 2 _1+% 3 _
va(iydvy) + (@) vv) + (@) ) =0, a

1 ., .
with ux(0) = Pyuo, where @y ” = 1(ud), + ).

The solution ”ﬁv has the following property.

Lemma 3.1 Assume that ug € H3(0,1) and b* < 8k. Suppose that ”ﬁv is a solution of prob-
lem (31), then there exist positive constants cia, €13, C1a, C15, C16 depending only on k, a, b, T
and ||\ug |2 such that

l ] < il sas [l <
Furthermore, we have

sup |u’N| <, sup |u’Nx| < Cl6.
x€[0,1] x€[0,1]
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Proof It can be proved the same as Lemmas 2.1-2.3. Since the proof is so easy, we omit
it. O

In the following, we analyze the error estimates between numerical solution u’ and
exact solution u(t;). According to the properties of the projection operator Py, we only
need to analyze the error between Pyu(t;) and u’ Denoted by / = u(ty), e =Py — u’N
and 1/ = o/ — Pyi/. Therefore

uj—L/}\,zn7+ef.

If no confusion occurs, we denote the average of the two instant errors " and "*! by &"*
j+1
where g7t = ¢+ 5 " On the other hand, we let n’+2 = ”]“71

Firstly, we give the following error estimates for the full dlscretization scheme.

Lemma 3.2 For the instant errors €*' and e, we have
j+1 j
o117 < 1 w2 ) - 2 )

¥ %(At)‘L/] e 1> e + A3 |, (32)

5

Proof Applying Taylor’s expansion about b1 using Holder’s inequality, we can prove the
lemma immediately. Since the proof is the same as [11], we omit it. O

Taking the inner product of (2) with éj“’%, and letting ¢ = , we obtain

by
(2, 58) + (kids?,80) — 2k (s, 7) + a(uh, )
b((2)% @) + (WD), &) =0,

Taking vy = &7 in (31), we obtain

j+1 i | | |
(Beet) ekd ) k@it ) s et o)

Fb(@A ) ¢ (@) 2 =0

Comparing the above two equations, we get

'+1 I/[HI MI 1
(”]t Y )
k(i ALY k(T ) a(th — i
B - @) - () - ) ),

So, we investigate the error estimates of the five items on the right-hand side of the previ-

ous equation.
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Lemma 3.3 Suppose that uy € H>(0,1) and b* < 8k, u is the solution for problem (2)-(4)
and u’N is the solution for problem (31), then

_ Z k(At)®
k(uﬁc; u}]f,xi,eﬂ;)_——ﬂ 2|| 92 /. ||uxm||2dt-

Proof Using Taylor’s expansion, we obtain
. i1 At j+s tj+%
W=u"2 - ot (t - t)uy dt,
l

. 1 At il bl
W=t =) +/ (tj — t)uy dt.
t

Hence

1 : : ; 1 t'+1 tj+1
—(u’+u’+1)—u’+% == /l 7(t—t,')uttdt+/
2 2\Jy t

Jt

]

(t] — t)utt dt> .

Nl

By Holder’s inequality, we have

2
11
A) +1
Usn” — E(u’ + Ul

Ll b1
“( 2(t- tj)u”dn/ (lf/—t)uttdt)
tj+% XX

(AL)® /%1 5
< | sz ||~ 2.
96 . xXxtt

]

1"‘2 _j+

Noticing that (7", exxz) = 0. Therefore

j j+1 j+1 j j+1 j
_ I/*% —L_/+% —/*% _ L/+% _ Iz{;x + ugfx —i*% _ Mg”‘ + ll;x _ u]Nxx + Z'ilex —i*%
( XX ‘Noey? Exx )— XX 9 » Exx ) ) » Exx

I/Jr% uicx + ugcx
xx T

257 - (e + 22,252

AL)3 [hn % i1 i+l
g(l / / ||uxm||2dt> (3] - (. d8) - |82 |
i

96
(At)? / 1 _jit
= ”uxxtt” dt — H : ”
192 J,
Then Lemma 3.3 is proved. O

Lemma 3.4 Suppose that uy € H2(0,1) and b* < 8k, u is the solution for problem (2)-(4)
and L/N is the solution for problem (31), then

(el -t 2
3
_||-”2|| +192k @2 |* + 192ken N~ + = kA t) / loter* dt,
b

where cy; is the same constant as (28).
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Proof Noticing that ||7/*2 || < ¢N~2. Hence
j+y s g
2 (Mx uNx2 ) €x )

—2(d iy )

.1 a1l uj+1+lxlj I/{i+1+ ' _j+d
-_z<uf+z_uf+z,e<;2>-z( AL L

) j+1 J 1 Jj+1 J +1
5214’*%—” +uw ”E/,;%H+2 12 2+u u’ +u’ xeH
t/_+% 1 _j
<2 / (t — )z dt + / (L1 — )y dt‘ ||ex,¢2 [ + 2||e’*2 + ?7”2 [ ||e,¢x2 I
tj t]_+%
7

At [l
<2( G [ ) [ o |10 4
vl

i+l 4 0 1,2 (At)3 tjs1
<3e|dn? |IP+ =(|&@ 2| + cuN?) + —= Uy ||* dt.
<l 20 )+ G [ b
In the above inequality, setting ¢ = 41—8, we get the conclusion. O

Lemma 3.5 Suppose that uy € H3(0,1) and b* < 8k, u is the solution for problem (2)-(4)
and L/N is the solution for problem (31), then

_a(uﬁ% -’* e’*)

12 . lal(ap?® [hn
<4la||&* 2| +lalenN"* + ——— ll2tee || it
384 J,

j
where c1; is the same constant as (28).

Proof We have
(u/+ I/*E b )

4 VARV R [7ALNSY RS G
:—a<u’+2—T,e“2 +a T—L/Nz,e“?

I

. Lo
<lal|uh - S [8 ] +1a y—ﬁ’f” &3]
bl
=l fl+2(t_tj)uttdt+] (1+1—t)undtH||el+§”+|¢l|||e]+7+77/+7H||e’+z||
ti t}+%
1
2

A3 [in , - ~ y
§|a|<(96) /’ ||uﬂ||2dt> ||el+%H+2|a|(He;+%||2+”n,+%” He;ar%”)
i

12 4 lal(Ag)?® [in
<4la||&*2|" +lalenN~* + ——— N2t || it
384 J,

Then Lemma 3.5 is proved. O
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Lemma 3.6 Suppose that ug € H2(0,1) and b* < 8k, u is the solution for problem (2)-(4)
and u’N is the solution for problem (31), then

—b((ﬂ%f—(z/;%)%a*%)

- 16 ”_1+2 ” C7|b| At) /j ||Mxtt||2df+ czenN~* + o8 ||é”% 2,

i

where C € R*, c17 = ¢7|b| + c16|b| + C|b|(cg + c1a) and ci1g = ¢7|b| + c17 + 80,{17

Proof Notice that

sup |, t)| <7, |ua@t)| <o [t < sup | .| < 6.
x€[0,1]

Hence
b ) - @) 7))
() (45
= Uy > ————— ), &2
2
j+1 j+1 j
b((”l il N)(L i ~iil)et)
1 j+1 1 j+1 j .
b(<b/2 | +L/)<ugi o 2+u&),y'+2>

() (g k)

i j+1 ’ 4l ALY 4
+b((bdmz+bdxx+w’mx;b/m)<u s iy ;“N),aﬁ%). (33)

We have used the method of integration by parts in (33). Then

() - (@) )

1 1 u/+1
<|b| sup |u? + A 3
x€[0,1] 2
j+1 M/ 1 j+1 j L{i+l I/[’ 1
el [t + + sl
+|b| sup L7 - N NG I
x€[0,1] 2
i j+1 j ; i j+1
o1y | e + e g, + AV AV
+1b| sup [&*7]- ‘ T TNex N - N
x€[0,1] 2 2 2 2
bl it _ipl
[ - udes [ G- D] 24
t} tj+%

) ) .t
+ (crlb| + ciolb] + Clbl(cs + cia)) @72 + 72 ||| &2 |

(Ap?
96

<crlb) / Vtsall? it + oo |[75 > + |52 |

&
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ven([E "+ |72 ) « 21

+ b At3
”_1 2” C7| | ) / ||uxtt||2dt+<C7|b|+C17+—>||€1+2” +Cl7C11N

4

Setting ¢ = ¢ in the above inequality, we obtain the conclusion.

Lemma 3.7 Suppose that uy € H:(0,1) and b* < 8k, u is the solution for problem (2)-(4)

and L/II\, is the solution for problem (31), then

, 3ty
—((uj*%)3 - (ﬁ}]\;%)g,éﬁ%) < (32 /1 1 llutee |1 ddt + cro HEH% ||2 +cpoenN~%,
t,

J

9¢2
where 1o = —® + 3(cZ + CoC1a + CT), €20 = Cp + CoC12 + Ciy.-

Proof Notice that

sup |u’| < cg, sup |1/N‘ <.
x€[0,1] x€[0,1]
Hence

() - (@) )

() () )

. 1wt v W\ . Wl v
< sup (u’+%)2+u’+%u i +(” +u) u’+%—7+u ”el+ H
x€[0,1] 2 2
1 4\ 2 YAy Ay )
rsup |5 ) S || - e
xe[0,1] 2 2 2

< 3cé

tjv1
J+ 4 _irl
/ 2 (t - )utt dt + / (tj+1 —t)uy dt” ||el+2 “
t t/‘+%

j
(2 + cocn + ) |72 + 772 || @72 |

(At)?

tis1 92 1
< 96 /; ot ||? dt + <Tﬁ +3(cé+c6clg+cfz))”e’+§H2

+(cg + coc12 + ¢ ) | T ||2

3
_ (&
- 96

fjs1 ) 19 4
/ lutee |l dt + cro|| @2 || * + cooenN~
i

Then Lemma 3.7 is proved.

Now, we obtain the following theorem.

Theorem 3.1 Suppose that ug € H3(0,1) and b* < 8k, u(x,t) is the solution for problem

(2)-(4) satisfying

uel™(0,T;H*(0,1)),  uy€L?(0,T;H*0,1)),  uy €L*(0,T;L%(0,1)).
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Suppose further that u’& is the solution for problem (31). Then if At is sufficiently small,
there exist positive constants cy depending on k, a, b, T, |\ug|| 2 and cyp depending on k,
a, b, T, luollye, [y Nl dt and [ e dt such that, forj=0,1,2,...,N,

1] < ea8? + []) + cataer
Proof By Lemmas 3.2-3.7, we obtain
[ 17 < €]+ aceas ([ + ] + N7*)

i1
4 2 2 2 2
+ (Af) 024/ (||Mtt|| F 1 thge |7+ e |7 + || 282 | )dt,
i

where ¢;3 and ¢y4 are positive constants depending only on &, 4, b, T and ||ug|| 2. For At

being sufficiently small such that cps At < %, setting ca5 = 2(¢23 + cp4), We get
[ < L+ ers A0 €] + cas (AN + (A0 B),

where
j it 2 2 2 2
B 2/ (||Mtt|| + [otwee 1™+ Notee |7 + N 2tgse | )dt'
4

Using Gronwall’s inequality for the discrete form, we have

J
| |* < eexstirnAe (H | + 25 (jAtN4 +(Ap)* ZB’)).

i=0

Direct computation shows that

J tis1
i 2 2 2 2
E BlS/ (”utt” + e 17+ N2tz |+ {28522 | )dt'
: 0
i=0

Thus, Theorem 3.1 is proved. g
Furthermore, we have the following theorem.

Theorem 3.2 Suppose that u, € Hé(O,l) and b* < 8k, u(x, t) is the solution for problem
(2)-(4) satisfying

uel™®(0,T;H*(0,1)),  wuy€L®(0,T;H*(0,1)),  uy € L*(0,T;L%(0,1)).
Suppose further that ”5\1 €Sy (j=0,1,2,...) is the solution for problem (31) and the initial
value u?\, satisfies ||€°|| = ||Pnuo — u?\[” < ¢N72||\tyy||. Then there exist positive constants
¢ depending on k, a, b, T, |ug |2 and ¢’ depending on k, a, b, T, ||uo|| 112, fOT st 17, dt,

foT 2t || At such that

”u(x,tj) - L/N” <IN7?2+(Ap)% j=0,1,2,...,N.
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4 Numerical results

In this section, using the spectral method described in (31), we carry out some numerical
computations to illustrate out results in previous section. The full-discretization spectral
method is read as: For v; =sinlnx, [ =1,...,N, find

N
u;’\,:E o' sininx, i=1,...,N,
i-1

such that (31) holds.
Noticing that under the inner product (-, ), {sinizx,i=1,2,...} is the system of orthog-
onal functions, then

(34)

1 . .
. . 0, i#i,
Siniyx - Sinipx dx = 1
0 2

, =1

Therefore, the terms of (31) are

iy el
At N

1 k. .
k( I\;xx’lex) = E(u]ij + Nxx’lex) =

(Im)* ( fl +o¢§),

k(2 v = k(e + gy vies) = —~ (P (& + ),

w|>\- R

alyt o) = 5 (45 + o) = % (o] + ),
_Jj l h +
b((u]]\;xz)z’w) 4(( Ni+ Nx)z’vl)

_ ]+1 1+1 J ~J ]+ j
= E plpzrr apa + o, o+ 20 p2)$p1p21
191.172 =1

and
1 XN
— j+1_j+1 i+l j+1_j+1 j J+l i jo
-3 Z ((xpl aplalt 30 ot ol + 3, o) +ap1ap2ap3)np1p2p3h
where
1
Epipal = / COSp17TX - COS porx - sinlmx dx,
0
1
Npipopsl = / Sinp17wx - Sinpywx - sinpswx - sinlwx dx.
0

Thus, (31) can be transformed as

J¥l
o -« 1 N b 1
lthl ( ()" ~ —(ln) 4)(04 v+ oo g01=0, (35)
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where/=1,...,N, and

j+1 _j+1 j+1
E pipa’( a’ ay +a;,1a;72+2o/ oc’ )ity

pLp2=1
N
_ J+l_j+1 ]+1 ]+1 /+1 J J¥l j Jj o~
or= Z (CTAARTAEE A T AT +O‘p1°‘p2°‘p3)nl’1p2p3’
p1.p2.p3=1

Ifaf (k=1,2,...,N) is known, there exists an N variable nonlinear system of equations
for ozfl (I=1,2,...,N) which can be seen as

ﬁ((x/’Jrl)

J+1
| | <o

(e
We use the simple Newton method to seek the solutions. Initialization yields
oy = (), d.raty) " (36)
The iterative formulation is as follows:

j+1 j+1
o/k+1 =d )+Aa(k),

37
Pl Ad + B =0, k=012..., (37)
where F’(a ) is the N x N order Jacobi matrix for F(o/*!) when o/*! = aé(*))l
j+1 1y
(e i)
Flg)=| &~ & | (38)
31fN( A T aNfN(a;g)l)

j+1
(k+1)*
As an example, we choose k =2,a=1,b =1, ug = (1 - x)°x°, At = 0.0005, N = 32, and

get the solution which evolves from ¢ = 0 to ¢ = 0.025 (cf. Figure 1).

. j+1 j+1 . . i
Give accuracy € > 0, when ||oz€k+1) - oté,() || < €, stop the iteration, /"' ~ «

Figure 1 Expanded property of solution when {ime step=0.001/2
N =32, At=0.0005.
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Table 1 Errors of different time steps at t = 0.1

err(0.1,At]
At err(0.1, At) W
0.001 16808 x 1070 1.6808
0001 x 1 22439 x 1077 0.8976
0.001 x i 26068 x 1078 04171
0001 x § 2.8494 x 1079 0.1824
0001 x = 28754 x 10710 0.0736

o

Table 2 Errors of different basic function numbers at t =0.1

N err(0.1, Atp) %
24 2.28708 x 10710 132 x 1077
28 13588 x 10710 1.07 x 1077
32 7.32182 x 107" 750 x 1078
36 3.87087 x 107 502 x 1078
40 203256 x 107 325% 1078

Now, we consider the variation of error. Since there is no exact solution for (2)-(4) known
to us, we make a comparison between the solution of (31) on coarse meshes and a fine
mesh.

Choose At =0.001,0.001 x ,0.001 x ,0.001 x £,0.001 x 15,0.001 x , respectively,
to solve (31). Set " (x, 0.1) as the solution for Afyi, = 0.001 x % Denote

1
2

1
err(o.l,At)=( / (uﬁ,(x,o.l)—u]“;i"(x,o.n)zdx) , k=1,2,...,6. (39)
0

Then the error is showed in Table 1 at £ = 0.1.
On the other hand, choose N = 24,28,32,36,40, Aty, = 0.001 x %, respectively, to solve

(31). Then the error is showed in Table 2 at £ = 0.1.

—e”((g'tl)’f 9 of Table 1 is monotone decreasing along

with the time step’s waning, the third column % of Table 2 is monotone decreasing

It is easy to see that the third column

along with N’s magnifying. Hence, we can find positive constants C; = 1.6808, C, =1.32 x
1077 such that

01, At
erO-LAD o 4146
(Ar)?
and
err(0.1, At
% <C, N =24,28,32,36,40.

Thus, the order of error estimates is O((At)? + N~2) proved in Theorem 3.2.
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