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Abstract
In the present paper, we deal with the existence and multiplicity of homoclinic
solutions of the second-order self-adjoint discrete Hamiltonian system

�[
p(n)�u(n – 1)

]
– L(n)u(n) +∇W(n,u(n)) = 0.

Under the assumption thatW(n, x) is of indefinite sign and subquadratic as |x| → +∞
and p(n) and L(n) areN ×N real symmetric positive definite matrices for all n ∈ Z,
and that

lim inf|n|→+∞

[
|n|ν–2 inf|x|=1(L(n)x, x)

]
> 0

for some constant ν < 2, we establish some existence criteria to guarantee that the
above system has at least one or multiple homoclinic solutions by using Clark’s
theorem in critical point theory.
MSC: 39A11; 58E05; 70H05

Keywords: homoclinic solution; discrete Hamiltonian system; critical point; Clark’s
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1 Introduction
Consider the second-order self-adjoint discrete Hamiltonian system

�[
p(n)�u(n – )

]
– L(n)u(n) +∇W

(
n,u(n)

)
= , (.)

where n ∈ Z, u ∈ R
N , �u(n) = u(n + ) – u(n) is the forward difference operator, p,L :

Z → R
N×N and W : Z × R

N → R. As usual, we say that a solution u(n) of system (.)
is homoclinic (to ) if u(n) →  as n → ±∞. In addition, if u(n) �≡ , then u(n) is called a
nontrivial homoclinic solution.
In general, system (.) may be regarded as a discrete analogue of the following second

order Hamiltonian system:

d
dt

(
p(t)u̇(t)

)
– L(t)u(t) +∇W

(
t,u(t)

)
= . (.)

Moreover, system (.) does have its applicable setting as evidenced by monographs [,
]. System (.) can also be regarded as a special form of the Emden-Fowler equation ap-
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pearing in the study of astrophysics, gas dynamics, fluidmechanics, relativisticmechanics,
nuclear physics and chemically reacting system, andmany well-known results concerning
properties of solutions of (.) are collected in [].
In papers [–], the authors studied the existence of homoclinic solutions of system (.)

or some of its special forms under the following superquadratic growth (AR)-condition on
W : there is a constant μ >  such that

 < μW (n,x)≤ (∇W (n,x),x
)
, ∀(n,x) ∈ Z×R

N \ {},

or other superquadratic growth conditions, where and in the sequel, (·, ·) denotes the stan-
dard inner product in R

N and | · | is the induced norm.
WhenW (n,x) is of subquadratic growth at infinity, Tang and Lin [] recently established

the following results on the existence of homoclinic solutions of system (.).

TheoremA [] Assume that p(n) is anN ×N real symmetric positive definite matrix for
all n ∈ Z, and that L and W satisfy the following assumptions:

(L) L(n) is anN ×N real symmetric positive definite matrix for all n ∈ Z, and there
exists a constant β >  such that

(
L(n)x,x

) ≥ β|x|, ∀(n,x) ∈ Z×R
N ;

(W) For every n ∈ Z,W is continuously differentiable in x, and there exist two
constants  < γ < γ <  and two functions a,a ∈ l/(–γ)(Z, [, +∞)) such that

∣∣W (n,x)
∣∣ ≤ a(n)|x|γ , ∀(n,x) ∈ Z×R

N , |x| ≤ 

and

∣∣W (n,x)
∣∣ ≤ a(n)|x|γ , ∀(n,x) ∈ Z×R

N , |x| ≥ ;

(W) There exist two functions b ∈ l/(–γ)(Z, [, +∞)) and ϕ ∈ C([, +∞), [, +∞))
such that

∣∣∇W (n,x)
∣∣ ≤ b(n)ϕ

(|x|), ∀(n,x) ∈ Z×R
N ,

where ϕ(s) =O(sγ–) as s → +;
(W) There exist an n ∈ Z and two constants η >  and γ ∈ (, ) such that

W (n,x) ≥ η|x|γ , ∀x ∈R
N , |x| ≤ .

Then system (.) possesses at least one nontrivial homoclinic solution.

Theorem B [] Assume that p(n) is anN ×N real symmetric positive definite matrix for
all n ∈ Z, and that L and W satisfy (L), (W), (W) and the following assumptions:
(W) There exist two constants η >  and γ ∈ (, ) and a set J ⊂ Z withm >  elements

such that

W (n,x)≥ η|x|γ , ∀(n,x) ∈ J ×R
N , |x| ≤ ;
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(W) W (n, –x) =W (n,x), ∀(n,x) ∈ Z×R
N .

Then system (.) possesses at least m distinct pairs of nontrivial homoclinic solutions.

When L(n) satisfies (L) in Theorems A and B, assumption (W) is optimal in some
sense, essentially, the summable functions a,a ∈ l/(–γ)(R, [, +∞)) are necessary; see
Lemma . in Section .
Now a natural question is whether the conditions on the potentialW (n,x) can be further

relaxed when one imposes stronger conditions on L(n)?
In the present paper, we give a positive answer to the above question. In fact, we employ

Clark’s theorem in critical point theory to establish new existence criteria to guarantee
that system (.) has at least one or multiple homoclinic solutions under the following
assumption instead of (L):

(Lν ) L(n) is anN ×N real symmetric positive definite matrix for all n ∈ Z, and there exists
a constant ν <  such that

lim inf|n|→+∞

[
|n|ν– inf|x|=

(
L(n)x,x

)]
> .

Our main results are the following two theorems.

Theorem . Assume that p(n) is an N × N real symmetric positive definite matrix for
all n ∈ Z, that L satisfies (Lν ) and W satisfies the following assumptions:

(W′) There exist constants max{, /( – ν)} < γ < γ <  and a,a ≥  such that

∣∣W (n,x)
∣∣ ≤ a|x|γ + a|x|γ , ∀(n,x) ∈ Z×R

N ;

(W′) There exists a function ϕ ∈ C([, +∞), [, +∞)) such that

∣∣∇W (n,x)
∣∣ ≤ ϕ

(|x|), ∀(n,x) ∈ Z×R
N ,

where ϕ(s) =O(sγ–) as s → +, max{, /( – ν)} < γ < ;
(W′) There exist n ∈ Z and constants δ,η >  and max{, /( – ν)} < γ <  such that

W (n,x)≥ η|x|γ , ∀x ∈R
N , |x| ≤ δ.

Then system (.) possesses at least one nontrivial homoclinic solution.

Theorem . Assume that p(n) is anN ×N real symmetric positive definitematrix for all
n ∈ Z, and that L and W satisfy (Lν ), (W′), (W′), (W) and the following assumption:

(W′) There exist constants δ,η >  and max{, /( – ν)} < γ <  and a set J ⊂ Z with
m >  elements such that

W (n,x)≥ η|x|γ , ∀(n,x) ∈ J ×R
N , |x| ≤ δ.

Then system (.) possesses at least m distinct pairs of nontrivial homoclinic solutions.
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Remark . Obviously, assumptions (W′), (W′), (W′) and (W′) are weaker than
(W), (W), (W) and (W), respectively.

The remainder of this paper is organized as follows. In Section , some preliminary
results are presented. In Section , we give the proofs of our theorems. In Section , we
give some examples to illustrate our results.

2 Preliminaries
In this section, we always assume that p(n) and L(n) are real symmetric positive definite
matrices for all n ∈ Z. Let

S =
{{
u(n)

}
n∈Z : u(n) ∈R

N ,n ∈ Z
}
,

E =
{
u ∈ S :

∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n),u(n)

)]
< +∞

}
,

and for u, v ∈ E, let

〈u, v〉 =
∑
n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L(n)u(n), v(n)

)]
.

Then E is a Hilbert space with the above inner product, and the corresponding norm is

‖u‖ =
{∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n),u(n)

)]}/

, u ∈ E.

As usual, for ≤ q < +∞, set

lq
(
Z,RN )

=
{{

u(n)
}
n∈Z : u(n) ∈R

N ,n ∈ Z,
∑
n∈Z

∣∣u(n)∣∣q< +∞
}

and

l∞
(
Z,RN )

=
{{

u(n)
}
n∈Z : u(n) ∈R

N ,n ∈ Z, sup
n∈Z

∣∣u(n)∣∣< +∞
}
,

and their norms are defined by

‖u‖q =
(∑

n∈Z

∣∣u(n)∣∣q)/q

, ∀u ∈ lq
(
Z,RN )

;

‖u‖∞ = sup
n∈Z

∣∣u(n)∣∣, ∀u ∈ l∞
(
Z,RN )

,

respectively.

Lemma . [] For u ∈ E,

‖u‖∞ ≤ 

√
(β + α)β

‖u‖, (.)

where α = inf{(p(n)x,x) : n ∈ Z,x ∈ R
N , |x| = } and β = inf{(L(n)x,x) : n ∈ Z,x ∈ R

N ,
|x| = }.

http://www.advancesindifferenceequations.com/content/2013/1/154


Lin and Tang Advances in Difference Equations 2013, 2013:154 Page 5 of 16
http://www.advancesindifferenceequations.com/content/2013/1/154

By (Lν ), there exist two constants N >  andM >  such that

|n|ν– inf|x|=
(
L(n)x,x

) ≥ M, |n| ≥ N,

which implies

|n|ν–(L(n)x,x) ≥ M|x|, |n| ≥ N,x ∈R
N . (.)

Lemma . Suppose that L satisfies (Lν ). Then, for  ≤ q ∈ (/( – ν), ), E is compactly
embedded in lq(Z,RN );moreover,

∑
|n|>N

∣∣u(n)∣∣q ≤ K(q)
Nκ

‖u‖q, ∀u ∈ E,N ≥ N (.)

and

‖u‖qq ≤
[( ∑

|n|≤N

[
l(n)

]–q/(–q))– q

+
K(q)
Nκ

]
‖u‖q, ∀u ∈ E,N ≥ N, (.)

where

κ =
( – ν)q – 


> , K(q) =

[
( – q)

( – ν)q – 

]– q

M–q/

 (.)

and

l(n) = inf
x∈RN ,|x|=

(
L(n)x,x

)
. (.)

Proof Let r = [(– ν)q–]/(–q). Then r > . For u ∈ E andN ≥ N, it follows from (.),
(.) and the Hölder inequality that

∑
|n|>N

∣∣u(n)∣∣q ≤
(∑

|n|>N
|n|–(–ν)q/(–q)

)– q

(∑

|n|>N
|n|–ν

∣∣u(n)∣∣)
q


≤
(


rNr

)– q

[


M

∑
|n|>N

(
L(n)u(n),u(n)

)] q


≤ (–q)/

Mq/
 r(–q)/Nκ

‖u‖q = K(q)
Nκ

‖u‖q.

This shows that (.) holds. Hence, from (.), (.) and the Hölder inequality, one has

‖u‖qq =
∑

|n|≤N

∣∣u(n)∣∣q + ∑
|n|>N

∣∣u(n)∣∣q

≤
( ∑

|n|≤N

[
l(n)

]–q/(–q))– q

( ∑

|n|≤N

l(n)
∣∣u(n)∣∣)

q

+
K(q)
Nκ

‖u‖q

≤
( ∑

|n|≤N

[
l(n)

]–q/(–q))– q
 ‖u‖q + K(q)

Nκ
‖u‖q.

This shows that (.) holds.
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Finally, we prove that E is compactly embedded in lq(Z,RN ). Let {uk} ⊂ E be a bounded
sequence. Then by (.), there exists a constant 
 >  such that

‖uk‖∞ ≤ 

√
(β + α)β

‖uk‖ ≤ 
, k ∈N. (.)

Since E is reflexive, {uk} possesses a weakly convergent subsequence in E. Passing to a
subsequence if necessary, it can be assumed that uk ⇀ u in E. It is easy to verify that

lim
k→∞

uk(n) = u(n), ∀n ∈ Z. (.)

For any given number ε > , we can choose Nε >  such that

q–K(q)
Nκ

ε

{[ 
√
(β + α)β


]q + ‖u‖q
}
< ε. (.)

It follows from (.) that there exists k ∈N such that

∑
|n|≤Nε

∣∣uk(n) – u(n)
∣∣q < ε for k ≥ k. (.)

On the other hand, it follows from (.), (.) and (.) that

∑
|n|>Nε

∣∣uk(n) – u(n)
∣∣q ≤ q–

∑
|n|>Nε

(∣∣uk(n)∣∣q + ∣∣u(n)∣∣q)

≤ q–K(q)
Nκ

ε

(‖uk‖q + ‖u‖q
)

≤ q–K(q)
Nκ

ε

{[ 
√
(β + α)β


]q + ‖u‖q
} ≤ ε, k ∈ N. (.)

Since ε is arbitrary, combining (.) with (.), we get

‖uk – u‖qq =
∑
n∈Z

∣∣uk(n) – u(n)
∣∣q →  as k → +∞.

This shows that {uk} possesses a convergent subsequence in lq(Z,RN ). Therefore, E is
compactly embedded in lq(Z,RN ) for  ≤ q ∈ (/( – ν), ). �

Lemma . Suppose that L and W satisfy (Lν ) and (W′). Then, for u ∈ E,

∑
n∈Z

∣∣W(
n,u(n)

)∣∣ ≤ φ(N)‖u‖γ + φ(N)‖u‖γ , N ≥ N, (.)

where

κ =
( – ν)γ – 


,

κ =
( – ν)γ – 


;

(.)
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φ(N) = a
[( ∑

|n|≤N

[
l(n)

]–γ/(–γ)
)– γ


+
K(γ)
Nκ

]
, (.)

φ(N) = a
[( ∑

|n|≤N

[
l(n)

]–γ/(–γ)
)– γ


+
K(γ)
Nκ

]
. (.)

Proof For N ≥ N, it follows from (.) and (W′) that

∑
n∈Z

∣∣W(
n,u(n)

)∣∣ ≤ a
∑
n∈Z

∣∣u(n)∣∣γ + a
∑
n∈Z

∣∣u(n)∣∣γ

≤ a
[( ∑

|n|≤N

[
l(n)

]–γ/(–γ)
)– γ


+
K(γ)
Nκ

]
‖u‖γ

+ a
[( ∑

|n|≤N

[
l(n)

]–γ/(–γ)
)– γ


+
K(γ)
Nκ

]
‖u‖γ

= φ(N)‖u‖γ + φ(N)‖u‖γ .

This shows (.) holds. �

Lemma . Assume that L and W satisfy (Lν ), (W′) and (W′). Then the functional f :
E →R defined by

f (u) =


‖u‖ –

∑
n∈Z

W
(
n,u(n)

)
, ∀u ∈ E (.)

is well defined and of class C(E,R) and

〈
f ′(u), v

〉
=

∑
n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L(n)u(n), v(n)

)
–

(∇W
(
n,u(n)

)
, v(n)

)]
, ∀u, v ∈ E. (.)

Furthermore, the critical points of f in E are solutions of (.) with u(±∞) = .

Proof Lemma . implies that f defined by (.) is well defined on E. Next, we prove that
(.) holds. By (W′), one can choose anM >  such that

ϕ
(|x|) ≤ M|x|γ–, ∀x ∈R

N , |x| ≤ . (.)

For any u, v ∈ E, there exists an integer N >N such that |u(n)| + |v(n)| <  for |n| >N.
Then, for any sequence {θn}n∈Z ⊂ R with |θn| <  for n ∈ Z and any number h ∈ (, ), by
(W′), (.) and Lemma ., we have

∑
n∈Z

max
h∈[,]

∣∣(∇W
(
n,u(n) + θnhv(n)

)
, v(n)

)∣∣
≤

∑
|n|≤N

max
h∈[,]

∣∣∇W
(
n,u(n) + θnhv(n)

)∣∣∣∣v(n)∣∣

http://www.advancesindifferenceequations.com/content/2013/1/154
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+
∑

|n|>N

max
h∈[,]

∣∣∇W
(
n,u(n) + θnhv(n)

)∣∣∣∣v(n)∣∣
≤

∑
|n|≤N

max
|x|≤‖u‖∞+‖v‖∞

∣∣∇W (n,x)
∣∣∣∣v(n)∣∣ +M

∑
|n|>N

(∣∣u(n)∣∣ + ∣∣v(n)∣∣)γ–∣∣v(n)∣∣
≤

∑
|n|≤N

max
|x|≤‖u‖∞+‖v‖∞

∣∣∇W (n,x)
∣∣∣∣v(n)∣∣ +M

∑
|n|>N

∣∣v(n)∣∣γ

+M

( ∑
|n|>N

∣∣u(n)∣∣γ)– 
γ

( ∑
|n|>N

∣∣v(n)∣∣γ) 
γ

≤
∑

|n|≤N

max
|x|≤‖u‖∞+‖v‖∞

∣∣∇W (n,x)
∣∣∣∣v(n)∣∣ + MK(γ)

Nκ


(‖u‖γ– + ‖v‖γ–
)‖v‖

< +∞, (.)

where κ = [γ( – ν) – ]/ > . Then by (.), (.) and Lebesgue’s dominated conver-
gence theorem, we have

〈
f ′(u), v

〉
= lim

h→+
f (u + hv) – f (u)

h

= lim
h→+

[
〈u, v〉 + h‖v‖


–

∑
n∈Z

(∇W
(
n,u(n) + θnhv(n)

)
, v(n)

)]

= 〈u, v〉 –
∑
n∈Z

(∇W
(
n,u(n)

)
, v(n)

)

=
∑
n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L(n)u(n), v(n)

)
–

(∇W
(
n,u(n)

)
, v(n)

)]
.

This shows that (.) holds. Observe that for u, v ∈ E,

∑
n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L(n)u(n), v(n)

)
–

(∇W
(
n,u(n)

)
, v(n)

)]

=
∑
n∈Z

[�(
p(n)�u(n – ), v(n)

)
–

(�(
p(n)�u(n – )

)
, v(n)

)
+

(
L(n)u(n), v(n)

)

–
(∇W

(
n,u(n)

)
, v(n)

)]
=

∑
n∈Z

[(
–�(

p(n)�u(n – )
)
+ L(n)u(n) –∇W

(
n,u(n)

)
, v(n)

)]
. (.)

It follows from (.) and (.) that 〈f ′(u), v〉 =  for all v ∈ E if and only if

�(
p(n)�u(n – )

)
– L(n)u(n) +∇W

(
n,u(n)

)
= , ∀n ∈ Z.

So, the critical points of f in E are the solutions of system (.) with u(±∞) = .
Let us prove now that f ′ is continuous. Let uk → u in E. Then there exists a constant

δ >  such that

‖u‖ ≤ 
√
(β + α)βδ, ‖uk‖ ≤ 

√
(β + α)βδ, k = , , . . . . (.)
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It follows from (.) that

‖u‖∞ ≤ δ, ‖uk‖∞ ≤ δ, k = , , . . . . (.)

By (W′), one can choose anM >  such that

ϕ
(|x|) ≤ M|x|γ–, ∀x ∈ R

N , |x| ≤ δ. (.)

From (.), (.), (.), (.), (.), (W′) and the Hölder inequality, we have

∣∣〈f ′(uk) – f ′(u), v
〉∣∣

≤
∣∣∣∣∑
n∈Z

[(
p(n + )

(�uk(n) –�u(n)
)
,�v(n)

)
+

(
L(n)

(
uk(n) – u(n)

)
, v(n)

)]∣∣∣∣
+

∑
n∈Z

∣∣(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
, v(n)

)∣∣
=

∣∣〈uk – u, v〉∣∣ +∑
n∈Z

∣∣(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
, v(n)

)∣∣
≤ ‖uk – u‖‖v‖ +

∑
|n|≤N

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣∣∣v(n)∣∣
+

∑
|n|>N

(∣∣∇W
(
n,uk(n)

)∣∣ + ∣∣∇W
(
n,u(n)

)∣∣)∣∣v(n)∣∣
≤ o() +M

∑
|n|>N

(∣∣uk(n)∣∣γ– + ∣∣u(n)∣∣γ–)∣∣v(n)∣∣

≤ o() +M

(∑
|n|>N

∣∣uk(n)∣∣γ
)– 

γ
(∑

|n|>N

∣∣v(n)∣∣γ) 
γ

+M

(∑
|n|>N

∣∣u(n)∣∣γ)– 
γ

(∑
|n|>N

∣∣v(n)∣∣γ) 
γ

≤ o() +
MK(γ)

Nκ

(‖uk‖γ– + ‖u‖γ–
)‖v‖

= o(), k → +∞,N → +∞,∀v ∈ E,

which implies the continuity of f ′. The proof is complete. �

Lemma . [] Let E be a real Banach space and let f ∈ C(E,R) satisfy the (PS)-
condition. If f is bounded from below, then c = infE f is a critical value of f .

Lemma . [] Let E be a real Banach space, let f ∈ C(E,R) with f even, bounded from
below, and satisfying the (PS)-condition. Suppose that f () = , there is a set K ⊂ E such
that K is homeomorphic to Sk– by an odd map, and supK f < . Then f possesses at least k
distinct pairs of critical points.
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3 Proofs of theorems
Proof of Theorem . In view of Lemma ., f ∈ C(E,R). In what follows, we first show
that f is bounded from below. Choose N >N, it follows from (.) that

∑
n∈Z

W
(
n,u(n)

) ≤ φ(N)‖u‖γ + φ(N)‖u‖γ , ∀u ∈ E. (.)

By (.) and (.), we have

f (u) =


‖u‖ –

∑
n∈Z

W
(
n,u(n)

) ≥ 

‖u‖ – φ(N)‖u‖γ – φ(N)‖u‖γ . (.)

Since  < γ < γ < , (.) implies that f (u) → +∞ as ‖u‖ → +∞. Consequently, f is
bounded from below.
Next, we prove that f satisfies the (PS)-condition. Assume that {uk}k∈N ⊂ E is a sequence

such that {f (uk)}k∈N is bounded and f ′(uk) →  as k → +∞. Then by (.) and (.), there
exists a constant A >  such that

‖uk‖∞ ≤ 

√
(β + α)β

‖uk‖ ≤ A, k ∈N. (.)

So, passing to a subsequence if necessary, it can be assumed that uk ⇀ u in E. It is easy
to verify that

lim
k→+∞

uk(n) = u(n), ∀n ∈ Z. (.)

Hence, we have by (.) and (.)

‖u‖∞ ≤ A. (.)

By virtue of (W′), one can choose aM >  such that

ϕ
(|x|) ≤ M|x|γ–, ∀x ∈R

N , |x| ≤ A. (.)

For any given number ε > , we can choose an integer N >N such that

K(γ)
Nκ



{[ 
√
(β + α)βA

]γ + ‖u‖γ
}
< ε. (.)

It follows from (.) and the continuity of ∇W (n,x) on x that there exists k ∈N such that

N∑
n=–N

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣∣∣uk(n) – u(n)
∣∣ < ε for k ≥ k. (.)

On the other hand, it follows from (.), (.), (.), (.) and (W′) that

∑
|n|>N

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣∣∣uk(n) – u(n)
∣∣

≤
∑

|n|>N

[
ϕ
(∣∣uk(n)∣∣) + ϕ

(∣∣u(n)∣∣)](∣∣uk(n)∣∣ + ∣∣u(n)∣∣)
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≤ M
∑

|n|>N

(∣∣uk(n)∣∣γ– + ∣∣u(n)∣∣γ–)(∣∣uk(n)∣∣ + ∣∣u(n)∣∣)

≤ M
∑

|n|>N

(∣∣uk(n)∣∣γ + ∣∣u(n)∣∣γ)

≤ MK(γ)
Nκ



(‖uk‖γ + ‖u‖γ
)

≤ MK(γ)
Nκ



{[ 
√
(β + α)βA

]γ + ‖u‖γ
}

≤ Mε, k ∈N. (.)

Since ε is arbitrary, combining (.) with (.), we get

∑
n∈Z

(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
,uk(n) – u(n)

) →  as k → +∞. (.)

It follows from (.) that

〈
f ′(uk) – f ′(u),uk – u

〉
= ‖uk – u‖ –

∑
n∈Z

(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
,uk(n) – u(n)

)
. (.)

Since 〈f ′(uk) – f ′(u),uk – u〉 → , it follows from (.) and (.) that uk → u in E.
Hence, f satisfies the (PS)-condition.
By Lemma ., c = infE f (u) is a critical value of f , that is, there exists a critical point

u∗ ∈ E such that f (u∗) = c.
Finally, we show that u∗ �= . Let u∗(n) = (, , . . . , )� ∈ R

N and u∗(n) =  for n �= n.
Then by (W′), (W′) and (.), we have

f (su∗) =
s


‖u∗‖ –

∑
n∈Z

W
(
n, su∗(n)

)

=
s


‖u∗‖ –W

(
n, su∗(n)

)
≤ s


‖u∗‖ – ηsγ

∣∣u∗(n)
∣∣γ ,  < s < δ. (.)

Since  < γ < , it follows from (.) that f (su∗) <  for s >  small enough. Hence
f (u∗) = c < , therefore u∗ is a nontrivial critical point of f , and so u∗ = u∗(n) is a non-
trivial homoclinic solution of system (.). The proof is complete. �

Proof of Theorem . In view of Lemma . and the proof of Theorem ., f ∈ C(E,R)
is bounded from below and satisfies the (PS)-condition. It is obvious that f is even and
f () = . In order to apply Lemma ., we prove now that there is a set K ⊂ E such that K
is homeomorphic to Sm– by an odd map, and supK f < . Let

J = {n,n, . . . ,nm},
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where n < n < · · · < nm. Define

ui(n) =

⎧⎨
⎩(, , . . . , )� ∈R

N , n = ni,

, n �= ni;
i = , , . . . ,m (.)

and

Em = span{u,u, . . . ,um}, Km =
{
u ∈ Em : ‖u‖ = 

}
. (.)

For any u ∈ Em, there exist λi ∈R, i = , , . . . ,m such that

u(n) =
m∑
i=

λiui(n) for n ∈ Z. (.)

Then

‖u‖γ =
(∑

n∈Z

∣∣u(n)∣∣γ)/γ
=

( m∑
i=

|λi|γ
∣∣ui(ni)∣∣γ

)/γ

(.)

and

‖u‖ =
∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n),u(n)

)]

=
∑
n∈Z

(
p(n + )

m∑
i=

λi�ui(n),
m∑
j=

λj�uj(n)

)
+

m∑
i=

λ
i
(
L(ni)ui(ni),ui(ni)

)

=
m∑
i=

m∑
j=

λiλj
∑
n∈Z

(
p(n + )�ui(n),�uj(n)

)
+

m∑
i=

λ
i
(
L(ni)ui(ni),ui(ni)

)
= F(λ,λ, . . . ,λm), (.)

where F(λ,λ, . . . ,λm) is a quadratic form. Since

F(λ,λ, . . . ,λm) =

∥∥∥∥∥
m∑
i=

λiui

∥∥∥∥∥


≥ , ∀(λ,λ, . . . ,λm)� ∈R
m

and

F(λ,λ, . . . ,λm) =  ⇔
m∑
i=

λiui(n) ≡ , ∀n ∈ Z ⇔ λ = λ = · · · = λm = .

Therefore, F(λ,λ, . . . ,λm) is a positive definite quadratic form. It follows that there exists
an invertible matrix A ∈R

m×m such that

(μ,μ, . . . ,μm)� =A(λ,λ, . . . ,λm)�, F(λ,λ, . . . ,λm) =
m∑
i=

μ
i . (.)
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Since all the norms of a finite dimensional normed space are equivalent, there is a constant
c′ >  such that

c′‖u‖ ≤ ‖u‖γ for u ∈ Em. (.)

By (W′), (W′), (.), (.) and (.), we have

f (su) =
s


‖u‖ –

∑
n∈Z

W
(
n, su(n)

)

=
s


‖u‖ –

m∑
i=

W
(
ni, sλiui(ni)

)

≤ s


‖u‖ – ηsγ

m∑
i=

|λi|γ
∣∣ui(ni)∣∣γ

=
s


‖u‖ – ηsγ‖u‖γ

γ

≤ s


‖u‖ – η

(
c′s

)γ‖u‖γ

=
s


– η

(
c′s

)γ , ∀u ∈ Km,  < s ≤ δ

( m∑
i=

|λi|
)–

. (.)

For  < γ < , (.) implies that there exist ε >  and σ >  such that

f (σu) < –ε for u ∈ Km. (.)

Let

Kσ
m = {σu : u ∈ Km}, Sm– =

{
(μ,μ, . . . ,μm)� ∈R

m :
m∑
i=

μ
i = 

}
.

Then it follows from (.) that

Kσ
m =

{ m∑
i=

λiui : F(λ,λ, . . . ,λm) = σ 

}
.

By (.), we define a map ψ : Kσ
m → Sm– as follows:

ψ(u) = σ –(μ,μ, . . . ,μm)�, ∀u ∈ Kσ
m.

It is easy to verify that ψ : Kσ
m → Sm– is an odd homeomorphic map. On the other hand,

by (.), we have

f (u) < –ε for u ∈ Kσ
m,

and so supKσ
m
f ≤ –ε < . By Lemma ., f has at least m distinct pairs of critical points,

and so system (.) possesses at least m distinct pairs of nontrivial homoclinic solutions.
The proof is complete. �
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4 Examples
In this section, we give three examples to illustrate our results.

Example . In system (.), let p(n) be anN ×N real symmetric positive definite matrix
for all n ∈ Z, L(n) = ( + sin n)|n|/IN , and let

W (n,x) = cosn|x|/ + sinn|x|/.

Then L(n) satisfies (Lν ) with ν = /, and

∇W (n,x) =
 cosn


|x|–/x +  sinn


|x|–/x,

∣∣W (n,x)
∣∣ ≤ |x|/ + |x|/, ∀(n,x) ∈ Z×R

N

and

∣∣∇W (n,x)
∣∣ ≤ |x|/ + |x|/


, ∀(n,x) ∈ Z×R

N .

For anym ∈N, there existm integers ni ∈ Z, i = , , . . . ,m such that

cosni > , sinni > , i = , , . . . ,m.

Let J = {n,n, . . . ,nm} and

η =min{cosn + sinn, cosn + sinn, . . . , cosnm + sinnm}.

Then

W (n,x)≥ η|x|/, ∀(n,x) ∈ J ×R
N , |x| ≤ .

These show that all conditions of Theorem . are satisfied, where

 <


= γ = γ < γ = γ =



< , a = a = , ϕ(s) =

s/ + s/


.

By Theorem ., system (.) has at least m distinct pairs of nontrivial homoclinic solu-
tions. Since m is arbitrary, it follows that system (.) has infinitely many distinct pairs of
nontrivial homoclinic solutions.

Example . In system (.), let p(n) be anN ×N real symmetric positive definitematrix
for all n ∈ Z, L(n) = ( + cos n)|n|IN , and let

W (n,x) = sin
(
n + |x|)(|x|/ – |x|/).

Then L(n) satisfies (Lν ) with ν = , and

∇W (n,x) = sin
(
n + |x|)(


|x|–/x – 


|x|–/x

)

+  cos
(
n + |x|)(|x|/ – |x|/)x,
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∣∣W (n,x)
∣∣ ≤ |x|/ + |x|/, ∀(n,x) ∈ Z×R

N ,

∣∣∇W (n,x)
∣∣ ≤ |x|/ + |x|/ + |x|/ + |x|/


, ∀(n,x) ∈ Z×R

N .

For anym ∈N, there existm integers ni ∈ Z, i = , , . . . ,m such that

sinni > , sin(ni + ) > , i = , , . . . ,m.

Let J = {n,n, . . . ,nm} and

η =


min

{
sinni, sin(ni + ) : i = , , . . . ,m

}
.

Then

W (n,x)≥ η|x|/, ∀(n,x) ∈ J ×R
N , |x| ≤ 


.

These show that all conditions of Theorem . are satisfied, where

 <


= γ = γ < γ = γ =



< ; a = , a = ; δ =




;

ϕ(s) =
s/ + s/ + s/ + s/


.

By Theorem ., system (.) has at least m distinct pairs of nontrivial homoclinic solu-
tions. Since m is arbitrary, it follows that system (.) has infinitely many distinct pairs of
nontrivial homoclinic solutions.

Example . In system (.), let p(n) be anN ×N real symmetric positive definitematrix
for all n ∈ Z, L(n) = ln( + n)|n|/IN , and let

W (n,x) = sinn ln
(
 + |x|/).

Then L(n) satisfies (Lν ) with ν = /, and

∇W (n,x) =
 sinn

( + |x|/) |x|
–/x,

∣∣W (n,x)
∣∣ ≤ |x|/, ∣∣∇W (n,x)

∣∣ ≤ |x|/
( + |x|/) , ∀(n,x) ∈ Z×R

N .

For anym ∈N, there existm integers ni ∈ Z, i = , , . . . ,m such that

sinni > , i = , , . . . ,m.

Let J = {n,n, . . . ,nm} and

η =min

{
sinni


: i = , , . . . ,m
}
.
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Then

W (n,x)≥ η|x|/, ∀(n,x) ∈ J ×R
N , |x| ≤ .

These show that all conditions of Theorem . are satisfied, where

 < γ = γ = γ = γ =


< , a = , a = , ϕ(s) =

s/

( + s/)
.

By Theorem ., system (.) has at least m distinct pairs of nontrivial homoclinic solu-
tions. Since m is arbitrary, it follows that system (.) has infinitely many distinct pairs of
nontrivial homoclinic solutions.
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