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Abstract
We studied mostly important four nonlinear pseudoparabolic physical models: the
Benjamin-Bona-Mahony-Peregrine-Burgers (BBMPB) equation, the
Oskolkov-Benjamin-Bona-Mahony-Burgers (OBBMB) equation, the one-dimensional
Oskolkov equation and the generalised hyperelastic-rod wave equation. By using the
tanh-coth method and symbolic computation system Maple, we have obtained
abundant new solutions of these equations. The exact solutions show that the
tanh-coth method is a powerful mathematical tool for solving nonlinear
pseudoparabolic equations.
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1 Introduction
Equations with a one-time derivative appearing in the highest order term are called pseu-
doparabolic and arise inmany areas of mathematics and physics. They have been used, for
instance, for fluid flow in fissured rock, consolidation of clay, shear in second-order fluids,
thermodynamics and propagation of long waves of small amplitude. For more details, we
refer the reader to [–] and references therein.
An important special case of pseudoparabolic-type equations is the generalised Benja-

min-Bona-Mahony-Burgers (BBMB) equation

ut – uxxt – αuxx + γux + f (u)x = , ()

where u(x, t) represents the fluid velocity in the horizontal direction x, α is a positive
constant, γ is any given real constant and f (u) is a C-smooth nonlinear function. For
f (u)x = uux with α = , γ =  in equation () was proposed as an alternative regularised
long-wave equation by Peregrine [] and Benjamin et al. [] for the well-knownKorteweg-
de Vries equation

ut + uxxt + ux + uux = . ()
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If we take f (u)x = θuux +βuxxx in equation (), then we obtain a general form of Benjamin-
Bona-Mahony-Peregrine-Burgers (BBMPB) equation

ut – uxxt – αuxx + γux + θuux + βuxxx = . ()

Taking α = β =  in (), we get the general form of the BBM equation as follows:

ut – uxxt + γux + θuux = , ()

where γ , θ are constants and θ �= . Equation () includes several types of the BBM equa-
tion as seen in the literature. For more details, we refer the reader to [–]. We will study
the general form of Benjamin-Bona-Mahony-Peregrine-Burgers (BBMPB) equation ()
using the tanh-coth method. We aim to extend the previous works especially in [, ] to
make further progress for obtaining abundant new travelling wave solutions.
For β =  in equation (), we obtain a general form of the Oskolkov-Benjamin-Bona-

Mahony-Burgers equation

ut – uxxt – αuxx + γux + θuux = . ()

This nonlinear, one-dimensional and pseudoparabolic equation describes nonlinear sur-
face waves that spread along the axis Ox and αuxx is the viscosity term [, ]. In the
literature the inverse scattering method has been thoroughly used to derive the multiple
soliton solutions of equation () [, –]. In this work we developed these solutions in a
way that can be easily applied by using the tanh-coth method, which is less sophisticated
than the inverse scattering method.
The equation

ut – λuxxt – αuxx + uux =  ()

is a one-dimensional analogue of the Oskolkov system

(
 – λ�)ut = α�u – (u ·�)u –�p + f , � · u = . ()

This system describes the dynamics of an incompressible viscoelastic Kelvin-Voigt fluid. It
was indicated in [, ] that the parameter λ can be negative and the negativeness of the
parameter λ does not contradict the physical meaning of equation (). We implemented
the tanh-coth method to solve equation () and obtained new solutions which could not
be attained in the past.
The generalised hyperelastic-rod wave equation

ut – uxxt + αux + βuux + θuux – γuxuxx – uuxxx =  ()

was first introduced in [], in which the global existence of dissipative solutions were
established, where α, β , θ and γ are constant parameters. This equation includes many
important physical models in mathematical physics.
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For β = 
 , θ = , γ = , we obtain the Camassa-Holm (CH) equation

ut – uxxt + αux + uux – uxuxx – uuxxx = , ()

where u is the fluid velocity in the direction x (or, equivalently, the height of thewater’s free
surface above a flat bottom),α is a constant related to the critical shallowwaterwave speed.
Camassa-Holm equation has been studied in [, ] and explicit travelling-wave solutions
were sought []. Besides, solitary wave solutions formodified forms of this equation were
developed by Wazwaz [].
Taking β = , θ = , γ = , equation () reduces to the Degasperis-Procesi (DP) equation

ut – uxxt + αux + uux – uxuxx – uuxxx = . ()

The recent study has revealed that the CH and DP equations can be used to describe the
long-term dynamics of short surface waves [, , ].
For α = , β = 

 , θ = , γ = , the equation () leads to the Fornberg-Whitham (FW)
equation

ut – uxxt + ux + uux – uxuxx – uuxxx = . ()

The FW equation was used to study the qualitative behaviour of wave-breaking. A peaked
solitarywave solution u(x, t) = Ae– 

 |x– 
 t| of this type of equationwas obtained by Fornberg

and Whitham [, ]. Using the tanh-coth method, we consider equation (), which is
a combined form of CH, DP and FW equations, and obtain new exact solutions. These
solutions can be seen as an improvement of the previously known data.
As stated before, pseudoparabolic-type equations arise in many areas of mathematics

and physics to describe many physical phenomena. In recent years considerable attention
has been paid to the study of pseudoparabolic-type equations, and to construct exact so-
lutions for this type of equations, several methods, for instance, the tanh-coth method,
have been developed. In [, ], we discussed some well-known Sobolev-type equations
and pseudoparabolic equations and obtained new travelling wave solutions by using the
tanh-coth method. Motivated by these studies, we employed the tanh-coth method to in-
vestigate new travelling wave solutions for the equations that were previously mentioned.
In what follows, we summarise themain features of the tanh-cothmethod as introduced

in [, ], where more details and examples can be found.

2 Outline of the tanh-cothmethod
(i) First consider a general form of the nonlinear equation

P(u,ut ,ux,uxx, . . .) = . ()

(ii) To find the travelling wave solution of equation (), the wave variable ξ = x – Vt is
introduced so that

u(x, t) =U(μξ ). ()

http://www.advancesindifferenceequations.com/content/2013/1/143
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Based on this, one may use the following changes:

∂

∂t
= –V

d
dξ

,

∂

∂x
= μ

d
dξ

,

∂

∂x
= μ d

dξ  ,

∂

∂x
= μ d

dξ 

()

and so on for other derivatives. Using () changes PDE () to an ODE

Q
(
U ,U ′,U ′′, . . .

)
= . ()

(iii) If all terms of the resulting ODE contain derivatives in ξ , then by integrating this
equation, and by considering the constant of integration to be zero, one obtains a simpli-
fied ODE.
(iv) A new independent variable

Y = tanh(μξ ) ()

is introduced that leads to the change of derivatives:

d
dξ

= μ
(
 – Y ) d

dY
,

d

dξ  = –μY
(
 – Y ) d

dY
+μ( – Y ) d

dY  , ()

d

dξ  = μ( – Y )(Y  – 
) d
dY

– μY
(
 – Y ) d

dY  +μ( – Y ) d

dY  ,

where other derivatives can be derived in a similar manner.
(v) The ansatz of the form

U(μξ ) = S(Y ) =
M∑
k=

akY k +
M∑
k=

bkY–k ()

is introduced whereM is a positive integer, in most cases, that will be determined. IfM is
not an integer, then a transformation formula is used to overcome this difficulty. Substi-
tuting () and () into ODE () yields an equation in powers of Y .
(vi) To determine the parameter M, the linear terms of highest order in the resulting

equation with the highest order nonlinear terms are balanced. With M determined, one
collects all the coefficients of powers of Y in the resulting equation, where these coeffi-
cients have to vanish. This will give a system of algebraic equations involving ak and bk
(k = , . . . ,M), V , and μ. Having determined these parameters, knowing thatM is a posi-
tive integer in most cases and using (), one obtains an analytic solution in a closed form.
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3 The Benjamin-Bona-Mahony-Peregrine-Burgers (BBMPB) equation
The Benjamin-Bona-Mahony-Peregrine-Burgers (BBMPB) equation is given by

ut – uxxt – αuxx + γux + θuux + βuxxx = , ()

where α is a positive constant, θ and β are nonzero real numbers. Using the wave variable
ξ = x–Vt in () then integrating this equation and considering the constant of integration
to be zero, we obtain

(–V + γ )U – αU ′ +
θ


U + (V + β)U ′′ = . ()

Balancing U with U ′′ in () gives M = . The tanh-coth method admits the use of the
finite expansion

U(μξ ) = S(Y ) =
∑

k=

akY k +
∑

k=

bkY–k , ()

where Y = tanh(μξ ). Substituting () into () and collecting the coefficients of Y and
setting it equal to zero, we find the system of equation:

Y : aθ + Vaμ + aβμ = ,

Y : aaθ + aαμ + Vaμ + aβμ = ,

Y : aγ + aθ – Va + aaθ + aαμ – Vaμ – aβμ = ,

Y : aγ – Va + baθ + aaθ – aαμ – Vaμ – aβμ = ,

Y : aγ + aθ – Va + baθ + baθ – bαμ – aαμ + Vbμ,

+ Vaμ + bβμ + aβμ = , ()

Y : bγ – Vb + baθ + baθ – bαμ – Vbμ – bβμ = ,

Y : bγ + bθ – Vb + baθ + bαμ – Vbμ – bβμ = ,

Y : bbθ + bαμ + Vbμ + bβμ = ,

Y : bθ + Vbμ + bβμ = .

Using Maple gives eighteen sets of solutions:

a =
–γ – β

θ
, a =

γ + β

θ
, a = b = b = , V = –β , μ =

–γ – β

α
,

a = a =
–γ – β

θ
, a = b = b = , V = –β , μ =

γ + β

α
,

a =
–γ – β

θ
, a = b =

γ + β

θ
, a = b = , V = –β , μ =

–γ – β

α
,

a =
–γ – β

θ
, a = a = b = , b =

–γ – β

θ
, V = –β , μ =

γ + β

α
,

a =
–γ – β

θ
, a =

–γ – β

θ
, a = b = , b = –

γ + β

θ
,
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V = –β , μ =
γ + β

α
,

a =
–γ – β

θ
, a = a = b = , b =

γ + β

θ
,

V = –β , μ = –
γ + β

α
,

a =
–γμ – βμ + α

μθ
, a = –

αμ

θ
, a = –

αμ

θ
, b = b = ,

V =
α
 – βμ

μ
, μ =

γ + β ± √
γ  + γβ + β – α

α
,

a =
(–γμ – βμ + α)

μθ
, a = –

αμ

θ
, a = –

αμ

θ
, b = b = ,

V =
α
 – βμ

μ
, μ =

–γ – β ± √
γ  + γβ + β + α

α
,

a =
–γμ – βμ – α

μθ
, a = –

αμ

θ
, a =

αμ

θ
, b = b = ,

V =
– α

 – βμ

μ
, μ =

–γ – β ± √
γ  + γβ + β – α

α
,

a =
(–γμ – βμ – α)

μθ
, a = –

αμ

θ
, a =

αμ

θ
, b = b = ,

V =
– α

 – βμ

μ
, μ =

γ + β ± √
γ  + γβ + β + α

α
,

()

a =
–γμ – βμ + α

μθ
, a = a = , b = –

αμ

θ
, b = –

αμ

θ
,

V =
α
 – βμ

μ
, μ =

γ + β ± √
γ  + γβ + β – α

α
,

a =
(–γμ – βμ + α)

μθ
, a = a = , b = –

αμ

θ
, b = –

αμ

θ
,

V =
α
 – βμ

μ
, μ =

–γ – β ± √
γ  + γβ + β + α

α
,

a =
(–γμ – βμ – α)

μθ
, a = a = , b = –

αμ

θ
, b =

αμ

θ
,

V =
– α

 – βμ

μ
, μ =

γ + β ± √
γ  + γβ + β + α

α
,

a =
–γμ – βμ – α

μθ
, a = a = , b = –

αμ

θ
, b =

αμ

θ
,

V =
– α

 – βμ

μ
, μ =

–γ – β ± √
γ  + γβ + β – α

α
,

a =
(–γμ – βμ – α)

μθ
, a = b = –

αμ

θ
, a = b =

αμ

θ
,

V =
– α

 – βμ

μ
, μ =

–γ – β ± √
γ  + γβ + β – α

α
,
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a =
(–γμ – βμ – α)

μθ
, a = b = –

αμ

θ
, a = b =

αμ

θ
,

V =
– α

 – βμ

μ
, μ =

γ + β ± √
γ  + γβ + β + α

α
,

a =
(–γμ – βμ + α)

μθ
, a = b = –

αμ

θ
, a = b = –

αμ

θ
,

V =
α
 – βμ

μ
, μ =

γ + β ± √
γ  + γβ + β – α

α
,

a =
–γμ – βμ + α

μθ
, a = b = –

αμ

θ
, a = b = –

αμ

θ
,

V =
α
 – βμ

μ
, μ =

–γ – β ± √
γ  + γβ + β + α

α
.

These sets give the solutions respectively:

u(x, t) =
–γ – β

θ
+

γ + β

θ
tanhμ(x –Vt),

u(x, t) =
–γ – β

θ
–

γ + β

θ
tanhμ(x –Vt),

u(x, t) =
–γ – β

θ
+

γ + β

θ
tanhμ(x –Vt) +

γ + β

θ
cothμ(x –Vt),

u(x, t) =
–γ – β

θ
–

γ + β

θ
cothμ(x –Vt),

u(x, t) =
–γ – β

θ
–

γ + β

θ
tanhμ(x –Vt) –

γ + β

θ
cothμ(x –Vt),

u(x, t) =
–γ – β

θ
+

γ + β

θ
cothμ(x –Vt),

u(x, t) =
–γμ – βμ + α

μθ
–
αμ

θ
tanhμ(x –Vt) –

αμ

θ
tanh μ(x –Vt),

u(x, t) =
(–γμ – βμ + α)

μθ
–
αμ

θ
tanhμ(x –Vt) –

αμ

θ
tanh μ(x –Vt),

u(x, t) =
–γμ – βμ – α

μθ
–
αμ

θ
tanhμ(x –Vt) +

αμ

θ
tanh μ(x –Vt)

–
αμ


cothμ(x –Vt) –

αμ


coth μ(x –Vt), ()

u(x, t) =
(–γμ – βμ – α)

μθ
–
αμ

θ
tanhμ(x –Vt) +

αμ

θ
tanh μ(x –Vt),

u(x, t) =
–γμ – βμ + α

μθ
–
αμ

θ
cothμ(x –Vt) –

αμ

θ
coth μ(x –Vt),

u(x, t) =
(–γμ – βμ + α)

μθ
–
αμ

θ
cothμ(x –Vt) –

αμ

θ
coth μ(x –Vt),

u(x, t) =
(–γμ – βμ – α)

μθ
–
αμ

θ
cothμ(x –Vt) +

αμ

θ
coth μ(x –Vt),

u(x, t) =
–γμ – βμ – α

μθ
–
αμ

θ
cothμ(x –Vt) +

αμ

θ
coth μ(x –Vt),
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Gözükızıl and Akçağıl Advances in Difference Equations 2013, 2013:143 Page 8 of 18
http://www.advancesindifferenceequations.com/content/2013/1/143

u(x, t) =
(–γμ – βμ – α)

μθ
–
αμ

θ
tanhμ(x –Vt) +

αμ

θ
tanh μ(x –Vt)

–
αμ

θ
cothμ(x –Vt) +

αμ

θ
coth μ(x –Vt),

u(x, t) =
(–γμ – βμ – α)

μθ
–
αμ

θ
tanhμ(x –Vt) +

αμ

θ
tanh μ(x –Vt)

–
αμ

θ
cothμ(x –Vt) +

αμ

θ
coth μ(x –Vt),

u(x, t) =
(–γμ – βμ + α)

μθ
–
αμ

θ
tanhμ(x –Vt) –

αμ

θ
tanh μ(x –Vt)

–
αμ

θ
cothμ(x –Vt) –

αμ

θ
coth μ(x –Vt),

u(x, t) =
–γμ – βμ + α

μθ
–
αμ

θ
tanhμ(x –Vt) –

αμ

θ
tanh μ(x –Vt)

–
αμ

θ
cothμ(x –Vt) –

αμ

θ
coth μ(x –Vt).

4 The Oskolkov-Benjamin-Bona-Mahony-Burgers (OBBMB) equation
We consider the Oskolkov-Benjamin-Bona-Mahony-Burgers (OBBMB) equation

ut – uxxt – αuxx + γux + θuux = , ()

where α is positive and θ is a nonzero constant. Using the wave variable ξ = x–Vt in ()
then integrating this equation and considering the constant of integration to be zero, we
obtain

(–V + γ )U +
θ


U – αU ′ +VU ′′ = . ()

Balancing the second term with the last term in () gives M = . Using the finite expan-
sion

U(μξ ) = S(Y ) =
∑

k=

akY k +
∑

k=

bkY–k , ()

where Y = tanh(μξ ). Substituting () into () and collecting the coefficients of Y and
setting it equal to zero, we find the system of equations:

Y : aθ + Vaμ = ,

Y : aaθ + aαμ + Vaμ = ,

Y : aγ + aθ – Va + aaθ + aαμ – Vaμ = ,

Y : aγ – Va + baθ + aaθ – aαμ – Vaμ = ,

Y : aγ + aθ – Va + baθ + baθ – bαμ – aαμ

+ Vbμ + Vaμ = , ()

Y : bγ – Vb + baθ + baθ – bαμ – Vbμ = ,

http://www.advancesindifferenceequations.com/content/2013/1/143


Gözükızıl and Akçağıl Advances in Difference Equations 2013, 2013:143 Page 9 of 18
http://www.advancesindifferenceequations.com/content/2013/1/143

Y : bγ + bθ – Vb + baθ + bαμ – Vbμ = ,

Y : bbθ + bαμ + Vbμ = ,

Y : bθ + Vbμ = .

Maple gives twelve sets of solutions:

a =
–γμ + α

μθ
, a = –

αμ

θ
, a = –

αμ

θ
, b = b = ,

V =
α

μ
, μ =

γ ± √
γ  – α

α
,

a =
(–γμ + α)

μθ
, a = –

αμ

θ
, a = –

αμ

θ
, b = b = ,

V =
α

μ
, μ =

–γ ± √
γ  + α

α
,

a =
–γμ – α

μθ
, a = –

αμ

θ
, a =

αμ

θ
, b = b = ,

V = –
α

μ
, μ =

–γ ± √
γ  – α

α
,

a =
(–γμ – α)

μθ
, a = –

αμ

θ
, a =

αμ

θ
, b = b = ,

V = –
α

μ
, μ =

γ ± √
γ  + α

α
,

a =
–γμ + α

μθ
, a = a = , b = –

αμ

θ
, b = –

αμ

θ
,

V =
α

μ
, μ =

γ ± √
γ  – α

α
,

a =
(–γμ + α)

μθ
, a = a = , b = –

αμ

θ
, b = –

αμ

θ
,

V =
α

μ
, μ =

–γ ± √
γ  + α

α
,

a =
(–γμ – α)

μθ
, a = a = , b = –

αμ

θ
, b =

αμ

θ
,

V = –
α

μ
, μ =

γ ± √
γ  + α

α
,

()

a =
–γμ – α

μθ
, a = a = , b = –

αμ

θ
, b =

αμ

θ
,

V = –
α

μ
, μ =

–γ ± √
γ  – α

α
,

a =
(–γμ – α)

μθ
, a = b = –

αμ

θ
, a = b =

αμ

θ
,

V = –
α

μ
, μ =

–γ ± √
γ  – α

α
,
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a =
(–γμ – α)

μθ
, a = b = –

αμ

θ
, a = b =

αμ

θ
,

V = –
α

μ
, μ =

γ ± √
γ  + α

α
,

a =
(–γμ + α)

μθ
, a = b = –

αμ

θ
, a = b = –

αμ

θ
,

V =
α

μ
, μ =

γ ± √
γ  – α

α
,

a =
–γμ + α

μθ
, a = b = –

αμ

θ
, a = b = –

αμ

θ
,

V =
α

μ
, μ =

–γ ± √
γ  + α

α
.

These give the following solutions:

u(x, t) =
–γμ – βμ + α

μθ
–
αμ

θ
tanhμ(x –Vt) –

αμ

θ
tanh μ(x –Vt),

u(x, t) =
(–γμ – βμ + α)

μθ
–
αμ

θ
tanhμ(x –Vt) –

αμ

θ
tanh μ(x –Vt),

u(x, t) =
–γμ – βμ – α

μθ
–
αμ

θ
tanhμ(x –Vt) +

αμ

θ
tanh μ(x –Vt)

–
αμ


cothμ(x –Vt) –

αμ


coth μ(x –Vt),

u(x, t) =
(–γμ – βμ – α)

μθ
–
αμ

θ
tanhμ(x –Vt) +

αμ

θ
tanh μ(x –Vt),

u(x, t) =
–γμ – βμ + α

μθ
–
αμ

θ
cothμ(x –Vt) –

αμ

θ
coth μ(x –Vt),

u(x, t) =
(–γμ – βμ + α)

μθ
–
αμ

θ
cothμ(x –Vt) –

αμ

θ
coth μ(x –Vt),

u(x, t) =
(–γμ – βμ – α)

μθ
–
αμ

θ
cothμ(x –Vt) +

αμ

θ
coth μ(x –Vt),

u(x, t) =
–γμ – βμ – α

μθ
–
αμ

θ
cothμ(x –Vt) +

αμ

θ
coth μ(x –Vt), ()

u(x, t) =
(–γμ – βμ – α)

μθ
–
αμ

θ
tanhμ(x –Vt) +

αμ

θ
tanh μ(x –Vt)

–
αμ

θ
cothμ(x –Vt) +

αμ

θ
coth μ(x –Vt),

u(x, t) =
(–γμ – βμ – α)

μθ
–
αμ

θ
tanhμ(x –Vt) +

αμ

θ
tanh μ(x –Vt)

–
αμ

θ
cothμ(x –Vt) +

αμ

θ
coth μ(x –Vt),

u(x, t) =
(–γμ – βμ + α)

μθ
–
αμ

θ
tanhμ(x –Vt) –

αμ

θ
tanh μ(x –Vt)

–
αμ

θ
cothμ(x –Vt) –

αμ

θ
coth μ(x –Vt),
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u(x, t) =
–γμ – βμ + α

μθ
–
αμ

θ
tanhμ(x –Vt) –

αμ

θ
tanh μ(x –Vt)

–
αμ

θ
cothμ(x –Vt) –

αμ

θ
coth μ(x –Vt).

As can be seen easily, these solutions can be obtained by taking β =  in the solutions of
previous equations.

5 The one-dimensional Oskolkov equation
The one-dimensional Oskolkov equation is given by

ut – λuxxt – αuxx + uux = . ()

We will investigate the equation for λ �=  and α ∈ R. Using the wave variable ξ = x–Vt in
() then integrating this equation and considering the constant of integration to be zero,
we obtain

–VU + λU ′′ – αU ′ +


U = . ()

Balancing U with U ′′ in () gives M = . The tanh-coth method admits the use of the
finite expansion

U(μξ ) = S(Y ) =
∑

k=

akY k +
∑

k=

bkY–k , ()

where Y = tanh(μξ ). Substituting () into () and collecting the coefficients of Y and
setting it equal to zero, we find the system of equations:

Y : a + λaμ = ,

Y : aλμ + aαμ + aa = ,

Y : a + αaμ – aλμ – Va + aa = ,

Y : ba – aαμ – Va – aλμ + aa = ,

Y : ba – Va + ba + a – bαμ – aαμ + bλμ + aλμ = , ()

Y : ba – bαμ – Vb – bλμ + ba = ,

Y : b + αbμ – bλμ – Vb + ba = ,

Y : bλμ + bαμ + bb = ,

Y : b + λbμ = .

Solving this system, we find the following sets of solutions:

a =
α

λ
, a = –

α

λ
, a = –

α

λ
, b = b = ,

V =
α

λ
, μ =

α

λ
,
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a = –
α

λ
, a = –

α

λ
, a = –

α

λ
, b = b = ,

V = –
α

λ
, μ =

α

λ
,

a =
α

λ
, a =

α

λ
, a = –

α

λ
, b = b = ,

V =
α

λ
, μ = –

α

λ
,

a = –
α

λ
, a =

α

λ
, a = –

α

λ
, b = b = ,

V = –
α

λ
, μ = –

α

λ
,

a =
α

λ
, a = a = , b =

α

λ
, b = –

α

λ
,

V =
α

λ
, μ = –

α

λ
,

a = –
α

λ
, a = a = , b =

α

λ
, b = –

α

λ
,

V = –
α

λ
, μ = –

α

λ
, ()

a =
α

λ
, a = –

α

λ
, a = –

α

λ
, b = –

α

λ
, b = –

α

λ
,

V =
α

λ
, μ =

α

λ
,

a = –
α

λ
, a = –

α

λ
, a = –

α

λ
, b = –

α

λ
, b = –

α

λ
,

V = –
α

λ
, μ =

α

λ
,

a =
α

λ
, a =

α

λ
, a = –

α

λ
, b =

α

λ
, b = –

α

λ
,

V =
α

λ
, μ = –

α

λ
,

a = –
α

λ
, a =

α

λ
, a = –

α

λ
, b =

α

λ
, b = –

α

λ
,

V = –
α

λ
, μ = –

α

λ
,

a =
α

λ
, a = a = , b = –

α

λ
, b = –

α

λ
,

V =
α

λ
, μ =

α

λ
,

a = –
α

λ
, a = a = , b = –

α

λ
, b = –

α

λ
,

V = –
α

λ
, μ =

α

λ
.
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These sets give the solutions respectively:

u(x, t) =
α

λ
–
α

λ
tanhμ(x –Vt) –

α

λ
tanh μ(x –Vt),

u(x, t) = –
α

λ
–
α

λ
tanhμ(x –Vt) –

α

λ
tanh μ(x –Vt),

u(x, t) =
α

λ
+
α

λ
tanhμ(x –Vt) –

α

λ
tanh μ(x –Vt),

u(x, t) = –
α

λ
+
α

λ
tanhμ(x –Vt) –

α

λ
tanh μ(x –Vt),

u(x, t) =
α

λ
+
α

λ
cothμ(x –Vt) –

α

λ
coth μ(x –Vt),

u(x, t) = –
α

λ
+
α

λ
cothμ(x –Vt) –

α

λ
coth μ(x –Vt),

u(x, t) =
α

λ
–
α

λ
tanhμ(x –Vt) –

α

λ
tanh μ(x –Vt)

–
α

λ
cothμ(x –Vt) –

α

λ
coth μ(x –Vt), ()

u(x, t) = –
α

λ
–
α

λ
tanhμ(x –Vt) –

α

λ
tanh μ(x –Vt)

–
α

λ
cothμ(x –Vt) –

α

λ
coth μ(x –Vt),

u(x, t) =
α

λ
+
α

λ
tanhμ(x –Vt) –

α

λ
tanh μ(x –Vt)

+
α

λ
cothμ(x –Vt) –

α

λ
coth μ(x –Vt),

u(x, t) = –
α

λ
+
α

λ
tanhμ(x –Vt) –

α

λ
tanh μ(x –Vt)

+
α

λ
cothμ(x –Vt) –

α

λ
coth μ(x –Vt),

u(x, t) =
α

λ
–
α

λ
cothμ(x –Vt) –

α

λ
coth μ(x –Vt),

u(x, t) = –
α

λ
–
α

λ
cothμ(x –Vt) –

α

λ
coth μ(x –Vt).

6 The generalised hyperelastic-rod wave equation
The generalised hyperelastic-rod wave equation reads as follows:

ut – uxxt + αux + βuux + θuux – γuxuxx – uuxxx = , ()

where α, β , θ and γ are constant parameters, and we assume that θ is nonzero. The wave
variable ξ = x –Vt carries () into the ODE

–VU ′ +VU ′′′ + αU ′ + βUU ′ + θUU ′ – γU ′U ′′ –UU ′′′ = . ()

http://www.advancesindifferenceequations.com/content/2013/1/143
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Integrating this equation and considering the constant of integration to be zero, we obtain

(–V + α)U +VU ′′ + βU + θU –
γ – 


(
U ′) –UU ′′ = . ()

Balancing U with UU ′′ in () givesM = . As stated before, the tanh-coth method uses
a finite series

U(μξ ) = S(Y ) =
∑

k=

akY k +
∑

k=

bkY–k ()

to express the solution u(x, t). Substituting () into () and collecting the coefficients of
Y gives the system of algebraic equations:

Y : aθ – aμ
 – aγμ = ,

Y : aaθ – aaμ – aaγμ = ,

Y : aμ
 – aμ

 + aβ – aγμ + aγμ + Vaμ + aaθ

+ aaθ – aaμ = ,

Y : aθ + aaβ + Vaμ + baθ – baμ – aaμ + aaμ

+ aaaθ + baγμ + aaγμ = ,

Y : aμ
 + aα + aβ – Va + aaβ + aγμ – aγμ – Vaμ

– baμ + baθ – baμ + aaθ + aaθ

+ aaμ + baaθ + baγμ + baγμ = ,

Y : aα –Va + baβ + aaβ – Vaμ + baθ + baμ – baμ

+ aaθ + aaμ + baaθ + baaθ

– baγμ + baγμ – aaγμ = ,

Y : bμ
 + aμ

 + aα + aθ + aβ – Va + baβ + baβ – bγμ

– aγμ + Vbμ + Vaμ + baθ + baθ + baμ – baμ

+ baμ – aaμ + baaθ + baaθ

– baγμ – baγμ = , ()

Y : bα –Vb + baβ + baβ – Vbμ + baθ + baθ

+ baμ – baμ + baμ + bbaθ + baaθ

– bbγμ + baγμ – baγμ = ,

Y : bμ
 + bα + bβ – Vb + baβ + bγμ – bγμ – Vbμ

+ baθ + baθ – baμ + baμ + baθ

– baμ + bbaθ + baγμ + baγμ = ,

Y : bθ + bbβ + Vbμ + bbμ – baμ + baθ – baμ
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+ bbaθ + bbγμ + baγμ = ,

Y : bμ
 – bμ

 + bβ – bγμ + bγμ + Vbμ

+ bbθ + baθ – baμ = ,

Y : bbθ – bbμ – bbγμ = ,

Y : bθ – bμ
 – bγμ = .

The last system gives the three sets of solutions as follows.
The first:

a =
(
–γμ + β – μ – βμ + γ μ + θα – μβ – βγ μ

– μγβ + β + γβ + γβ + γ μ + γ β + θαγ + βθα

+ θαγ  – βγ μ + βγ μ – μγβ + βγ  + μθα + μθαγ

+ βθαγ – μθαγ  + βθαγ  – γ μθα + βγ μ + θαγ  + γ μ

+ βγ  + βγ  + γ μ + βγ )
/
{
θ

(
–γ  – γ – β – θα – β – γ  – γ  + βγ μ + βγ μ

+ μγβ + βμ –  + γ μ + γ μ + γ μ + γμ + μ – γβ

– γ β + θαγ  – γβ – βγ  – βγ )},
a = b = b = , a =

μ( + γ )
θ

,

V = –
(
–γμ + β – μ + βμ + γ μ + θα + μβ + βγ μ

+ μγβ – β – β – γβ + γ μ – γ β – γβ + θαγ

+ βθα + θαγ  + βγ μ + βγ μ + μγβ – βγ  + μθα

+ μθαγ + βθαγ – μθαγ  + βθαγ  – γ μθα + βμγ 

+ θαγ  + γ μβ + γ μ – βμ – βγ  + γ μ – βγ  – γ β)
/
{
θ

(
–γ  + γ μ – γ  + γ μ – βγ  + βγ μ – γ + θαγ – γβ

– γβ + γμ + μμβ – β – β – θα + μ + βμ – 
)}
,

μ =
±

(γ  + γ + )
(
–
(
γ  + γ + 

)(
– – γ  – β – γ – γβ

+
(
 – β + μ + β + γ  + γ  + γ  + γβ – γβ + γ β

– βγ  – βγ  – θα – θαγ – θαγ ) 

)) 

 ,

μ =
±

(γ  + γ + )
((
γ  + γ + 

)(
 + γ  + β + γ + γβ

+
(
 – β + μ + β + γ  + γ  + γ  + γβ – γβ + γ β

– βγ  – βγ  – θα – θαγ – θαγ ) 

)) 

 .
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The second:

a =
(
–γμ + β – μ – βμ + γ μ + θα – μβ – βγ μ

– μγβ + β + γβ + γβ + γ μ + γ β + θαγ + βθα

+ θαγ  – βγ μ + βγ μ – μγβ + βγ  + μθα + μθαγ

+ βθαγ – μθαγ  + βθαγ  – γ μθα + βγ μ + θαγ  + γ μ

+ βγ  + βγ  + γ μ + βγ )
/
{
θ

(
–γ  – γ – β – θα – β – γ  – γ  + βγ μ + βγ μ

+ μγβ + βμ –  + γ μ + γ μ + γ μ + γμ + μ

– γβ – γ β + θαγ  – γβ – βγ  – βγ )},
a = a = b = , b =

μ( + γ )
θ

,

V = –
(
–γμ + β – μ + βμ + γ μ + θα + μβ + βγ μ + μγβ

– β – β – γβ + γ μ – γ β – γβ + θαγ + βθα + θαγ 

+ βγ μ + βγ μ + μγβ – βγ  + μθα + μθαγ + βθαγ

– μθαγ  + βθαγ  – γ μθα + βμγ  + θαγ  + γ μβ

+ γ μ – βμ – βγ  + γ μ – βγ  – γ β)
/
{
θ

(
–γ  + γ μ – γ  + γ μ – βγ  + βγ μ – γ + θαγ – γβ

– γβ + γμ + μμβ – β – β – θα + μ + βμ – 
)}
,

μ =
±

(γ  + γ + )
(
–
(
γ  + γ + 

)(
– – γ  – β – γ – γβ

+
(
 – β + μ + β + γ  + γ  + γ  + γβ – γβ + γ β

– βγ  – βγ  – θα – θαγ – θαγ ) 

)) 

 ,

μ =
±

(γ  + γ + )
((
γ  + γ + 

)(
 + γ  + β + γ + γβ

+
(
 – β + μ + β + γ  + γ  + γ  + γβ – γβ + γ β

– βγ  – βγ  – θα – θαγ – θαγ ) 

)) 

 .

The third:

a =
(
–γμ + β – μ – βμ + γ μ +



θα – μβ – βγ μ

– μγβ + β + γβ + γβ + γ μ +


γ β +




θαγ + βθα

– βγ μ + βγ μ – μγβ +



βγ  + μθα + μθαγ +



βθαγ

– μθαγ  +


βθαγ  – γ μθα + βγ μ +




θαγ  + γ μ +


βγ 
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+



βγ  + γ μ + βγ 
)

/
{
θ
(
– + βγ μ + μγβ – γ  – γ – θα – β – γ  – γ  – β

+ μ + βγ μ + θαγ  – γβ – βγ  – βγ  – γβ – γ β

+ γ μ + γ μ + γ μ + γμ + βμ)},
a = b = , a = b =

μ( + γ )
θ

,

V = –
(
–γμ + β – μ + βμ + γ μ + θα + μβ + βγ μ

+ μγβ – β – β – γβ + γ μ – γ β – γβ + θαγ

+ βθα + θαγ  + βγ μ + βγ μ + μγβ – βγ  + μθα

+ μθαγ + βθαγ – μθαγ  + βθαγ  – γ μθα + βμγ 

+ θαγ  + γ μβ + γ μ – βμ – βγ  + γ μ – βγ  – γ β)
/
{(
θγ μ – γ  – γ  + γ μ – βγ  + βγ μ – γ + θαγ – γβ

– γβ + γμ + μμβ – β – β – θα + μ + βμ – 
)}
,

μ =
±

(γ  + γ + )
(
–
(
γ  + γ + 

)(
– – γ  – β – γ – γβ

+
(
 – β + μ + β + γ  + γ  + γ  + γβ – γβ + γ β

– βγ  – βγ  – θα – θαγ – θαγ ) 

)) 

 ,

μ =
±

(γ  + γ + )
((
γ  + γ + 

)(
 + γ  + β + γ + γβ

+
(
 – β + μ + β + γ  + γ  + γ  + γβ – γβ + γ β

– βγ  – βγ  – θα – θαγ – θαγ ) 

)) 

 .

These in turn give the following three solutions:

u(x, t) = a +
μ( + γ )

θ
tanh μ(x –Vt),

u(x, t) = a +
μ( + γ )

θ
coth μ(x –Vt), ()

u(x, t) = a +
μ( + γ )

θ
tanh μ(x –Vt) +

μ( + γ )
θ

coth μ(x –Vt).

7 Conclusion
In this paper, we focused on travelling wave solutions of the general form of Benjamin-
Bona-Mahony-Peregrine-Burgers equation, the general form of the Oskolkov-Benjamin-
Bona-Mahony-Burgers equation, the one-dimensional Oskolkov equation and the gener-
alised hyperelastic-rod wave equation. We derived various exact travelling wave solutions
of these physical structures by using the tanh-coth method. Throughout the work, Maple
was used to deal with the tedious algebraic operations.
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