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Abstract
In this paper, we propose a discrete Lotka-Volterra competition system with infinite
delays and feedback controls. Sufficient conditions which ensure the global
attractivity of the system are obtained. An example together with its numerical
simulation shows the feasibility of the main results.
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1 Introduction
For the last decades, the ecological competition systems governed by differential equa-
tions of Lotka-Volterra type have been investigated extensively. Many interesting results
concerned with the global existence and attractivity of periodic solution, persistence and
extinction of the population, etc. have been obtained; we refer to [–] and the references
therein. Already, many authors [–] have argued that the discrete time models gov-
erned by difference equations are more appropriate than the continuous ones when the
populations have nonoverlapping generations. Particularly, the persistence, permanence,
extinction, local and global stability and the existence of positive periodic solutions, etc.,
for discrete competitive systems are studied in [, , , , –, ]. Chen and Zhou []
discussed the following discrete Lotka-Volterra competition system:

⎧⎨
⎩x(n + ) = x(n) exp[r(n)( – x(n)

K(n)
–μ(n)x(n))],

x(n + ) = x(n) exp[r(n)( – x(n)
K(n)

–μ(n)x(n))].
(.)

They obtained sufficient conditions which guarantee the persistence of system (.). Also,
for the periodic case, they obtained sufficient conditions for the existence of a globally
stable periodic solution.
Chen [] studied the following nonautonomous two-species discrete competitive sys-

tems with deviating arguments:

⎧⎨
⎩x(n + ) = x(n) exp[r(n)( – x(n)

K(n)
–μ(n)

∑n
s=–∞ H(n – s)x(s))],

x(n + ) = x(n) exp[r(n)( – x(n)
K(n)

–μ(n)
∑n

s=–∞ H(n – s)x(s))].
(.)

They obtained sufficient conditions for the permanence of system (.).
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On the other hand, feedback control is the basic mechanism by which systems, whether
mechanical, electrical or biological, maintain their equilibrium or homeostasis. In the
higher life forms, the conditions under which life can continue are quite narrow. A change
in body temperature of half a degree is generally a sign of illness. The homeostasis of the
body is maintained through the use of feedback control []. A primary contribution of
C.R. Darwin during the last century was the theory that feedback over long time peri-
ods is responsible for the evolution of species. In  Volterra [] explained the balance
between two populations of fish in a closed pond using the theory of feedback. Later, a se-
ries of mathematical models have been established to describe the dynamics of feedback
control systems; see [, –, –] and the references therein.
The purpose of this paper is to study the global attractivity of the following discrete

Lotka-Volterra competition system with infinite delays and feedback controls:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(n + ) = x(n) exp[r – ax(n) – a
∑n

s=–∞ H(n – s)x(s)

– c
∑n

s=–∞ H(n – s)μ(s)],

x(n + ) = x(n) exp[r – ax(n) – a
∑n

s=–∞ H(n – s)x(s)

– c
∑n

s=–∞ H(n – s)μ(s)],

μ(n + ) = ( – a)μ(n) + b
∑n

s=–∞ H(n – s)x(s),

μ(n + ) = ( – a)μ(n) + b
∑n

s=–∞ H(n – s)x(s),

(.)

where  < ai < , ri,bi, ci,aij ∈ (,∞), i = , , j = , , xi(n) (i = , ) are the density of the i
species at time n and μi(n) (i = , ) are the control variables at time n.Hi(n) (i = , , . . . , )
are bounded nonnegative sequences such that

∑∞
n=Hi(n) = .

By the biological meaning, we focus our discussion on the positive solutions of (.). So,
it is assumed that the initial conditions of (.) are of the form

xi(s) = �i(s)≥ , �i() > , μi(s) = �i(s)≥ , �i() > , i = , , (.)

where s = . . . , –n, –n+ , . . . , –, . One can easily show that the solutions of (.) with (.)
remain positive for all n ∈ Z+, where Z+ = {, , , . . .}.
Further, assume

(ra – rd)(ra – rd) > , (.)

where d = 
a
(aa + bc), d = 

a
(aa + bc). Then system (.) has a unique positive

equilibrium (x∗
 ,x∗

,μ∗
 ,μ∗

) with

x∗
 =

ra – rd
aa – dd

, x∗
 =

ra – rd
aa – dd

, μ∗
 =

a
b
x∗
 , μ∗

 =
a
b

x∗
.

The aim of this paper is, by developing the analysis technique of Chen [], Liao and Yu
[], Chen and Teng [], to obtain a set of sufficient conditions for the global attractiv-
ity of system (.). The paper is organized as follows. In Section , as preliminaries, some
useful lemmas are given. In Section , we study the global attractivity of positive equilib-
rium of system (.). In Section , the numerical simulations on the global attractivity of
equilibrium are given.
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2 Preliminaries
In this section, we introduce some auxiliary lemmas which will be useful in the following.

Lemma  (see []) Let the function f (u) = u exp(α – βu), where α and β are positive con-
stants. Then f (u) is nondecreasing on u ∈ (, 

β
].

Lemma  (see []) Assume that the sequence {u(n)} satisfies

u(n + ) = u(n) exp
(
α – βu(n)

)
, n = , , . . . ,

where α and β are positive constants and u() > .We have
(i) if α < , then limn→∞ u(n) = α

β
.

(ii) if α ≤ , then u(n) ≤ 
β
for all n = , , . . . .

Lemma  (see []) Suppose that functions f , g : Z+ × [,∞) → [,∞) satisfy f (n,x) ≤
g(n,x) (f (n,x) ≥ g(n,x)) for n ∈ Z+ and x ∈ [,∞) and g(n,x) is nondecreasing with re-
spect to x > . If sequences {x(n)} and {u(n)} are the nonnegative solutions of the following
difference equations:

x(n + ) = f
(
n,x(n)

)
, u(n + ) = g

(
n,u(n)

)
, n = , , , . . . ,

respectively, and x()≤ u() (x()≥ u()), then for all n ≥ , we have

x(n)≤ u(n)
(
x(n)≥ u(n)

)
.

Lemma  (see []) Let x : Z → R be a nonnegative bounded sequence, and let H :
Z+ → R be a nonnegative sequence such that

∑∞
n=H(n) = , where Z = {,±,±, . . .},

R = (–∞,∞). Then

lim inf
n→+∞ x(n)≤ lim inf

n→+∞

n∑
s=–∞

H(n – s)x(s)≤ lim sup
n→+∞

n∑
s=–∞

H(n – s)x(s)≤ lim sup
n→+∞

x(n).

We further consider the following discrete linear equation:

u(n + ) = ( – γ)u(n) + γ

n∑
s=–∞

H(n – s)x(s), n ∈ Z+, (.)

where  < γ < , γ ∈ (,∞). H(n) is a nonnegative sequence defined on Z+ such that∑∞
n=H(n) =  and x(n) is a nonnegative bounded sequence defined on Z with

x∗ ≤ lim inf
n→∞ x(n)≤ lim sup

n→∞
x(n)≤ x∗,

where x∗, x∗ are nonnegative constants.

Lemma  Any solution of system (.) with u() >  satisfies

γ

γ
x∗ ≤ lim inf

n→∞ u(n) ≤ lim sup
n→∞

u(n) ≤ γ

γ
x∗.
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Proof From Lemma ,

lim sup
n→+∞

n∑
s=–∞

H(n – s)x(s)≤ lim sup
n→+∞

x(n)≤ x∗.

Hence, for each ε > , there exists an enough large integer n such that for n≥ n,

n∑
s=–∞

H(n – s)x(n)≤ x∗ + ε.

By system (.), we can obtain

u(n) = u(n)( – γ)n–n + γ

n–∑
i=n

[
( – γ)n–i–

i∑
s=–∞

H(i – s)x(s)

]

≤ u( – γ)n–n + γ
(
x∗ + ε

) n–∑
i=n

( – γ)n–i–

= u( – γ)n–n + γ
(
x∗ + ε

) – ( – γ)n–n
γ

→ γ(x∗ + ε)
γ

, n→ ∞.

Thus,

lim sup
n→∞

u(n) ≤ γ(x∗ + ε)
γ

.

By the arbitrariness of ε, we can obtain

lim sup
n→∞

u(n) ≤ γ

γ
x∗.

We can prove lim infn→∞ u(n) ≥ γ
γ
x∗ in a similar way. Thus, we complete the proof. �

Lemma  Assume limn→∞ x(n) = x̄. For every solution u(n) of equation (.), we have

lim
n→∞u(n) =

γ

γ
x̄.

By Lemma , the proof of Lemma  is obtained easily. Hence, we omit it here.

3 Global attractivity
In this section, we derive sufficient conditions which guarantee that the positive equilib-
rium of system (.) is globally attractive. The technique of proofs is to use an iteration
scheme.

Theorem  Assume

(ra – rd)(ra – rd) > 

and

ra
a

+
bcr
aa

< r ≤ ,
ra
a

+
bcr
aa

< r ≤ .

Then equilibrium (x∗
 ,x∗

,μ∗
 ,μ∗

) of system (.) with (.) is globally attractive.

http://www.advancesindifferenceequations.com/content/2013/1/14
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Proof Let (x(n),x(n),μ(n),μ(n)) be any solution of system (.) with (.). Denote

Ui = lim sup
n→∞

xi(n), Vi = lim inf
n→∞ xi(n), i = , ,

and

Pi = lim sup
n→∞

μi(n), Qi = lim inf
n→∞ μi(n), i = , .

We now claim that Ui = Vi = x∗
i , Pi =Qi = μ∗

i , i = , .
From the first equation of system (.), we obtain

x(n + ) ≤ x(n) exp
[
r – ax(n)

]
, n = , , , . . . .

Consider the auxiliary equation

p(n + ) = p(n) exp
[
r – ap(n)

]
. (.)

From r ≤ , by the conclusion (ii) of Lemma , we have that p(n) ≤ 
a

for all n≥ , where
p(n) is any solution of equation (.) with initial value p() > . From Lemma , we have
f (p) = p exp(r – ap) is nondecreasing for p ∈ (, 

a
].

Hence, from Lemma , we obtain x(n) ≤ p(n) for all n≥ , where p(n) is the solution of
equation (.) with p() = x(). Further, combining it with the conclusion (i) of Lemma ,
we obtain

U = lim sup
n→∞

x(n)≤ lim
n→∞p(n) =

r
a

:=M
.

From the second equation of system (.), we obtain

x(n + )≤ x(n) exp
[
r – ax(n)

]
, n = , , , . . . .

By a similar argument as that above, we have

U = lim sup
n→∞

x(n) ≤ r
a

:=M
 .

By Lemma  and Lemma , we obtain

Pi = lim sup
n→∞

μi(n) ≤ bi
ai
Mi

, i = , .

Then, for any constant ε >  sufficiently small, there is an integer n >  such that if
n≥ n, then

xi(n) ≤ Mi
 + ε, μi(n) ≤ bi

ai
Mi

 + ε, i = , .

Further, from Lemma  and the first equation of system (.), we have

x(n + ) ≥ x(n) exp
[
r – ax(n) – a

(
M

 + ε
)
– c

(
b
a

M
 + ε

)]
, n≥ n.

http://www.advancesindifferenceequations.com/content/2013/1/14
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Consider the auxiliary equation

p(n + ) = p(n) exp
[
r – ap(n) – a

(
M

 + ε
)
– c

(
b
a

M
 + ε

)]
, n≥ n. (.)

From ra
a

+ bcr
aa

< r ≤  and the arbitrariness of ε > , we have

 < r – a
(
M

 + ε
)
– c

(
b
a

M
 + ε

)
< .

By the conclusion (ii) of Lemma , we have that p(n) ≤ 
a

for all n≥ n, where p(n) is any
solution of equation (.) with initial value p(n) > . From Lemma , we have

f (p) = exp

[
r – ap – a

(
M

 + ε
)
– c

(
b
a

M
 + ε

)]

is nondecreasing for p ∈ (, 
a

].
Hence, from Lemma , we have x(n) ≥ p(n) for all n ≥ n, where p(n) is the solution of

equation (.) with p(n) = x(n). Combining it with the conclusion (i) of Lemma , we
obtain

V = lim inf
n→∞ x(n) ≥ lim

n→∞p(n) =

a

[
r – a

(
M

 + ε
)
– c

(
b
a

M
 + ε

)]
.

From the arbitrariness of ε > , we conclude V ≥ m
, where

m
 =


a

[
r – aM

 – c
b
a

M


]
.

From Lemma  and the second equation of system (.), we further have

x(n + )≥ x(n) exp
[
r – ax(n) – a

(
M

 + ε
)
– c

(
b
a

M
 + ε

)]
, n≥ n.

By a similar argument as that above, we can obtain

V = lim inf
n→∞ x(n) ≥ 

a

[
r – aM

 – c
b
a

M


]
:=m

 .

By Lemma  and Lemma , we further obtain

Qi = lim inf
n→∞ μi(n) ≥ bi

ai
mi

, i = , .

Hence, for ε >  sufficiently small, there is an n > n such that if n≥ n, then

xi(n) ≥ mi
 – ε, μi(n) ≥ bi

ai
mi

 – ε, i = , .

From Lemma  and the first equation of system (.), we further have

x(n + ) ≤ x(n) exp
[
r – ax(n) – a

(
m

 – ε
)
– c

(
b
a

m
 – ε

)]
, n≥ n.
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Consider the auxiliary equation

p(n + ) ≤ p(n) exp
[
r – ap(n) – a

(
m

 – ε
)
– c

(
b
a

m
 – ε

)]
, n≥ n.

From ra
a

+ bcr
aa

< r ≤  and the arbitrariness of ε > , we have

 < r – a
(
m

 – ε
)
– c

(
b
a

m
 – ε

)
< .

Similarly to the above discussion, we can obtain

U = lim inf
n→∞ x(n) ≤ lim

n→∞p(n) =

a

[
r – a

(
m

 – ε
)
– c

(
b
a

m
 – ε

)]
.

From the arbitrariness of ε > , we conclude U ≤ M
, where

M
 =


a

[
r – am

 – c
b
a

m


]
.

From Lemma  and the second equation of system (.), we further have

x(n + )≤ x(n) exp
[
r – ax(n) – a

(
m

 – ε
)
– c

(
b
a

m
 – ε

)]
, n≥ n.

By a similar argument as that above, we can obtain

U = lim inf
n→∞ x(n)≤ 

a

[
r – am

 – c
b
a

m


]
:=M

.

By Lemma  and Lemma , we obtain

Pi = lim sup
n→∞

μi(n) ≤ bi
ai
Mi

, i = , .

Hence, for ε >  sufficiently small, there is an n such that if n≥ n,

xi(n) ≤ Mi
 + ε, μi(n) ≤ bi

ai
Mi

 + ε, i = , .

From Lemma  and the first equation of system (.), we have

x(n + ) ≥ x(n) exp
[
r – ax(n) – a

(
M

 + ε
)
– c

(
b
a

M
 + ε

)]
, n≥ n.

Consider the auxiliary equation

p(n + ) = p(n) exp
[
r – ap(n) – a

(
M

 + ε
)
– c

(
b
a

M
 + ε

)]
, n≥ n.

Since

 < r – a
(
M

 + ε
)
– c

(
b
a

M
 + ε

)
< ,

http://www.advancesindifferenceequations.com/content/2013/1/14
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similarly to the above discussion, we obtain

V = lim inf
n→∞ x(n) ≥ lim

n→∞p(n) =

a

[
r – a

(
M

 + ε
)
– c

(
b
a

M
 + ε

)]
.

From the arbitrariness of ε > , we conclude V ≥ m
, where

m
 =


a

[
r – aM

 – c
b
a

M


]
.

From Lemma  and the second equation of system (.), we further have

x(n + )≥ x(n) exp
[
r – ax(n) – a

(
M

 + ε
)
– c

(
b
a

M
 + ε

)]
, n≥ n.

By a similar argument as that above, we can obtain

V = lim inf
n→∞ x(n) ≥ 

a

[
r – aM

 – c
b
a

M


]
:=m

.

Continuing the above process, we can obtain four sequences {Mi
n}, {mi

n}, i = ,  such
that

M
n+ =


a

[
r – am

n – c
b
a

m
n

]
, M

n+ =

a

[
r – am

n – c
b
a

m
n

]
(.)

and

m
n =


a

[
r – aM

n – c
b
a

M
n

]
, m

n =

a

[
r – aM

n – c
b
a

M
n

]
. (.)

Clearly, we have

mi
n ≤ Vi ≤ Ui ≤ Mi

n, i = , .

Now, by means of the inductive method, we prove {Mi
n} is monotonically decreasing,

{mi
n} is monotonically increasing, i = , .
Firstly, it is clear thatMi

 ≤ Mi
,mi

 ≥ mi
, i = , . For n = k (k ≥ ), we assumeMi

k ≤ Mi
k–

andmi
k ≥ mi

k–, i = , , then we have

M
k+ =


a

[
r – am

k – c
b
a

m
k

]
≤ 

a

[
r – am

k– – c
b
a

m
k–

]
=M

k ,

M
k+ =


a

[
r – am

k – c
b
a

m
k

]
≤ 

a

[
r – am

k– – c
b
a

m
k–

]
=M

k

and

m
k+ =


a

[
r – aM

k+ – c
b
a

M
k+

]
≥ 

a

[
r – aM

k – c
b
a

M
k

]
=m

k ,

m
k+ =


a

[
r – aM

k+ – c
b
a

M
k+

]
≥ 

a

[
r – aM

k – c
b
a

M
k

]
=m

k .

http://www.advancesindifferenceequations.com/content/2013/1/14
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Figure 1 Dynamical behaviors of system (1.3) with r1 = 0.6, r2 = 0.4, a12 = 0.3, a21 = 0.2, a11 = 0.5,
a22 = 0.4, a1 = 0.8, a2 = 1.2, b1 = 0.1, b2 = 0.2, c1 = 0.2, c2 = 0.1, H1(n) = H4(n) = e–1

e e–n ,

H2(n) = H3(n) = e2–1
e2

e–2n , H5(n) = H6(n) = e4–1
e4

e–4n .

Therefore, {Mi
n} is monotonically decreasing, {mi

n} is monotonically increasing, i = , .
Consequently, limn→∞ Mi

n and limn→∞ mi
n both exist, i = , . Let

lim
n→∞Mi

n = x̄i, lim
n→∞mi

n = ȳi, i = , .

From (.) and (.), we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ax̄ + aȳ + bc
a

ȳ = r,

ax̄ + aȳ + bc
a

ȳ = r,

aȳ + ax̄ + bc
a

x̄ = r,

aȳ + ax̄ + bc
a

x̄ = r.

(.)

It is clear that (x∗
 ,x∗

,μ∗
 ,μ∗

) is a unique solution of equations (.). Therefore,

Ui = Vi = lim
n→∞xi(n) = x∗

i , i = , .

Further, by Lemma , we can obtain limn→∞ μi(n) = μ∗
i , i = , . Thus, we complete the

proof of Theorem . �

4 Example
The following example shows the feasibility of the main results.

Example  Choose r = ., r = ., a = ., a = ., a = ., a = ., a = ., a =
., b = ., b = ., c = ., c = ., H(n) = H(n) = e–

e e–n, H(n) = H(n) = e–
e e–n,

H(n) =H(n) = e–
e e–n in system (.). By calculating, we have that positive equilibrium

(., .,., .), (ra – rd)(ra – rd) = ., r – ( raa
+ bcr

aa
) =

., r – ( raa
+ bcr

aa
) = .. Since

(ra – rd)(ra – rd) > ,
(
ra
a

+
bcr
aa

)
< r ≤ ,

(
ra
a

+
bcr
aa

)
< r ≤ ,

http://www.advancesindifferenceequations.com/content/2013/1/14
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the conditions of Theorem  hold. So, equilibrium (., .,., .) is glob-
ally attractive.
Choose initial values (x(s),x(s),μ(s),μ(s)) = (., ., ., .), s = . . . , –n, –n + , . . . ,

–, .
By the numerical simulation (see Figure ), we find that the solution (x(n),x(n),μ(n),

μ(n)) turns to equilibrium (., .,., .) as n→ ∞.
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