
Batko and Brzdęk Advances in Difference Equations 2013, 2013:138
http://www.advancesindifferenceequations.com/content/2013/1/138

RESEARCH Open Access

A fixed point theorem and the Hyers-Ulam
stability in Riesz spaces
Bogdan Batko1,2 and Janusz Brzdęk1*
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1 Introduction
The Hyers-Ulam stability for functional, but also for difference, differential and integral
equations, is a very quickly growing area of investigations (for more details and further
references, see, e.g., [–]; examples of some recent results can be found in [–]). It is
related to the notions of shadowing (see, e.g., [–]) as well as to the theories of pertur-
bation (see, e.g., [, ]) and optimization. The first known result on such stability is due
to Pólya and Szegö [] and reads as follows.

For every real sequence (an)n∈N with supn,m∈N |an+m –an –am| ≤ , there is a real num-
ber ω such that supn∈N |an –ωn| ≤ . Moreover, ω = limn→∞ an/n.

But it was Ulam (cf. [, ]) who in  gave the main motivation for the study of that
subject, at the University of Wisconsin, where he presented some unsolved problems and
in particular the following one.

Let G be a group and (G,d) a metric group. Given ε > , does there exist δ >  such
that if f : G → G satisfies d(f (xy), f (x)f (y)) < δ for all x, y ∈ G, then a homomor-
phism T :G →G exists with d(f (x),T(x)) < ε for all x, y ∈G?

In  Hyers [] published an answer to it, which is presented below in a bit general-
ized form (see, e.g., []).

Let (X, +) be a commutative semigroup, Y be a Banach space and ε > . Then for every
g : X → Y with supx,y∈X ‖g(x + y) – g(x) – g(y)‖ ≤ ε there is a unique f : X → Y such
that supx∈X ‖g(x) – f (x)‖ ≤ ε and

f (x + y) = f (x) + f (y), x, y ∈ X. ()

By now we express that result simply saying that the Cauchy functional equation () is
Hyers-Ulam stable (or has the Hyers-Ulam stability) in the class of functions YX .
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TheHyers-Ulam stability in Riesz spaces have already been studied in [] (with a direct
method) and in [] (with an application of the spectral representation theorem). Themain
motivation for this kind of investigations follows from the pretty natural concept to pose
the stability problem for a given functional equation in the settings of an ordered structure
as an alternative for the topological or metric ones. To preserve the spirit of the Hyers-
Ulam stability, we do that in a way which allows to sustain the full coincidence with the
classical notion in the simplest case of real functions.
The fixed point approach has been already applied in the investigation of the Hyers-

Ulam stability, e.g., in [, , , –] and it seems that Baker (see []) has used this
tool for the first time in this field; for a survey on this subject, see []. In this paper we
continue this direction following the approach presented in [, , ].We start our paper
with a natural fixed point theorem and next derive some stability results from it.

2 Preliminaries
In this paper, as usual,N,N,R andR+ denote the sets of all positive integers, nonnegative
integers, real numbers and nonnegative real numbers, respectively.
For the readers’ convenience, we quote basic definitions and properties concerning Riesz

spaces (see []).

Definition  (cf. [], Definition . and Definition .) We say that a real linear space
L, endowed with a partial order ≤⊂ L, is a Riesz space if sup{x, y} exists for all x, y ∈ L and

ax + y≤ az + y, x, y, z ∈ X,x ≤ z,a ∈R+;

we define the absolute value of x ∈ L by the formula |x| := sup{x, –x} ≥ .
A Riesz space L is calledArchimedean if, for each x ∈ L, the inequality x ≤  holds when-

ever the set {nx : n ∈N} is bounded from above.

It is easily seen that in a Riesz space L we have |v| ≥  and αu ≤ βu for every v,u ∈ L,
u≥ , and α,β ∈ R, α ≤ β .
There are several types of convergence that may be defined according to the order struc-

ture. One of them is the relatively uniform convergence defined as follows.

Definition  (cf. [], Definition .) Let L be a Riesz space and e ∈ L. A sequence {fn}n∈N
in L is said to converge e-uniformly to an element f ∈ L whenever, for every ε > , there
exists a positive integer n such that |f – fn| ≤ εe holds for all n ≥ n. A sequence {fn}n∈N
in L is called e-uniform Cauchy sequence whenever, for every ε > , there exists a positive
integer n such that |fm – fn| ≤ εe holds for allm,n≥ n.

Let us point out (see [, p.]) that in a Riesz space L that is Archimedean, the e-
uniform limit of a sequence in it, if exists, is unique and the fact that {fn}n∈N converges
e-uniformly to f will be denoted by lime

n→∞ fn = f (in particular, if v ∈ L and fn ≥ v for
n ∈N, then f ≥ v).

Definition  The series
∑∞

i= ai in a Riesz space L is said to converge e-uniformly (for
a given e ∈ L) to an element S ∈ L whenever the sequence Sn :=

∑n
i= ai converges e-

uniformly to S. If L is Archimedean, then we write
∑∞

i= ai
e= S.
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Definition (cf. [], Definition .) ARiesz space L is called e-uniformly complete (with
a given e ∈ L) whenever every e-uniform Cauchy sequence has an e-uniform limit.

There is a large class of spaces satisfying the above conditions. In particular, every
Dedekind σ -complete space (that is such that any non-empty at most countable subset
which is bounded from above has a supremum) is an Archimedean e-uniformly complete
space for every e≥  (see [, pp., , ]).

3 Main result
In what followsX is a nonempty set and Y is an Archimedean u-uniformly complete Riesz
space for some given u ∈ Y .
We start that part with a lemma that is quite elementary. However, since we use it several

times, we present it with a proof for the convenience of readers.

Lemma  Let L be an Archimedean Riesz space and e ∈ L. The sequence of rests rn
e:=∑∞

i=n+ ai of an e-uniformly convergent series
∑∞

i= ai in L is e-uniformly convergent to .

Proof Let us observe that |∑m
i=n+ ai – S + Sn| = |Sm – Sn – S + Sn| = |Sm – S|. Consequently,∑∞

i=n+ ai
e= S – Sn ∈ L as Sm converges e-uniformly to S and, therefore, rn is well defined.

Moreover, we have lime
n→∞rn = lime

n→∞(S – Sn) =  ∈ L. �

The following two hypotheses will be useful.
(H) Mappings f, . . . , fk : X → X and L, . . . ,Lk : X →R+ are given and J : YX → YX is

an operator satisfying the inequality

∣∣(J a)(t) – (J b)(t)
∣∣ ≤

k∑
i=

Li(t)
∣∣a(fi(t)) – b

(
fi(t)

)∣∣, a,b ∈ YX , t ∈ X. ()

(H) � : YX → YX is a linear operator given by

(�δ)(t) :=
k∑
i=

Li(t)δ
(
fi(t)

)
, δ ∈ YX , t ∈ X. ()

Observe that � is monotone with respect to the pointwise ordering (because Li is non-
negative). Our main theorem reads as follows.

Theorem  Let us assume that hypotheses (H) and (H) are fulfilled and that functions
ϕ, ε,S : X → Y satisfy the conditions

∣∣(J ϕ)(t) – ϕ(t)
∣∣ ≤ ε(t), t ∈ X, ()

∞∑
n=

(
�nε

)
(t) u= S(t), t ∈ X. ()

Then J has a unique fixed point ψ ∈ YX with

∣∣ϕ(t) –ψ(t)
∣∣ ≤ S(t), t ∈ X. ()

http://www.advancesindifferenceequations.com/content/2013/1/138
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Moreover,

ψ(t) = lim
n→∞

u(J nϕ
)
(t), t ∈ X. ()

Proof The proof is somewhat similar to the proof of [, Theorem ], but since there are
also significant differences between them, we present it here.
First we show by induction that

∣∣(J nϕ
)
(t) –

(
J n+ϕ

)
(t)

∣∣ ≤ (
�nε

)
(t), t ∈ X. ()

For n = , () and () coincide. So, let us suppose that () holds for a fixed n ∈ N. Using
() and the definition of � (i.e., ()), we have

∣∣(J n+ϕ
)
(t) –

(
J n+ϕ

)
(t)

∣∣
≤

k∑
i=

Li(t)
∣∣(J nϕ

)(
fi(t)

)
–

(
J n+ϕ

)(
fi(t)

)∣∣

≤
k∑
i=

Li(t)
(
�nε

)(
fi(t)

)

=
(
�n+ε

)
(t), t ∈ X,

which completes the proof of (). Therefore, for n,k ∈N, we get

∣∣(J nϕ
)
(t) –

(
J n+kϕ

)
(t)

∣∣ ≤
n+k–∑
i=n

(
�iε

)
(t), t ∈ X. ()

This, according to () and Lemma , means that ((J ϕ)n(t))n∈N is a u-uniform Cauchy se-
quence for any t ∈ X, and therefore u-uniformly convergent, as Y is u-uniformly complete.
Let us denote by ψ(t) its relative uniform limit. Using () with n = , we have

∣∣ϕ(t) – (
J kϕ

)
(t)

∣∣ ≤
k–∑
i=

(
�iε

)
(t), t ∈ X. ()

Write Sk–(t) :=
∑k–

i= (�iε)(t) for k ∈N and t ∈ X. By the triangle inequality and (), for
any k ∈N and t ∈ X, we obtain

∣∣ϕ(t) –ψ(t)
∣∣ ≤ ∣∣ϕ(t) – (

J kϕ
)
(t)

∣∣ + ∣∣(J kϕ
)
(t) –ψ(t)

∣∣
≤ Sk–(t) +

∣∣(J kϕ
)
(t) –ψ(t)

∣∣
≤ ∣∣Sk–(t) – S(t)

∣∣ + ∣∣(J kϕ
)
(t) –ψ(t)

∣∣ + S(t).

From the u-uniform convergence of ((J ϕ)k(t))k∈N toψ(t) and (Sk–(t))k∈N to S(t), for t ∈ X,
we derive

∣∣ϕ(t) –ψ(t)
∣∣ ≤ S(t) +


n
u, n ∈N, t ∈ X, ()

which results in () as Y is Archimedean.
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We will show that ψ is a fixed point of J . Having applied () with a = ψ and b = J n–ϕ,
for any t ∈ X, one has

∣∣(Jψ)(t) –J
(
J n–ϕ

)
(t)

∣∣ ≤
k∑
i=

Li(t)
∣∣ψ(

fi(t)
)
–J n–ϕ

(
fi(t)

)∣∣, n ∈N. ()

Next, using the triangle inequality |(Jψ)(t) – ψ(t)| ≤ |(Jψ)(t) – (J nϕ)(t)| + |(J nϕ)(t) –
ψ(t)| (for n ∈ N, t ∈ X), we infer that

∣∣(Jψ)(t) –ψ(t)
∣∣ ≤ 

m
u

( k∑
i=

Li(t) + 

)
, t ∈ X,m ∈N, ()

which means that Jψ = ψ as Y is Archimedean.
For the proof of the uniqueness of ψ , assume that ψ,ψ ∈ YX are two fixed points of J

satisfying

∣∣ϕ(t) –ψi(t)
∣∣ ≤ S(t), t ∈ X, i = , . ()

At first let us observe that for every n ∈N, we get

∣∣(J nψ
)
(t) –

(
J nψ

)
(t)

∣∣ ≤ 
∞∑(

�iε
)
(t), t ∈ X. ()

In fact, for n =  inequality () follows directly from (). Now assume that () holds for
a given n ∈N. Then, by (), for every t ∈ X, we have

∣∣(J n+ψ
)
(t) –

(
J n+ψ

)
(t)

∣∣
=

∣∣(J (
J nψ

))
(t) –

(
J

(
J nψ

))
(t)

∣∣
≤

k∑
i=

Li(t)
∣∣(J nψ

)(
fi(t)

)
–

(
J nψ

)(
fi(t)

)∣∣

≤ 
k∑
i=

Li(t)
∞∑
j=n

(
�jε

)(
fi(t)

)

= 
∞∑
j=n

k∑
i=

Li(t)
(
�jε

)(
fi(t)

)

= 
∞∑

j=n+

(
�jε

)
(t).

Thus we have proved (). Letting n→ ∞ and taking into account Lemma , we infer that
ψ = ψ. �

Remark  If in () we take k = , f(x) = x and L(x) = λ ∈ [, ) for x ∈ X, then Theorem 
becomes a result corresponding to the classical Banach contraction principle.
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Remark  Wecan associate to a given u ∈ Y an extended (i.e., admitting the infinite value)
norm on Y denoted by ‖ · ‖u and defined by

‖v‖u := inf
{
λ ∈R+ : |v| ≤ λu

}
, v ∈ Y .

From Theorem  we can easily deduce the following corollary.

Corollary  Let hypothesis (H) be fulfilled, � :RX
+ →R

X
+ be a linear operator given by

(�δ)(t) :=
k∑
i=

Li(t)δ
(
fi(t)

)
, δ ∈R

X
+ , t ∈ X, ()

and functions ϕ : X → Y and ε : X →R+ satisfy the conditions

∥∥(J ϕ)(t) – ϕ(t)
∥∥
u ≤ ε(t), t ∈ X, ()

S(t) :=
∞∑
n=

(
�n

ε
)
(t) < ∞, t ∈ X. ()

Then J has a unique fixed point ψ ∈ YX with

∥∥ϕ(t) –ψ(t)
∥∥
u ≤ S(t), t ∈ X. ()

Moreover, ψ is given by ().

Proof Define S, ε : X → Y by S(t) := S(t)u and ε(t) := ε(t)u for t ∈ X. Next let � : YX →
YX be given by (). Then it is easily seen that () and () are valid. Consequently, in view of
Theorem , J has a unique fixed point ψ ∈ YX such that () holds; moreover, ψ is given
by (). Clearly, () and () are equivalent, whence we derive the statement concerning the
uniqueness of ψ . �

4 The Hyers-Ulam stability
In the simplest case k = , Theorem  yields at once the following corollary concerning the
Hyers-Ulam stability of a quite general functional equation

ψ(t) = F
(
t,ψ

(
ξ (t)

))
()

in the class of functions YX , with given F : X × Y → Y and ξ : X → X.

Corollary  Let F : X × Y → Y , ξ : X → X, λ : X →R+, ϕ, ε,S : X → Y ,

∣∣F(t,u) – F(t, v)
∣∣ ≤ λ(t)|u – v|, t ∈ X,u, v ∈ Y , ()

S(t) u= ε(t) +
∞∑
n=

( n∏
i=

λ
(
ξ i(t)

))
ε
(
ξn+(t)

)
, t ∈ X, ()

and

∣∣ϕ(t) – F
(
t,ϕ

(
ξ (t)

))∣∣ ≤ ε(t), t ∈ X. ()
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Then there is a unique solution ψ ∈ YX of functional equation () such that

∣∣ψ(t) – ϕ(t)
∣∣ ≤ S(t), t ∈ X. ()

Moreover, ψ is given by () with (T g)(t) = F(t, g(ξ (t))) for g ∈ YX , t ∈ X.

Proof Use Theorem  with k = , f = ξ , L = λ, and (J g)(t) = F(t, g(ξ (t))) for g ∈ YX ,
t ∈ X. �

Example  If there is α ∈R+ such that (in Corollary ) λ(t)≤ α for t ∈ X, then clearly we
get S(t) ≤ ∑∞

n= αnε(ξn(t)) for t ∈ X, provided
∑∞

n= αnε(ξn(t)) is u-uniformly convergent
in Y . Moreover, in the case where ε(f (t))≤ βε(t) for all t ∈ X and some β ∈R+ with αβ < 
(e.g., when α <  and ε is a constant function), S(t) ≤ 

–αβ
ε(t) for t ∈ S. This means that

Corollary  implies some analogues of the results in [] for the Riesz spaces.

Analogously, from Corollary  we obtain the following.

Corollary  Let F : X × Y → Y , ξ : X → X, ε,λ : X →R+, ϕ : X → Y , () holds,

S(t) := ε(t) +
∞∑
n=

( n∏
i=

λ
(
ξ i(t)

))
ε

(
ξn+(t)

)
< ∞, t ∈ X, ()

∥∥ϕ(t) – F
(
t,ϕ

(
ξ (t)

))∥∥
u ≤ ε(t), t ∈ X. ()

Then there is a unique solution ψ ∈ YX of equation () such that

∥∥ψ(t) – ϕ(t)
∥∥
u ≤ S(t), t ∈ X. ()

Moreover, ψ is given by ().

Example  If (in Corollaries  and ) F(t, v) = b(t)v + H(t) for t ∈ X, v ∈ Y with some
b : X →R, ξ : X → X and H : X → Y , then we get stability results for the equation

(t) = b(t)
(
ξ (t)

)
+H(t)

corresponding to [, Theorem . and Corollary .], from which we can easily derive
stability results analogous to [, Theorem .] (provided  /∈ b(X)) for the equation


(
ξ (t)

)
=


b(t)

(t) –
H(t)
b(t)

.

We also can use Theorem  and Corollary  to deal with the stability of a bit more in-
volved equations with any number of unknown functions, e.g., as follows.

Corollary  Let k,m ∈ N, L, . . . ,Lk : X → R+, G : X × Ym → Y , f, . . . , fk , g, . . . , gm : X →
X,  : X × Yk → Y and

∣∣(t,u, . . . ,uk) –(t, v, . . . , vk)
∣∣ ≤

k∑
i=

Li(t)
∣∣ui – vi

∣∣, ui, vi ∈ Y , t ∈ X. ()

http://www.advancesindifferenceequations.com/content/2013/1/138
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Suppose that functions ϕ, ε,μ, . . . ,μm : X → Y satisfy the inequality

∣∣ϕ(t) –
(
t,ϕ

(
f(t)

)
, . . . ,ϕ

(
fk(t)

))
–G

(
t,μ

(
g(t)

)
, . . . ,μm

(
gm(t)

))∣∣ ≤ ε(t), t ∈ X,

and () holds with � given by (). Then there exists a unique ψ : X → Y satisfying inequal-
ity (), which solves the equation

ψ(t) = 
(
t,ψ

(
f(t)

)
, . . . ,ψ

(
fk(t)

))
+G

(
t,μ

(
g(t)

)
, . . . ,μm

(
gm(t)

))
. ()

Moreover,

ψ(t) = lim
n→∞

u(Tn
ϕ

)
(t), t ∈ X, ()

where (Th)(t) :=(t,h(f(t)), . . . ,h(fk(t))) +G(t,μ(g(t)), . . . ,μm(gm(t))) for h ∈ YX , t ∈ X.

Proof It is enough to use Theorem  with J = T. �

Corollary  Let k,m ∈ N, L, . . . ,Lk : X → R+, G : X × Ym → Y , f, . . . , fk , g, . . . , gm : X →
X, and  : X × Yk → Y satisfy (). Suppose that functions ϕ,μ, . . . ,μm : X → Y and
ε : X →R+ are such that

∥∥ϕ(t) –
(
t,ϕ

(
f(t)

)
, . . . ,ϕ

(
fk(t)

))
–G

(
t,μ

(
g(t)

)
, . . . ,μm

(
gm(t)

))∥∥
u ≤ ε(t), t ∈ X,

and () holds with � given by (). Then there exists a unique ψ : X → Y satisfying
inequality () and equation ().Moreover, ψ is given by ().

Proof It is enough to use Corollary  with J = T. �

In the next part we supply an example of a result concerning the Hyers-Ulam stability
of functional equations in several variables.

5 Stability of the equation of homomorphism for the square symmetric
groupoids

Let T be a nonempty set. A binary operation � : T → T is square symmetric provided

(x � y) � (x � y) = (x � x) � (y � y), x, y ∈ T

(see, e.g., [, –]). If (T , +) is a commutative semigroup, γ ∈ T and α,β : T → T are
endomorphisms with α ◦ β = β ◦ α (for instance, α = βn for an n ∈ N), then it is easy to
check that ∗ : T → T , given by

x ∗ y := α(x) + β(y) + γ, x, y ∈ T ,

is square symmetric. So, it is easily seen that the following two very well-known functional
equations

f (x + y) = f (x) + f (y) (Cauchy),

f
(
x + y


)
=
f (x) + f (y)


(Jensen)

http://www.advancesindifferenceequations.com/content/2013/1/138
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are particular examples of homomorphism equations for square symmetric groupoids.
Moreover, we have a very particular case of a square symmetric operation when T is a
linear space over a field K and ∗ is defined by

s ∗ t := Cs +Dt + u, s, t ∈ T , ()

with some fixed C,D ∈K and u ∈ T . So, the general linear functional equation

f (Cx +Dy + u) = Af (x) + Bf (y) + c

(for instance, with some fixed A,B ∈ K, c ∈ T and for functions f ∈ TT ) is also an example
of a homomorphism equation for some square symmetric groupoids.
The next corollary provides an example of stability result for the functional equation of

homomorphism for square symmetric groupoids, which corresponds to some outcomes
in [, –].

Corollary  Let C,D ∈ R, C �= –D, S,ϕ : X → Y , χ : X → Y , w ∈ Y , � : X → X be a
square symmetric binary operation, and let ρ : X → X be given by ρ(t) := t � t for t ∈ X,

∣∣ϕ(s � t) –Cϕ(s) –Dϕ(t) –w
∣∣ ≤ χ (s, t), s, t ∈ X, ()

S(t) u=
∞∑
n=

|C +D|–n–χ(
ρn(t),ρn(t)

)
, t ∈ X, ()

and

lim
n→∞

u|C +D|–nχ(
ρn(t),ρn(s)

)
= , s, t ∈ X. ()

Then there exists a unique solution  ∈ YX of the functional equation

(s � t) = C(s) +D(t) +w ()

such that

∣∣ϕ(t) –(t)
∣∣ ≤ S(t), t ∈ X. ()

Moreover,

(t) = lim
n→∞

u

[
(C +D)–nϕ

(
ρn(t)

)
–

n∑
i=

(C +D)–iw

]
, t ∈ X. ()

Proof Take s = t in (). Then we get

∣∣ϕ(
ρ(s)

)
– (C +D)ϕ(s) –w

∣∣ ≤ χ (s, s), s ∈ X, ()

and consequently

∣∣(C +D)–ϕ
(
ρ(s)

)
– (C +D)–w – ϕ(s)

∣∣ ≤ |C +D|–χ (s, s), s ∈ X. ()

http://www.advancesindifferenceequations.com/content/2013/1/138
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Hence () and () hold with ξ = ρ and

F(t, v) := (C +D)–(v –w), ε(t) := |C +D|–χ (t, t), λ(t) := |C +D|– ()

for v ∈ Y , t ∈ X. Now, if S : X → Y is defined by (), then it is easily seen that () holds.
Consequently, according to Corollary , there exists a unique solution ∈ YX of the equa-
tion

ϕ
(
ρ(s)

)
= (C +D)ϕ(s) +w ()

such that condition () is fulfilled. Moreover,  is given by ().
Now we show that  is a solution of equation (). To this end, fix s, t ∈ X and n ∈ N.

Then ρn(s � t) = ρn(s) � ρn(t), whence by (),

∣∣CT nϕ(s) +DT nϕ(t) +w – T nϕ(s � t)
∣∣

=

∣∣∣∣∣C
(
(C +D)–nϕ

(
ρn(s)

)
–

n∑
i=

(C +D)–iw

)

+D

(
(C +D)–nϕ

(
ρn(t)

)
–

n∑
i=

(C +D)–iw

)
+w

–

(
(C +D)–nϕ

(
ρn(s � t)

)
–

n∑
i=

(C +D)–iw

)∣∣∣∣∣
≤ |C +D|–n∣∣Cϕ

(
ρn(s)

)
+Dϕ

(
ρn(t)

)
+w – ϕ

(
ρn(s) � ρn(t)

)∣∣
≤ |C +D|–nχ(

ρn(s),ρn(t)
)
.

This means that  satisfies () (in view of () and ()).
Since  ∈ XS is the unique solution of functional equation () fulfilling (), and ev-

ery solution of () satisfies (), we also obtain the statement concerning the uniqueness
of . �

Corollary  Let C,D ∈ R, C �= –D, ϕ : X → Y , χ : X → R+, w ∈ Y , � : X → X be a
square symmetric binary operation, let ρ : X → X be given by ρ(t) := t � t for t ∈ X,

∥∥ϕ(s � t) –Cϕ(s) –Dϕ(t) –w
∥∥
u ≤ χ(s, t), s, t ∈ X, ()

S(t) :=
∞∑
n=

χ(ρn(t),ρn(t))
|C +D|n+ <∞, t ∈ X ()

and

lim
n→∞

χ(ρn(s),ρn(t))
|C +D|n = , s, t ∈ X. ()

Then there is a unique solution  ∈ YX of equation () such that

∥∥ϕ(t) –(t)
∥∥
u ≤ S(t), t ∈ X. ()

Moreover,  is given by ().

http://www.advancesindifferenceequations.com/content/2013/1/138
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Proof We argue as in the proof of Corollary . Namely, define S : X → Y and χ : X → Y
by S(t) := S(t)u and χ (t) := χ(t)u for t ∈ X. Then ()-() imply ()-(). Hence, by
Corollary , there exists a unique solution  ∈ YX of functional equation () such that
() holds; in particular, is given by (). Clearly () and () are equivalent, so we also
obtain the statement on the uniqueness of . �

In the very particular case where C =D =  and functions χ and χ are constant, Corol-
laries  and  yield analogues of the classical result of Hyers [].
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Mathematics, WSB – NLU, Zielona 27, Nowy Sącz, 33-300, Poland.
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