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Abstract

In this paper, we consider a dual Internet congestion control algorithm applied to a
nonstandard finite-difference scheme, which responds to congestion signals from the
network. By choosing delay as a bifurcation parameter, the local asymptotic stability
of the positive equilibrium and the existence of Neimark-Sacker bifurcations are
analyzed. Then the explicit algorithm for determining the direction of Neimark-Sacker
bifurcations and the stability of invariant closed curves are derived. In addition, we
give specific examples to illustrate the phenomenon that coincides with our
theoretical results.
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1 Introduction
Congestion control algorithms and active queue management (AQM) for Internet have
been the focus of intense research since the seminal work of Kelly et al. [1]. Congestion
control schemes can be divided into three classes: primal algorithms, dual algorithms and
primal-dual algorithms [2]. In primal algorithms, the users adapt the source rates dynam-
ically based on the route prices (the congestion signal generated by the link), and the links
select a static law to determine the link prices directly from the arrival rates at the links.
However, in dual algorithms, the links adapt the link prices dynamically based on the link
rates, and the users select a static law to determine the source rates directly from the route
prices and the source parameters. Primal-dual algorithms combine these two schemes and
dynamically compute both user rates and link prices. In [3], a stability condition was pro-
vided for a single proportionally fair congestion controller with delayed feedback. Since
then, this result was extended to networks in [4, 5]. In [4], the author studied the case of a
network with users having arbitrary propagation delays to and from any links in the net-
work. In [5], the authors studied a more general network with different roundtrip delays
amongst different TCP connections.

In this paper, we consider a dual congestion control algorithm, which can be formulated
as a congestion control system with feedback delay. The model is described by [7, 8]

&) =kp@)[f (p(t - 1)) -], (1.1)
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where f(-) is a non-negative continuous, strictly decreasing demand function and has at
least third-order continuous derivatives. The scalar c is the capacity of the bottleneck link
and the variable p is the price at the link. k is a positive gain parameter, t is the sum of
forward and return delays. A great deal of research has been devoted to the global stability,
periodic solutions and other properties of this model, for which we refer to [7, 8].

Considering the need of scientific computation and real-time simulation, our interest
is focused on the behaviors of a discrete dynamics system corresponding to (1.1). In this
paper, we use a nonstandard finite-difference scheme [11, 12] to make the discretization
for system (1.1). Firstly, we consider the autonomous delay differential equations

i(t) = f (u(e), u(t - 1)).
Then we get the following:

U1 = tn = P (U, Unm)s 1.2)
with the function ® such that

®(h) = h+O(H?),

where /1 = # (m € Z,) stands for stepsize, and u; denotes the approximate value to u(kh).
This method can be seen as a modified forward Euler method.

The Neimark-Sacker bifurcation is the discrete analogue of the Hopf bifurcation that
occurs in continuous systems. The Hopf bifurcation is extremely important in the contin-
uous dual congestion control algorithm [7, 8]. Similarly, the Neimark-Sacker bifurcation is
also highly relevant to the discrete dual congestion control algorithm. The purpose of this
paper is to discuss this version as a discrete dynamical system by using Neimark-Sacker
bifurcation theory of discrete systems.

The paper is organized as follows. In Section 2, we analyze the distribution of the char-
acteristic equation associated with the discrete model and obtain the existence of the local
Neimark-Sacker bifurcation. In Section 3, the direction and stability of a closed invariant
curve from the Neimark-Sacker bifurcation of the discrete delay model are determined by
using the theories of discrete systems in [13]. In Section 4, some computer simulations are
performed to illustrate the theoretical results. Conclusions are given in the final section.

2 Neimark-Sacker bifurcation analysis
Let u(t) = p(tt). Then (1.1) can be rewritten as

u(t) = rku(t)[f(u(t - 1)) - c]. (2.1)

Assume Eq. (2.1) has a positive equilibrium point #". Then u” satisfies

f(u) =c.

If we employ the nonstandard finite-difference scheme (1.2) to Eq. (2.1) and choose the
function ® as
1- e—rkh

o) = ——
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it yields the delay difference equation
Upsl = Uy + (1 - e_fkh)u,, D’(u,,_m) - c]. (2.2)

Note that %" also is the unique positive equilibrium of (2.2). Set y, = u, — u, then it
follows that

Y1 =Y+ (L= € ) (y + ) [f (o + 1) — €. (2.3)
By introducing a new variable Y, = (¥, Yu—1, .- +»Yn-m) ", we can rewrite (2.3) in the form

Yy = F(Y, 1), (2.4)
where F = (Fy,Fy,...,F,)T, and

o+ Q=N+ W) G + 1) —cl, j=0

F - . (2.5)
Yn—j+ls 1<j=m.
Clearly the origin is an equilibrium of (2.4), and the linear part of (2.4) is
Yn+1 = Aan
where
1 0 0 (A—-e™u'f'(u)
1 0 --- 0 0
4]0 1 0 0
0 0 1 0
The characteristic equation of A is given by
a(r):= 2" — (1-e ™)' f'(u) = 0. (2.6)

It is well known that the stability of the zero equilibrium solution of (2.4) depends on the
distribution of zeros of the roots of (2.6). In this paper, we employ the results from Zhang
et al. [9] and He et al. [10] to analyze the distribution of zeros of characteristic Eq. (2.6).
In order to prove the existence of the local Neimark-Sacker bifurcation at equilibrium, we

need some lemmas as follows.

Lemma 2.1 There exists a T > 0 such that for 0 < t < T all roots of (2.6) have modulus less
than one.

Proof When t =0, (2.6) becomes
AL = 0.

The equation has, at 7 = 0, an m-fold root A = 0 and a simple root A = 1.
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Consider the root A(t) such that A(0) = 1. This root depends continuously on 7 and is a
differential function of 7. From (2.6), we have

dr  khe™uf' ()

- 2.
dr  (m+ 1A — mam-1 @7)

and

A khe ™
dr__kheTufl) 2.8)
dt  (m+1)A" —mar-1

Noticing f(-) is a non-negative continuous, strictly decreasing function, we have

[di _dx}
=[A—+

d|\? ;
dr dt

dr

=2khu'f'(u) < 0.

7=0,A=1 7=0,A=1

So, with the increase of t > 0, A cannot cross A = 1. Consequently, all roots of Eq. (2.6) lie
in the unit circle for sufficiently small positive T > 0, and the existence of the T follows. [J

A Neimark-Sacker bifurcation occurs when a complex conjugate pair of eigenvalues of
A cross the unit circle as T varies. We have to find values of 7 such that there are roots
on the unit circle. Denote the roots on the unit circle by eiw*, w € (-m,m). Since we are
dealing with complex roots of a real polynomial, we only need to look for " € (0, 7).

Lemma 2.2 There exists an increasing sequence of values of the time delay parameter T =
7,j=0,1,2,..., [mT‘l] satisfying

coswj=1- %[(1 - e_rfkh)u*f/(u*)]z;

T = —ﬁ In(1 + Sin7%), (2.9)

u'f!(u”) sin maw;

2. 2j+1 . —
where Cl)] S (%; %)’]:0’1,2,...’[}’}‘!_1].

Proof Denote the roots of Eq. (2.6) on the unit circle by ¢ , »" € (0, 7). Then

¢ —1- (1= 7)u'f (u')e ™ =0. (2.10)
Separating the real part and the imaginary part from Eq. (2.10), there are

cosw —(1- e’fykh)u*f’(u*) cosmw =1 (2.11)
and

sinw” + (1 - e’T*kh)u*f’(u*) sinmow = 0. (2.12)
So,

cosw =1- %[(l - e”»kh)u*f’(u*)]z, (2.13)
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Then the roots ¢ of (2.6) satisfy Egs. (2.10)-(2.13). From (2.12) we get

. 1 mnf1s sinw’
T =—— YR .
kh u'f'(u) sinme’

Substituting (2.14) into (2.11), we have

(2.14)

sin(m + 1) =sinmo .

(2.15)

2 (+D)mwy . 1
7! T);} = 071!27""[m_]!

Then Eq. (2.15) has a unique solution " in every interval ( 2

we set

2jr (2j+1 -1
o= e(ﬂ,u), ,-:0,1,2,,”,["1_],
m m 2

(2.16)
From (2.14), we have
1 sin w;
i=——In(1+ ———"7— . 2.17
9 "k n< * u'f'(u") sin mw,) 217)
This completes the proof. O

Lemma 2.3 Let Aj(t) = ry(f)eiwf(r) be a root of (2.6) near t = 1; satisfying rj(vj) = 1 and
a)j(‘L’]‘) = wj. Then
dr}(t) 0
It > 0.

T=Tj,0=0;

Proof From (2.11) and (2.12), we obtain that

cosw;—1
COS ma)l Sl A —— (218)
A -7 Nuf' ()
—sinw’
sinmoy = ——— 0 (2.19)
Q- u'f' ()
It is easy to see that
- 05 ) — sinma; sin ey = S
cos(m + 1)w; = cos mw; cos w; — sin mw; sin w; = T (2.20)
A -7 Nuf' ()

From (2.7), (2.8) and using (2.18)-(2.20), we have

N di ; dx
= — 4+ —_—
T=Tj,w=0j dt dt

2khe 5" (2m + 1)(1 - cos wj)

= - - >
(1 _ e—rjkh)l(m + l)etma)j _ mel(m—l)a)j |2

2
drj

_ Ay
dr N

T=T,0=0;

T=T,0=0;

This completes the proof.
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Lemmas 2.1-2.3 immediately lead to the stability of the zero equilibrium of Eq. (2.3), and
equivalently, of the positive equilibrium " of Eq. (2.2). So, we have the following results

on stability and bifurcation in system (2.2).

Theorem 2.1 There exists a sequence of values of the time-delay parameter 0 < 7y < 171 <
e < Tpm such that the positive equilibrium u’ of Eq. (2.2) is asymptotically stable for
T € [0, 70) and unstable for T > ty. Equation (2.2) undergoes a Neimark-Sacker bifurcation
at the positive equilibrium u’ when T = 7,j=0,1,2,..., [”‘T’l], where 1; satisfies (2.13).
3 Direction and stability of the Neimark-Sacker bifurcation
In the previous section, we have obtained the conditions under which a family of invariant
closed curves bifurcates from the steady state at the critical value 7 = 7;,j = 0,1,2,..., [’"T‘l].
Without loss of generality, denote the critical value 7 = 7; by . In this section, following
the idea of Hassard et al. [14], we study the direction and stability of the invariant closed
curve when t = 1y in the discrete Internet congestion control model. The method we use
is based on the theories of a discrete system by Kuznetsov [13].

Rewrite Eq. (2.3) as

Vst = Yn + (L= €)' f' () yom

U= ™ [ (6 )y + (2]

2
1 1/ * * o *

+ (U= W)y + S ()]

+O(|y2 +y2,)- 31)

So, system (2.3) is turned into

Yin =AY, + %B(Ym Y,) + éC(Ym Yo, Yu) + O(I1Yull*), 3.2)
where

B(Y,, Y,) = (bo(Yy, Y2),0,...,0), C(Yo, Y, V) = (co(Yy, Yo, Y2), 0,...,0),

and

bo(¢,¥) = (1= e ™) [f' (&) pom + 1 () b
+u [ (U)) pmrm), (3.3)
co(p,yr,m) = (L= e ™) [f" () poWmmm + 1" () b onm
+f" () prbmno + wf" () Vi

Let g = (7o) € C™*! be an eigenvector of A corresponding to e*?, then

Ag =g, Ag=eg,
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We also introduce an adjoint eigenvector ¢ = g’ (t) € C"*! having the properties
Alq =eioog, ATg =g,

and satisfying the normalization (q',q) = 1, where (g, q) = > "0 4; -

Lemma 3.1 (See [15]) Define a vector-valued function q: C — C"™*! by

p&) = (&m0 (3.4)

If & is an eigenvalue of A, then Ap(§) = Ep(§).

In view of Lemma 3.1, we have
q=p(e”) = ("0, Deo g0 )T, (35)

Lemma 3.2 Suppose q = (q,,q;,---,q,,)" is the eigenvector of AT corresponding to the
eigenvalue e°, and (q ,q) = 1. Then

q = D(l, a0 qeltn-eo o el200, otei‘“o) r (3.6)
where a = (1 — e ™\u'f'(u") and

D= (e"™ + mae’iwo)_l. (3.7)
Proof Assign q satisfies ATq" = zq with z = 70, then the following identities hold:

g =e"q ,, k=2,...,m,

agy = e, (3.8)
Let q,, = ae° D, then
q =D(Lae™, a0, qe, qe) T
From normalization {g’,q) = 1 and computation, Eq. (3.7) holds. O

Let a()) be a characteristic polynomial of A and Ay = ¢/°. Following the algorithms in
[13] and using a computation process similar to that in [15], we can compute an expression
for the critical coefficient ¢;(zp),

gzog11(1—27»0)+ lgu |” . |g021? L&
203 -2%)  1-xo 2(A2-%o) 2

ci(to) = ) (3.9)

where

&0 = <q*’B(q’ lZ)>» g = (6]*:3(% é)>’ o2 = (qa»B(é’ é));
g1 =(q,B@ wx))+2(q,B(qon)+(q,C49,9)

Page 7 of 11
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and
o~ 0@a) (32) - (@, B@q) (d,B4q).
ey P T T, T e, T
oy o@D 4 B@D) (T B
T P - 1 1-%, T

By (3.3), (3.5) and Lemma 3.2, we get

bo(q, p(e™™)) = (1 - e ™ ) [f'(u")e ™0 + f'(u")e?™™ + u'f" (u')],
bo(q,q) = (L— e ™) 2f (w)e™ ™ + u'f" ()],

bo(q,q) = (1 — e ™) [f'(u')e™ 0 + f'(u")e ™0 + u'f" ()],
bo(q,) = (1 — e ™M 2f" (" )e ™0 + u'f"(u)],

bo(q,p(1)) = (1 — e[ (i)™ 0 + f'(u") + u'f" ()],

co(q:9,q) = (L — e ™) [2f" ()™ + £/ (u")e ™0 + u'f" (u')],
a(eiZwo) — ei2(m+1)w0 _ ei2mw0 _ (1 _ e—rokh)u"if/(u*)’

a(l) = -1 - ey f(u').

(3.10)

Substituting these into (3.9), we can obtain ¢; (o).

Lemma 3.3 (See [6]) Given the map (2.4), assume
1) A(z) = r()e®, where r(t") =1, ¥ (t) #0 and w(t’) = 0’
2) ek 41 fork=1,2,3,4;
(3) Rele™ ¢y()] #0.

Then an invariant closed curve, topologically equivalent to a circle, for map (2.4) ex-
ists for T in a one side neighborhood of ". The radius of the invariant curve grows like
O(y/|t — 77]). One of the four cases below applies.

1) (") >0, Re[e ¢)(")] < 0. The origin is asymptotically stable for T < t" and
unstable for T > t". An attracting invariant closed curve exists for 7 > 7.

(2) #(r")>0,Re[e™ ¢;(z))] > 0. The origin is asymptotically stable for T < t" and
unstable for T > 7. A repelling invariant closed curve exists for t < 7.

3) (") <0, Re[e™™ ¢y(1)] < 0. The origin is asymptotically stable for 7 > 7" and
unstable for T < 7", An attracting invariant closed curve exists for T < 7.

(4) ¥(t") <0, Re[e™™® ¢y(1")] > 0. The origin is asymptotically stable for 7 > 7" and
unstable for T < 7. A repelling invariant closed curve exists for t > 7.

From the discussion in Section 2, we know that 7/(t”) > 0; therefore, by Lemma 3.3, we

have the following result.

Theorem 3.1 For Eq. (2.2), the positive equilibrium u’ is asymptotically stable for T €
[0, 7o) and unstable for T > ty. An attracting (repelling) invariant closed curve exists for
7> 179 if Re[e ¢ (19)] < 0 (> 0).

4 Computer simulation
In this section, we confirm our theoretical analysis by numerical simulation. We choose
fu) = % as in [8] and set k = 0.01, m = 20, ¢ = 50. Then 1y = 3.0 is the Neimark-Sacker

bifurcation value.

Page 8 of 11
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Figure 1 The equilibrium u” of (2.2) is asymptotically stable for T = 2.9 < 75 = 3.0.
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Figure 2 Phase plot of (2.2) on the plane (u(n), u(n - 20)) for T =2.9 < 75 = 3.0.

Figures 1-4 are about delay difference Eq. (2.2) when step size 4 = 0.05.

In Figures 1 and 2, we show the waveform plot and phase plot for (2.2) with initial values
uj = 0.05 (j=0,1,...,20) for T =2.9 < 75 = 3.0. The equilibrium #" = 0.02 of Eq. (2.2) is
asymptotically stable. In Figures 3 and 4 we show the waveform plot and phase plot for
(2.2) with initial values u; = 0.05 (j = 0,1,...,20). The equilibrium u =0.02 of (2.2) is
unstable for T = 3.1 > 7y = 3.0. When t varies and passes through 7y = 3.0, the equilibrium
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Figure 3 Waveform plot of (2.2) for T =3.1 > 75 = 3.0.
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Figure 4 A bifurcating periodic solution appears on the plane (u(n), u(n - 20)) for T =3.1 > 75 = 3.0.

loses its stability and an invariant closed curve bifurcates from the equilibrium for 7 = 3.1 >
7o = 3.0. That is the delay difference Eq. (2.2) which has a Neimark-Sacker bifurcation at 7.

5 Conclusion
In this paper, we focus our study on the Neimark-Sacker bifurcation in a fair dual algo-
rithm of an Internet congestion control system. By using communication delay as a bifur-

Page 10 of 11
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cation parameter, we have shown that when the communication delay of the system passes
through a critical value, a family of periodic orbits bifurcates from the equilibrium point.
Furthermore, we have analyzed the stability and direction of the bifurcating periodic so-
lutions. The results of numerical simulations agree with the theoretical results very well
and verify the theoretical analysis.
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