RESEARCH Open Access

New extensions concerned with results by Ponnusamy and Karunakaran

Mamoru Nunokawa¹, Kazuo Kuroki², Janusz Sokół³ and Shigeyoshi Owa^{2*}

*Correspondence: shige21@ican.zaq.ne.jp 2Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan Full list of author information is available at the end of the article

Abstract

A subclass $\mathcal{A}(n,k)$ of analytic functions f(z) in the open unit disk \mathbb{U} is introduced. By means of the result due to Fukui and Sakaguchi (Bull. Fac. Edu. Wakayama Univ. Natur. Sci. 30:1-3, 1980), some interesting properties of f(z) in $\mathcal{A}(n,k)$ concerned with Ponnusamy and Karunakaran (Complex Var. Theory Appl. 11:79-86, 1989) are discussed.

MSC: Primary 30C45

Keywords: analytic; starlike; Jack's lemma

1 Introduction

Let A(n, k) be a class of functions f(z) of the form

$$f(z) = z^{n} + \sum_{m=n+k}^{\infty} a_{m} z^{m} \quad (n \ge 1, k \ge 1)$$
(1.1)

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For two functions f(z) and g(z) belonging to the class $\mathcal{A}(1,1)$, Sakaguchi [1] proved the following result.

Theorem A Let $f(z) \in \mathcal{A}(1,1)$ and $g(z) \in \mathcal{A}(1,1)$ be starlike in \mathbb{U} . If f(z) and g(z) satisfy

$$\operatorname{Re}\left(\frac{f'(z)}{g'(z)}\right) > 0 \quad (z \in \mathbb{U}),$$
 (1.2)

then

$$\operatorname{Re}\left(\frac{f(z)}{g(z)}\right) > 0 \quad (z \in \mathbb{U}).$$
 (1.3)

After Theorem A, many mathematicians studying this field have applied this theorem to get some results (see [2]). In 1989, Ponnusamy and Karunakaran [3] improved Theorem A as follows.

Theorem B Let α be a complex number with $\operatorname{Re} \alpha > 0$ and $\beta < 1$. Further, let $f(z) \in \mathcal{A}(n,k)$ and $g(z) \in \mathcal{A}(n,j)$ $(j \ge 1)$ satisfy

$$\operatorname{Re}\left(\frac{\alpha g(z)}{zg'(z)}\right) > \delta \quad (z \in \mathbb{U})$$
 (1.4)

with $0 \le \delta < \frac{\operatorname{Re} \alpha}{n}$. If f(z) and g(z) satisfy

$$\operatorname{Re}\left\{ (1-\alpha) \frac{f(z)}{g(z)} + \alpha \frac{f'(z)}{g'(z)} \right\} > \beta \quad (z \in \mathbb{U}), \tag{1.5}$$

then

$$\operatorname{Re}\left(\frac{f(z)}{g(z)}\right) > \frac{2\beta + \delta k}{2 + \delta k} \quad (z \in \mathbb{U}). \tag{1.6}$$

It is the purpose of the present paper to discuss Theorem B applying the lemma due to Fukui and Sakaguchi [4]. To discuss our problems, we need the following lemmas.

Lemma 1 Let $w(z) = \sum_{n=k}^{\infty} a_n z^n$ ($a_k \neq 0$, $k \geq 1$) be analytic in \mathbb{U} . If the maximum value of |w(z)| on the circle |z| = r < 1 is attained at $z = z_0$, then we have

$$\frac{z_0 w'(z_0)}{w(z_0)} = \ell \ge k,\tag{1.7}$$

which shows that $\frac{z_0w'(z_0)}{w(z_0)}$ is a positive real number.

The proof of Lemma 1 can be found in [4], and we see that Lemma 1 is a generalization of Jack's lemma given by Jack [5]. Applying Lemma 1, we derive the following.

Lemma 2 Let $p(z) = 1 + \sum_{n=k}^{\infty} c_n z^n$ $(c_k \neq 0, k \geq 1)$ be analytic in \mathbb{U} with $p(z) \neq 0$ $(z \in \mathbb{U})$. If there exists a point $z_0 \in \mathbb{U}$ such that

Re
$$p(z) > 0$$
 $(|z| < |z_0|)$

and

Re
$$p(z_0) = 0$$
,

then we have

$$-z_0 p'(z_0) \ge \frac{\ell}{2} (1 + |p(z_0)|^2), \tag{1.8}$$

and so

$$\frac{z_0 p'(z_0)}{p(z_0)} = i\ell,\tag{1.9}$$

where

$$k \le \frac{k}{2} \left(a + \frac{1}{a} \right) \le \ell \quad \left(\arg p(z_0) = \frac{\pi}{2} \right) \tag{1.10}$$

and

$$-k \ge -\frac{k}{2}\left(a + \frac{1}{a}\right) \ge \ell \quad \left(\arg p(z_0) = -\frac{\pi}{2}\right) \tag{1.11}$$

with $p(z_0) = \pm ia \ (a > 0)$.

Proof Let us consider

$$\phi(z) = \frac{1 - p(z)}{1 + p(z)} = \frac{c_k}{2} z^k + \dots$$
 (1.12)

for p(z). Then, it follows that $\phi(0) = \phi'(0) = \cdots = \phi^{(k-1)}(0) = 0$, $|\phi(z)| < 1$ ($|z| < |z_0|$) and $|\phi(z_0)| = 1$. Therefore, applying Lemma 1, we have that

$$\frac{z_0\phi'(z_0)}{\phi(z_0)} = \frac{-2z_0p'(z_0)}{1 - (p(z_0))^2} = \frac{-2z_0p'(z_0)}{1 + |p(z_0)|^2} = \ell \ge k.$$
(1.13)

This implies that $z_0p'(z_0)$ is a negative real number and

$$-z_0 p'(z_0) \ge \frac{k}{2} (1 + |p(z_0)|^2). \tag{1.14}$$

Let us use the same method by Nunokawa [6]. If $\arg p(z_0) = \frac{\pi}{2}$, then we write $p(z_0) = ia$ (a > 0). This gives us that

$$\operatorname{Im}\left(\frac{z_0p'(z_0)}{p(z_0)}\right) = \operatorname{Im}\left(-\frac{iz_0p'(z_0)}{a}\right) \ge \frac{k}{2}\left(a + \frac{1}{a}\right).$$

If $\arg p(z_0) = -\frac{\pi}{2}$, then we write $p(z_0) = -ia$ (a > 0). Thus we have that

$$\operatorname{Im}\left(\frac{z_0p'(z_0)}{p(z_0)}\right) = \operatorname{Im}\left(\frac{iz_0p'(z_0)}{a}\right) \le -\frac{k}{2}\left(a + \frac{1}{a}\right).$$

This completes the proof of Lemma 2.

2 Main results

With the help of Lemma 2, we derive the following theorem.

Theorem 1 Let α be a complex number with $\operatorname{Re} \alpha > 0$ and $\beta < 1$. Further, let $f(z) \in \mathcal{A}(n,k)$ and $g(z) \in \mathcal{A}(n,j)$ $(j \ge 1)$ satisfy

$$\operatorname{Re}\left(\frac{\alpha g(z)}{zg'(z)}\right) > \delta \quad (z \in \mathbb{U})$$
 (2.1)

with $0 \le \delta < \frac{\operatorname{Re} \alpha}{n}$. If f(z) and g(z) satisfy

$$\operatorname{Re}\left\{ (1-\alpha)\frac{f(z)}{g(z)} + \alpha \frac{f'(z)}{g'(z)} \right\} + \frac{\delta k}{2(1-\beta_1)} \left| \frac{f(z)}{g(z)} - \beta_1 \right|^2 > \beta \quad (z \in \mathbb{U}), \tag{2.2}$$

then

$$\operatorname{Re}\left(\frac{f(z)}{g(z)}\right) > \beta_1 \quad (z \in \mathbb{U}),$$
 (2.3)

where $\beta_1 = \frac{2\beta + \delta k}{2 + \delta k}$.

Proof Defining the function p(z) by

$$p(z) = \frac{\frac{f(z)}{g(z)} - \beta_1}{1 - \beta_1},\tag{2.4}$$

we see that p(0) = 1 and

$$\operatorname{Re}\left\{ (1-\alpha) \frac{f(z)}{g(z)} + \alpha \frac{f'(z)}{g'(z)} - \beta \right\}$$

$$= \operatorname{Re}\left\{ (\beta_1 - \beta) + (1-\beta_1) \left(p(z) + \frac{\alpha g(z)}{zg'(z)} z p'(z) \right) \right\}$$

$$> -\frac{\delta k}{2(1-\beta_1)} \left| \frac{f(z)}{g(z)} - \beta_1 \right|^2$$
(2.5)

for all $z \in \mathbb{U}$. Let us suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$\left|\arg p(z_0)\right| < \frac{\pi}{2} \quad \left(|z| < |z_0|\right)$$

and

$$\left|\arg p(z_0)\right| = \frac{\pi}{2}.$$

Then, by means of Lemma 2, we have that

$$-z_0 p'(z_0) \ge \frac{k}{2} \left(1 + \left| p(z_0) \right|^2 \right). \tag{2.6}$$

If follows from the above that

$$\operatorname{Re}\left\{ (1-\alpha) \frac{f(z_0)}{g(z_0)} + \alpha \frac{f'(z_0)}{g'(z_0)} - \beta \right\}$$

$$= (\beta_1 - \beta) + (1-\beta_1) \operatorname{Re}\left\{ p(z_0) + \frac{\alpha g(z_0)}{z_0 g'(z_0)} z_0 p'(z_0) \right\}$$

$$= (\beta_1 - \beta) - (1-\beta_1) \operatorname{Re}\left\{ \frac{\alpha g(z_0)}{z_0 g'(z_0)} \left(-z_0 p'(z_0) \right) \right\}$$

$$\leq (\beta_1 - \beta) - (1-\beta_1) \frac{\delta k}{2} \left(1 + \left| p(z_0) \right|^2 \right)$$

$$= -\frac{\delta k}{2(1-\beta_1)} \left| \frac{f(z_0)}{g(z_0)} - \beta_1 \right|^2,$$

which contradicts (2.5). This completes the proof of the theorem.

Remark 1 If f(z) and g(z) satisfy $f(z) = \beta_1 g(z)$ in Theorem 1, then Theorem 1 becomes Theorem B given by Ponnusamy and Karunakaran [3]. We also have the following theorem.

Theorem 2 Let α be a complex number with $\operatorname{Re} \alpha > 0$ and $\beta < 1$. Further, let $f(z) \in \mathcal{A}(n,k)$ and $g(z) \in \mathcal{A}(n,j)$ $(j \ge 1)$ satisfy the condition (2.1) with $0 \le \delta < \frac{\operatorname{Re} \alpha}{n} \le 1 + \delta$. If f(z) and g(z)

satisfy

$$\left| \arg \left\{ (1 - \alpha) \frac{f(z)}{g(z)} + \alpha \frac{f'(z)}{g'(z)} - \beta \right\} \right| < \frac{\pi}{2} + \operatorname{Tan}^{-1} \left(\frac{\delta k |p(z)|}{2(\frac{2r}{1 - r^2} + \frac{|\operatorname{Im} \alpha|}{n} + 1)} \right)$$
(2.7)

for |z| = r < 1, then

$$\left| \arg \left(\frac{f(z)}{g(z)} - \beta_1 \right) \right| < \frac{\pi}{2} \quad (z \in \mathbb{U})$$
 (2.8)

or

$$\operatorname{Re}\left(\frac{f(z)}{g(z)}\right) > \beta_1 \quad (z \in \mathbb{U}),$$
 (2.9)

where $\beta_1 = \frac{2\beta + \delta k}{2 + \delta k}$ and

$$p(z) = \frac{\frac{f(z)}{g(z)} - \beta_1}{1 - \beta_1}.$$

Proof Note that the function p(z) is analytic in \mathbb{U} and p(0) = 1. It follows that

$$\left| \arg \left\{ (1 - \alpha) \frac{f(z)}{g(z)} + \alpha \frac{f'(z)}{g'(z)} - \beta \right\} \right| = \left| \arg \left\{ (\beta_1 - \beta) + (1 - \beta_1) \left(p(z) + \frac{\alpha g(z)}{z g'(z)} z p'(z) \right) \right\} \right|$$

$$< \frac{\pi}{2} + \operatorname{Tan}^{-1} \left(\frac{\delta k |p(z)|}{2(\frac{2r}{1-z^2} + \frac{|\operatorname{Im}\alpha|}{r} + 1)} \right)$$

for |z| = r < 1. If there exists a point $z_0 \in \mathbb{U}$ such that

$$\left|\arg p(z_0)\right| < \frac{\pi}{2} \quad \left(|z| < |z_0|\right)$$

and

$$\left|\arg p(z_0)\right| = \frac{\pi}{2}$$

then, by Lemma 2, we have that

$$\frac{z_0p'(z_0)}{p(z_0)}=i\ell,$$

where

$$\frac{k}{2}\left(a+\frac{1}{a}\right) \le \ell \quad \left(\arg p(z_0) = \frac{\pi}{2}\right)$$

and

$$-\frac{k}{2}\left(a+\frac{1}{a}\right) \ge \ell \quad \left(\arg p(z_0) = -\frac{\pi}{2}\right)$$

with $p(z_0) = \pm ia$ (a > 0). If $\arg p(z_0) = \frac{\pi}{2}$, then it follows that

$$\arg \left\{ (1 - \alpha) \frac{f(z_0)}{g(z_0)} + \alpha \frac{f'(z_0)}{g'(z_0)} - \beta \right\} \\
= \arg p(z_0) \left\{ \frac{\beta_1 - \beta}{p(z_0)} + (1 - \beta_1) \left(1 + \frac{\alpha g(z_0)}{z_0 g'(z_0)} \frac{z_0 p'(z_0)}{p(z_0)} \right) \right\} \\
= \frac{\pi}{2} + \arg \left\{ -\left(\frac{\beta_1 - \beta}{a}\right) i + (1 - \beta_1) \left(1 + i\ell \frac{\alpha g(z_0)}{z_0 g'(z_0)} \right) \right\} \\
= \frac{\pi}{2} + \arg I(z_0),$$

where

$$I(z_0) = -\left(\frac{\beta_1 - \beta}{a}\right)i + (1 - \beta_1)\left(1 + i\ell \frac{\alpha g(z_0)}{z_0 g'(z_0)}\right). \tag{2.10}$$

Note that

$$\operatorname{Im} I(z_0) = \frac{\beta - \beta_1}{a} + (1 - \beta_1)\ell \operatorname{Re} \frac{\alpha g(z_0)}{z_0 g'(z_0)}$$

$$\stackrel{\ge}{=} (1 - \beta_1)\delta\ell + \frac{\beta - \beta_1}{a}$$

$$\stackrel{\ge}{=} \frac{\delta k}{2} (1 - \beta_1) \left(a + \frac{1}{a} \right) + \frac{\beta - \beta_1}{a}$$

$$= \frac{\delta k}{2} (1 - \beta_1) a > 0 \tag{2.11}$$

and

$$\operatorname{Re} I(z_0) = (1 - \beta_1) \left(1 - \ell \operatorname{Im} \left(\frac{\alpha g(z_0)}{z_0 g'(z_0)} \right) \right) \leq (1 - \beta_1) \left(1 + \ell \left| \operatorname{Im} \left(\frac{\alpha g(z_0)}{z_0 g'(z_0)} \right) \right| \right). \tag{2.12}$$

Letting

$$q(z) = \frac{\alpha g(z)}{zg'(z)} + 1 - \frac{\alpha}{n},\tag{2.13}$$

we know that q(z) is analytic in \mathbb{U} with q(0) = 1 and $\operatorname{Re} q(z) > 0$ ($z \in \mathbb{U}$). Therefore, applying the subordinations, we can write that

$$q(z) = \frac{1 - w(z)}{1 + w(z)}$$

with the Schwarz function w(z) analytic in \mathbb{U} , w(0) = 0 and $|w(z)| \leq |z|$. This leads us to

$$|w(z)| = \left|\frac{1-q(z)}{1+q(z)}\right| \le r \quad (|z| \le r < 1),$$

which is equivalent to

$$\left| q(z) - \frac{1+r^2}{1-r^2} \right| \leq \frac{2r}{1-r^2}.$$

This gives us that

$$\left| \operatorname{Im} q(z) \right| = \left| \operatorname{Im} \left(\frac{\alpha g(z)}{z g'(z)} + 1 - \frac{\alpha}{n} \right) \right| \le \frac{2r}{1 - r^2} \tag{2.14}$$

for |z| = r < 1. Thus we have that

$$\left|\operatorname{Im}\left(\frac{\alpha g(z_0)}{z_0 g'(z_0)}\right)\right| \le \frac{2r}{1 - r^2} + \frac{|\operatorname{Im}\alpha|}{n} \quad (|z| = r < 1). \tag{2.15}$$

Using (2.12) and (2.15), we obtain that

$$\arg I(z_0) = \operatorname{Tan}^{-1}\left(\frac{\operatorname{Im} I(z_0)}{\operatorname{Re} I(z_0)}\right) \ge \operatorname{Tan}^{-1}\left(\frac{\delta ka}{2(\frac{2r}{1-r^2} + \frac{|\operatorname{Im}\alpha|}{n} + 1)}\right),$$

which contradicts our condition (2.7).

If $\arg p(z_0) = -\frac{\pi}{2}$, using the same way, we also have that

$$\arg\left\{(1-\alpha)\frac{f(z_0)}{g(z_0)} + \alpha\frac{f'(z_0)}{g'(z_0)} - \beta\right\} \leq -\left\{\frac{\pi}{2} + \operatorname{Tan}^{-1}\left(\frac{\delta ka}{2(\frac{2r}{1-r^2} + \frac{|\operatorname{Im}\alpha|}{n} + 1)}\right)\right\},\,$$

which contradicts (2.7).

Competing interests

The authors did not provide this information.

Authors' contributions

The authors did not provide this information.

Author details

¹University of Gunma, 798-8 Hoshikuki, Chuou-Ward, Chiba 260-0808, Japan. ²Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan. ³Department of Mathematics, Rzeszow University of Technology, Al. Powstańców, Warszawy 12, Rzeszów, 35-959, Poland.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

Received: 11 January 2013 Accepted: 22 April 2013 Published: 9 May 2013

References

- 1. Sakaguchi, K: On a certain univalent mapping. J. Math. Soc. Jpn. 11, 72-75 (1959)
- 2. Srivastava, HM, Owa, S (eds.): Current Topics in Analytic Function Theory. World Scientific, Singapore (1992)
- 3. Ponnusamy, S, Karunakaran, V: Differential subordination and conformal mappings. Complex Var. Theory Appl. 11, 79-86 (1989)
- Fukui, S, Sakaguchi, K: An extension of a theorem of S. Ruscheweyh. Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 30, 1-3
 (1980)
- 5. Jack, IS: Functions starlike and convex of order α . J. Lond. Math. Soc. **2**, 469-474 (1971)
- 6. Nunokawa, M: On properties of non-Carathéodory functions. Proc. Jpn. Acad. 68, 152-153 (1992)

doi:10.1186/1687-1847-2013-134

Cite this article as: Nunokawa et al.: **New extensions concerned with results by Ponnusamy and Karunakaran.** *Advances in Difference Equations* 2013 **2013**:134.