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Abstract
We consider the generalized Meixner-Pollaczek (GMP) polynomials Pλ

n (x;θ ,ψ ) of a
variable x ∈ R and parameters λ > 0, θ ∈ (0,π ), ψ ∈R, defined via the generating
function

Gλ(x;θ ,ψ ; z) =
1

(1 – zeiθ )λ–ix(1 – zeiψ )λ+ix
=

∞∑
n=0

Pλ
n (x;θ ,ψ )zn, |z| < 1.

We find the three-term recurrence relation, the explicité formula, the hypergeometric
representation, the difference equation and the orthogonality relation for GMP
polynomials Pλ

n (x;θ ,ψ ). Moreover, we study the special case of Pλ
n (x;θ ,ψ )

corresponding to the choice ψ = π + θ and ψ = π – θ , which leads to some
interesting families of polynomials. The limiting case (λ → 0) of the sequences of
polynomials Pλ

n (x;θ ,π + θ ) is obtained, and the orthogonality relation in the strip
S = {z ∈ C : |�(z)| < 1} is shown.
MSC: 33C45; 30C10; 30C45; 39A60

Keywords: Meixner-Pollaczek polynomials; difference equation; generating
function; orthogonal polynomials; Fisher information

1 Introduction
The classical Koebe function is a function holomorphic inD = {z : |z| < } and given by the
formula

k(z) =
z

( – z)
=



{(
 + z
 – z

)

– 
}
= z + z + z + · · · , z ∈ D.

The importance of k follows from the extremality for the famous Bieberbach conjec-
ture. The Koebe function is univalent and starlike in D and maps the unit disk D onto the
complex plane minus a slit (–∞, – 

 ].
Several generalizations of k appeared in the literature. Robertson [] proved that

k(–α)(z) = z
(–z)(–α) ( ≤ α < ) is the extremal function for the class of functions starlike

of order α. The function

kα(z) =

α

{(
 + z
 – z

)α

– 
}
, α ∈R \ {}, z ∈D,

was extensively studied by Pommerenke [], who investigated a universal invariant family
Uα .
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The definition of kα was extended for a nonzero complex number α by Yamashita [].
The classical result of Hille [] ascertains that kα is univalent in D if and only if α �=  is
in the union A of the closed disks {|z + | ≤ } and {|z – | ≤ }. Making use of geometric
properties, Yamashita [] described how kα tends to be univalent in the wholeD as α tends
to each boundary point of A from outside.
The properties of logk′

c, where

kc(z) =

c

[(
 + z
 – z

)c

– 
]
, c ∈C \ {}, k(z) =



log

 + z
 – z

, z ∈D, (.)

were studied in [] by Campbell and Pfaltzgraff. Pommerenke [] examined the special
case of (.), i.e.,

kiγ (z) =


iγ

[(
 + z
 – z

)iγ

– 
]
, γ > , z ∈D,

for which

k′
iγ (z) =


( + z)–iγ ( – z)–iγ

.

An evident and important extension of (.) was given by the following formulas (θ ∈
R,ψ ∈ R):

kc(θ ,ψ ; z) =


(eiψ – eiθ )c

[(
 – zeiθ

 – zeiψ

)c

– 
]
, c ∈C \ {}, eiψ �= eiθ , z ∈D,

and for the case when c = ,

k(θ ,ψ ; z) =


(eiψ – eiφ)
log

 – zeiθ

 – zeiψ
, eiψ �= eiθ , z ∈ D.

We have

k′
c(θ ,ψ ; z) =


( – zeiθ )–c( – zeiψ )+c

, c ∈C.

Comparing k′
iγ (θ ,ψ ; z) = 

(–zeiθ )–iγ (–zeψ )+iγ with the generating function for Meixner-
Pollaczek polynomials Pλ

n(x; θ ) [],

Gλ(x; θ , –θ ; z) =


( – zeiθ )λ–ix( – ze–iθ )λ+ix
=

∞∑
n=

Pλ
n(x; θ )z

n, z ∈D,

where λ > , θ ∈ (,π ), x ∈ R, we were motivated to introduce the generalized Meixner-
Pollaczek polynomials (GMP) [] Pλ

n(x; θ ,ψ) of a variable x ∈ R and parameters λ > ,
θ ∈ (,π ), ψ ∈R via the generating function

Gλ(x; θ ,ψ ; z) =


( – zeiθ )λ–ix( – zeiψ )λ+ix
=

∞∑
n=

Pλ
n(x; θ ,ψ)zn, z ∈D. (.)

Obviously, we have Pλ
n(x; θ , –θ ) = Pλ

n(x; θ ).

http://www.advancesindifferenceequations.com/content/2013/1/131


Kanas and Tatarczak Advances in Difference Equations 2013, 2013:131 Page 3 of 14
http://www.advancesindifferenceequations.com/content/2013/1/131

2 Orthogonal polynomials
Let L denote the moment functional that is a linear map C[x] → C. A sequence of poly-
nomials {Pn(x)}∞n= is an orthogonal polynomials sequence (OPS) with respect to L if Pn(x)
has degree n, L[Pm(x)Pn(x)] =  form �= n and L[P

n(x)] �=  for all n.
In this paper we consider orthogonal polynomial systems defined recursively. Every

monic OPS Pn(x)∞n= may be described by a recurrence formula of the form

Pn(x) = (x – cn)Pn–(x) – λnPn–(x), n = , , , . . . , (.)

where P–(x) = , P(x) = , the numbers cn and λn are constants, λn �=  for n >  and λ

is arbitrary (see [, Ch. I, Theorem .]). The sequences of orthogonal polynomials are
symmetric if Pn(x) = (–)nPn(–x) for all n (see [, Ch. I, Theorem .]) or that cn in (.)
are all zero.
Polynomials with exponential generating functions are among the most often studied

polynomials. One of them is the Meixner-Pollaczek polynomials. The Meixner-Pollaczek
polynomials were first invented by Meixner []. The same polynomials were also con-
sidered independently by Pollaczek []. These polynomials are classified in the Askey-
scheme of orthogonal polynomials [, ].
Some of the main properties of these polynomials are presented in Erdélyi et al. [],

Chihara [], Askey and Wilson [] and in the report by Koekoek and Swarttouw []. De-
tailed analyses with applications of these polynomials are also made by several authors.
Among others, the works of Rahman [], Atakishiyev and Suslov [], Bender et al. [],
Koornwinder [] and the extensive work of Li and Wong [] may be included.
This paper is mainly concerned about the generalized Meixner-Pollaczek (GMP) poly-

nomials. We also study the special cases of Pλ
n(x; θ ,ψ), corresponding to the choice ψ =

π + θ and ψ = π – θ , which lead to some interesting families of polynomials.
For complex numbers a, b and c (c �= ,–,–, . . .), theGaussian hypergeometric function

F(a,b, c; z) is defined by

F(a,b, c; z) =
+∞∑
k=

(a)k(b)k
(c)k

zk

k!
, z ∈D, (.)

where (a)n is the Pochhammer symbol described by

(a)n = a(a + )(a + ) · · · (a + n – ), n ∈N, (a) = .

Notice that F(a,b, c; z) is symmetric in a and b, and the series terminates if either a or b
is zero or a negative integer. In general, the series F(z) is absolutely convergent in D. If
	(c – a – b) > , it is also convergent on ∂D, and it is known that

F(a,b; c; ) =

(c)
(c – a – b)

(c – a)
(c – b)

, Re(c – a – b) > ; c �= ,–,–, . . . . (.)

3 GeneralizedMeixner-Pollaczek polynomials
In this section we find the three-term recurrence relation, the explicité formula, the hy-
pergeometric representation, the difference equation and the orthogonality relation for
(GMP) polynomials Pλ

n(x; θ ,ψ).
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Theorem  Let us set Pλ
– = . The polynomials Pλ

n = Pλ
n(x; θ ,ψ) have the following proper-

ties:
(a) Pλ

n satisfy the three-term recurrence relation

Pλ
 = ,

nPλ
n =

[
(λ – ix)eiθ + (λ + ix)eiψ + (n – )

(
eiθ + eiψ

)]
Pλ
n–

– (λ + n – )ei(θ+ψ)Pλ
n–, n≥ .

(b) Pλ
n are given by the formula

Pλ
n(x; θ ,ψ) = einθ

n∑
j=

(λ + ix)j(λ – ix)n–j
j!(n – j)!

eij(ψ–θ ), n ∈N∪ {}. (.)

(c) Pλ
n have the hypergeometric representation

n!Pλ
n(x; θ ,ψ) = (λ)neinθ

F
(
–n,λ + ix, λ;  – ei(ψ–θ )). (.)

(d) Let y(x) = Pλ
n(x; θ ,ψ). The function y(x) satisfies the following difference equation:

eiθ (λ – ix)y(x + i) +
[
ix

(
eiθ + eiψ

)
– (n + λ)

(
eiθ – eiψ

)]
y(x)

– eiψ (λ + ix)y(x – i) = . (.)

Proof
(a) We differentiate the formula (.) with respect to z, and after multiplication by

( – zeiθ )( – zeiψ ), we compare the leading coefficients of zn–.
(b) The Cauchy product of the power series

(
 – zeiθ

)–(λ–ix) = ∞∑
n=

(λ – ix)neinθ

n!
zn

and

(
 – zeiψ

)–(λ+ix) = ∞∑
n=

(λ + ix)neinψ

n!
zn

gives (.).
(c) Applying the formula from [, vol., p.],

( – s)a–c( – s + sz)–a =
∞∑
n=

(c)n
n! F(–n,a; c; z)sn, |s| < ,

∣∣s( – z)
∣∣ < ,

with s = zeiθ , a = λ + ix, c = λ, z =  – ei(ψ–θ ), one obtains

(
 – zeiθ

)–(λ–ix)( – zeiψ
)–(λ+ix) = ∞∑

n=

einθ (λ)n
n! F

(
–n,λ + ix, λ;  – ei(ψ–θ ))zn.

Comparing the coefficients of the power series, we get (.).

http://www.advancesindifferenceequations.com/content/2013/1/131
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(d) Inserting (x+ i) and (x– i) instead of x into the generating function (.), we find that

y(x + i) =
n–∑
k=

Pλ
k (x; θ ,ψ)

[
ei(n–k)θ – ei[(n–k–)θ+ψ]] + Pλ

n ,

y(x – i) =
n–∑
k=

Pλ
k (x; θ ,ψ)

[
ei(n–k)ψ – ei[(n–k–)ψ+θ ]] + Pλ

n ,

which implies that

eiθ (λ – ix)y(x + i) – eiψ (λ + ix)y(x – i)

=
(
eiθ – eiψ

) n–∑
k=

Pλ
k (x; θ ,ψ)

[
(λ – ix)ei(n–k)θ + (λ + ix)ei(n–k)ψ

]

+
[
eiθ (λ – ix) – eiψ (λ + ix)

]
Pλ
n . (.)

Differentiation of the generating function (.) with respect to z and equating the
leading coefficient of zn– yields

nPλ
n(x; θ ,ψ) =

n–∑
k=

Pλ
k (x; θ ,ψ)

[
(λ – ix)ei(n–k)θ + (λ + ix)ei(n–k)ψ

]
,

which together with (.) gives (.).
�

Theorem  The polynomials Pλ
n(x; θ ,ψ) are orthogonal on (–∞, +∞) with the weight

wλ
θ ,ψ (x) =


π e

(θ–ψ+π )x|
(λ + ix)|, for λ > , θ ∈ (–π
 ,

π
 ), and

∫ +∞

–∞
wλ

θ ,ψ (x)P
λ
n(x; θ ,ψ)Pλ

m(x; θ ,ψ)dx = δnm

(n + λ)

n!( cos (θ –ψ + π )/)λ
.

Proof Let F(s) and G(s) be the Mellin transforms of f (x) and g(x), i.e.,

{Mf }(s) = F(s) =
∫ ∞


f (x)xs– dx, {Mg}(s) =G(s) =

∫ ∞


g(x)xs– dx.

Then the following formula (Parseval’s identity) holds []:


π i

∫ c+i∞

c–i∞
F(s)G( – s)ds =

∫ ∞


f (x)g(x)dx (.)

and []
∫ +∞


uα–e–pue–iqu du = 
(α)

(
p + q

)– α
 e–iα arctan(p/q). (.)

For f (x) = x(λ+j)e–x and g(x) = x(λ+k)–e–x , we have F(s) = 
(λ+ j + s
 ), G(s) = 
(λ+ k +

s–
 ). By the well-known property

{Mf }(eiθx) = e–iθsF(s),

http://www.advancesindifferenceequations.com/content/2013/1/131
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we have

{Mf }(ei(θ–ψ+π )/x
)
= e–is(θ–ψ+π )/F(s).

Consecutively, applying first the formula (a)j = 
(a+j)

(a) (j = , , . . .) and (.), and then

setting α = λ + k + j, p = cos(θ –ψ + π ) + , q = sin(θ –ψ + π ) in (.), we have


π

∫ +∞

–∞
e(θ–ψ+π )x(λ + ix)j(λ – ix)k

∣∣
(λ + ix)
∣∣ dx

=

π

∫ +∞

–∞
e(θ–ψ+π )x
(λ + j + ix)
(λ + k – ix)dx

=


π i

∫ +∞

–∞
e–ix(θ–ψ+π )/


(
λ + j +

x


)



(
λ + k –

x


)
dx

= ei(θ–ψ+π )(λ+j)
∫ +∞


x(λ+k+j)– exp

(
–
(
e(θ–ψ+π )i + 

)
x

)
dx

= ei(θ–ψ+π )(λ+j)
∫ +∞


xλ+k+j– exp

(
–
(
e(θ–ψ+π )i + 

)
x
)
dx

=
ei(j–k)(θ–ψ+π )/
(λ + k + j)
( cos((θ –ψ + π )/))λ+k+j

. (.)

Set

Pλ
n(x; θ ,ψ) =

n∑
k=

Ak(λ + ix)k ,

where

Ak =
eikθ (λ)k(–k)k( – ei(ψ–θ ))k

k!(λ)kk!
.

Then

J :=

π

∫ +∞

–∞
Pλ
n(x; θ ,ψ)(λ – ix)ke(θ–ψ+π )x∣∣
(λ + ix)

∣∣ dx
=


π

∫ +∞

–∞

n∑
j=

Aj(λ + ix)j(λ – ix)ke(θ–ψ+π )x∣∣
(λ + ix)
∣∣ dx

=

π

n∑
j=

Aj

∫ +∞

–∞
(λ + ix)j(λ – ix)ke(θ–ψ+π )x∣∣
(λ + ix)

∣∣ dx

=
(λ)neinθ

n!

n∑
j=

(–n)j( – ei(ψ–θ ))j

(λ)j!

π

∫ +∞

–∞
(λ + ix)j(λ – ix)ke(θ–ψ+π )x∣∣
(λ + ix)

∣∣ dx.
Using (.) and (.), we obtain

J =
(λ)neinθ

n!

n∑
j=

(–n)j( – ei(ψ–θ ))j

(λ)j!
ei(j–k)(θ–ψ+π )/
(λ + k + j)
( cos((θ –ψ + π )/))λ+k+j

=
(λ)neinθ

n!

(λ + k)

e–ik(θ–ψ+π )/

( cos((θ –ψ + π )/))λ+k

http://www.advancesindifferenceequations.com/content/2013/1/131
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×
n∑
j=

(–n)j(λ + k)j
(λ)j!

( – ei(ψ–θ ))j

(ei(θ–ψ+π )/ + e–i(θ–ψ+π )/)j(e–i(θ–ψ+π )/)j

=
(λ)neinθ

n!

(λ + k)

e–ik(θ–ψ+π )/

( cos((θ –ψ + π )/))λ+k F(–n, λ + k; λ; ).

By the formula (.), the above reduces to


π

∫ +∞

–∞
Pλ
n(x; θ ,ψ)(λ – ix)ke(θ–ψ+π )x∣∣
(λ + ix)

∣∣ dx
=

ei(nθ–k(θ–ψ+π )/)
(λ + k)
n!( cos((θ –ψ + π )/))λ+k

(–k)n. (.)

Since (–k)n =  for k < n, then (.) is nonzero only for the case k = n. Then


π

∫ +∞

–∞
Pλ
n(x; θ ,ψ)(λ – ix)ke(θ–ψ+π )x∣∣
(λ + ix)

∣∣ dx
=

ei(nθ–k(θ–ψ+π )/)
(λ + k)
n!( cos((θ –ψ + π )/))λ+k

(–n)n.

From this and relation (.), it follows that

∫ +∞

–∞
Pλ
n(x; θ ,ψ)Pλ

m(x; θ ,ψ)wλ
θ (x)dx

= δnm
e–inθ (λ)n(–n)n( – e–i(ψ–θ ))n

n!(λ)nn!
ei(nθ– n

 (θ–ψ+π ))
(λ + n)
n!( cos θ–ψ+π

 )λ+n
(–n)n

= δnm

(n + λ)

n!( cos θ–ψ+π

 )λ
. �

Remark  For x ∈R, ψ ∈R, λ >  and n ∈ N, the following explicité formula holds:

Pλ
n(x; θ ,ψ) = eiθn

[ n ]∑
k=

(λ – ix)n–k(λ + ix)k
(n – k)!k!

(
eiψ

eiθ

)k

. (.)

Proof Consider the following:

∞∑
n=

Pλ
n(x; θ ,ψ)zn =

(
 – zeiθ

)–λ+ix( – zeiψ
)–λ–ix

=
∞∑
n=

n∑
k=

zn
(λ – ix)n–k
(n – k)!

eiθ (n–k)
(λ + ix)k

k!
eiψk

=
∞∑
n=

zn
[ n ]∑
k=

(λ – ix)n–k
(n – k)!

eiθ (n–k)
(λ + ix)k

k!
eiψk .

Comparing both sides of the above, we get the equality (.). �

http://www.advancesindifferenceequations.com/content/2013/1/131
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Proposition  The family of generalized Meixner-Pollaczek polynomials Pλ
n(x; θ ,ψ) can

be extended to the case λ =  as follows:

P
(x; θ ,ψ) = ,

nP
n(x; θ ,ψ) =

(
eiθ – eiψ

i

)
xP

n–(x; θ ,ψ), n≥ . (.)

Proof Since

lim
λ→

Pλ
n(x; θ ,ψ) = lim

λ→
(λ)neinθ

F
(
–n,λ + ix, λ;  –

eiψ

eiθ

)

=

n!
einθ

(
 – ei(ψ–θ ))
(n)(–n)(ix)F(–n + , ix + , ;  – ei(ψ–θ ))

=

n!
einθ

(
 – ei(ψ–θ ))
(n)(–n)(ix)P

n–(x; θ ,ψ)
n – 
()n–

e–i(n–)θ

=

n

(
eiθ – eiψ

i

)
xP

n–(x; θ ,ψ),

then (.) is a natural consequence. �

4 The caseψ = π + θ

Let us consider now the case ψ = π + θ . We observe that such a case leads to the very
interesting family of symmetric polynomials. Some special cases of Pλ

n(x; θ ,π + θ ; z) are
known in the literature for θ = π

 . These are the symmetric Meixner-Pollaczek polyno-
mials, denoted by Pλ

n(x/; θ ), λ > . For instance, Bender et al. [] and Koornwinder []
have shown that there is a connection between the symmetric Meixner-Pollaczek polyno-
mials P



n ( x ,

π
 ) and the Heisenberg algebra. Another example is [], where the symmetric

Meixner-Pollaczek polynomials are considered.
We define the symmetric generalized Meixner-Pollaczek (SGMP) polynomials Sλ

n(x; θ )
by the following generating function:

Gλ(x; θ ,π + θ ; z) =


( – zeiθ )λ–ix( + zeiθ )λ+ix

=
e–x arctan(zei(θ+π/))

( – zeiθ )λ

=
∞∑
n=

Sλ
n(x; θ )z

n, z ∈ D.

This sequence of polynomials has a hypergeometric representation

Sλ
n(x; θ ) = einθ (λ)n

n! F(–n,λ + ix, λ; ), (.)

and an integral representation

Sλ
n(x; θ ) =


π i

∫ e–x arctan(zei(θ+π/))

( – zeiθ )λ
dz
zn+

.

http://www.advancesindifferenceequations.com/content/2013/1/131
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In this section we mainly consider the strip S = {z ∈ C : |�z| < }. There are several rea-
sons why the strip is of special interest. Letw(x) = 

 cosh (πx/) . The functionw(x) is a density
function of a probability measure on S . We describe an orthogonal basis for the basis in
the Hilbert space H(S ,P), where P is the Poisson measure for . The inner product for
any two functions f , g ∈H(S ,P) is given by the formula

(f , g)H(S ,P) :=
∫
R

f (x + i)g(x + i) + f (x – i)g(x – i)
 cosh π

 x
dx.

Now, we consider the system {σn(x)} given by the recursion relation

σ– = ,σ = , (n + )σn+(z) + ieiθzσn(z) – eiθ (n – )σn–(z) = . (.)

Theorem  Let the system {σn(x)}∞n= be given by (.), then:
(a) the system satisfies

Gσ (z, s) =
∞∑
k=

σk(z)sk = e–z arctan se
i(θ+ π

 )
,

(b) the sequence of polynomials {σn}∞ is an orthogonal basis in the Hilbert space
H(S ,P),

(c) the norm of polynomials σn is
√
 if k ≥  and  if k = .

Proof
(a) By (.) we have

(k + )σk+(z) + ieiθzσk(z) – eiθ (k – )σk–(z) = .

Multiplying the above relations by sk , summing over k and simplifying, we obtain

 =
∞∑
k=

[
(k + )σk+(z) + ieiθzσk(z) – eiθ (k – )σk–(z)

]
sk

=
∞∑
k=

(k + )σk+(z)sk + ieiθz
∞∑
k=

σk(z)sk – eiθ
∞∑
k=

(k – )σk–(z)sk

=
∂Gσ (z, s)

∂s
+ ieiθzGσ (z, s) – eiθ s

∂Gσ (z, s)
∂s

.

This implies that

(
 – eiθ s

)∂Gσ (z, s)
∂s

= –ieiθzGσ (z, s),

which in turn implies

∂Gσ (z, s)
∂s

=
–ieiθz

 – eiθ s
Gσ (z, s).

http://www.advancesindifferenceequations.com/content/2013/1/131
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Integrating both sides with respect to s with the condition Gσ (, ) = , we obtain

Gσ (z, s) =
(
 – eiθ s
 + eiθ s

) iz

= e–z arctan se

i(θ+ π
 )
.

(b) In order to prove the orthogonality of σn(x) polynomials and compute their norms,
it suffices to show that

∫
∂S

Gσ (z, s)Gσ (z, t)dPz =
 + st
 – st

. (.)

To this end, let take α = – arctan sei(θ+ π
 ), β = – arctan te–i(θ+ π

 ) and the formula∫ ∞
–∞

e(α+β)x

 cosh π
 x

dx = 
cos (α+β) . Then

∫
∂S

Gσ (z, s)Gσ (z, t)dPz =
∫ ∞

–∞
e(x+i)α+(x–i)β + e(x–i)α+(x+i)β

 cosh(π
 x)

dx

=
ei(α–β) + e–i(α–β)



∫ ∞

–∞
e(α+β)x

 cosh(π
 x)

dx =
cos(α – β)
cos(α + β)

=
 + tanα tanβ

 – tanα tanβ
=
 + st
 – st

.

(c) In the light of (a) and equation (.), we have

∫ +∞

–∞
Gσ (z, s)Gσ (z, t)

dx
 cosh π

 x
dx

=
∫ +∞

–∞

( ∞∑
k=

σk(x)sk
)( ∞∑

n=

σn(x)t
n
)

dx
 cosh π

 x
dx

=
∞∑
k=

∞∑
n=

sktn
∫ +∞

–∞
σk(x)σn(x)

dx
 cosh π

 x
dx

= – + 
∞∑
k=

(st)k .

Comparing the coefficients of the powers of s and t, we obtain the desired result. �

Remark  Applying Cauchy’s integral formula to the generating function of the system,
one obtains the integral representation

σn(x) =


π i

∫
K
e–z arctan(te

i(θ+ π
 )) dt

tn+

around a closed contour K about the origin with radius less than .

Remark  Let y(x) = σn(x). The function y(x) satisfies the following difference equation:

y(x + i) – y(x – i)
i

=
ny(x)
x

.
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Proposition  The system {σn} satisfies the following relation:

σn(x) = lim
λ→+

Sλ
n(x; θ ).

Proof By (.) and by the definition of F(a,b, c; z), we have

lim
λ→+

Sλ
n(x; θ ) = lim

λ→+
einθ (λ)n

n! F(–n,λ + ix, λ; )

= lim
λ→+

einθ (λ)n
n!

n∑
k=

(–n)k(λ + ix)k
(λ)k

k

k!

=
einθ

n!
lim

λ→+

n∑
k=

(–n)k(λ + ix)k(λ + k)n–k
k

k!

=
einθ

n!

n∑
k=

(–n)k(ix)k(k)n–k
k

k!
= σn(x). �

Remark  From Proposition  we get

σn(x) =
xeiθ

in
Sn–

(
x

; θ

)
.

5 The caseψ = π – θ

We define quasi-symmetric Meixner-Pollaczek (QMP) polynomialsQλ
n(x; θ ) by the gener-

ating function

Gλ(x; θ ,π – θ ; z) =


( – zeiθ )λ–ix( + ze–iθ )λ+ix
=

∞∑
n=

Qλ
n(x; θ )z

n, z ∈ D.

Remark 
(a) The QMP polynomials Qλ

n =Qλ
n(x; θ ) satisfy the three-term recurrence relation

Qλ
– = ,

Qλ
 = ,

nQλ
n = i

[
(λ + n – ) sin θ – x cos θ

]
Qλ

n– + (λ + n – )Qλ
n–, n≥ .

(b) The polynomials Qλ
n =Qλ

n(x; θ ) are given by the formula

Qλ
n(x; θ ) = einθ

n∑
j=

(–)j
(λ + ix)j(λ – ix)n–j

j!(n – j)!
e–ijθ , n ∈N∪ {}.

(c) The polynomials Qλ
n =Qλ

n(x; θ ) have the hypergeometric representation

Qλ
n(x; θ ) = einθ (λ)n

n! F
(
–n,λ + ix, λ;  + e–iθ

)
. (.)

(d) The polynomials y(x) =Qλ
n(x; θ ) satisfy the following difference equation:

eiθ (λ – ix)y(x + i) – 
[
x sin θ + (n + λ) cos θ

]
y(x) + e–iθ (λ + ix)y(x – i) = .
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(e) The polynomials Qλ
n(x; θ ) are orthogonal on (–∞, +∞) with the weight

wλ
θ (x) =


π

eθx
∣∣
(λ + ix)

∣∣
for λ >  and θ ∈ (–π

 ,
π
 ) and


π

∫ +∞

–∞
eθx

∣∣
(λ + ix)
∣∣Qλ

n(x; θ )Qλ
m(x; θ )dx = δmn


(n + λ)
(cos θ )λn!

. (.)

The Fisher information Iθ (μ) of a random variable X with distribution μ(x; θ ), where θ

is a continuous parameter, is defined by []

Iθ (μ) = E

{[
∂

∂x
ln(μ)

]}
.

It is named after RA Fisher who invented the concept of maximum likelihood estimator
and discovered several of its properties. Over the years, the concept of Fisher information
has foundmany application in physics [], biology [], engineering, etc. In [] Dominici
considered a sequence Pn(x) of orthogonal polynomials with respect to the weight func-
tion ρ(x) satisfying

∞∑
x=

Pn(x)Pm(x)ρ(x) = hnδnm, n,m = , , . . . .

Introducing the functions

ρn(x) =
[Pn(x)]ρ(x)

hn
, n ∈N, (.)

the Fisher information corresponding to the functions (.) may be described as follows:

Iθ (Pn) =
∞∑
x=

[
∂

∂θ
ρn(x)

] 
ρn(x)

, n ∈N.

For the family Pn(x) of polynomials defined by

Pn(x) = F
[
–n, –x, c; z(θ )

]
, n ∈N,

in [], it was computed that

∂Pn

∂θ
=
n
z

∂z
∂θ

[
Pn(x) – Pn–(x)

]
, n ∈N. (.)

In this work we use the ideas of [] to compute the Fisher information of QMP polyno-
mials.

Theorem  The Fisher information of QMP polynomials is given by

Iθ
(
Qλ

n
)
=

∫ ∞

–∞

[
∂

∂θ
ρn(x)

] 
ρn(x)

dx =
–[n + (n + )λ]

cos θ
, n ∈N,

with ρn(x) defined as in (.).
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Proof For GMP we have ρ(x) = wλ
θ (x) =


π e

θx|
(λ + ix)|.
From (.) and (.), we have

∂Qλ
n

∂θ
= –n tan(θ )Qλ

n + i
λ + n – 
cos θ

Qλ
n–,

while (.) and (.) give

ρn(x) =
eθx|
(λ + ix)|(cos θ )λn![Qn(x)]

π
(n + λ)
. (.)

Note that∫ ∞

–∞
ρn(x)dx = , n ∈N. (.)

Differentiating (.) with respect to θ , we obtain

∂ρn(x)
∂θ

=
iρn(x)
cos θQλ

n

[
(n + )Qλ

n+ – (λ + n – )Qλ
n–

]
.

Therefore

[
∂

∂θ
ρn(x)

] 
ρn(x)

=
–ρn(x)

cos θ (Qλ
n)

× [
(n + )

(
Qλ

n+
) – (n + )(λ + n – )Qλ

n+Q
λ
n– + (λ + n – )

(
Qλ

n–
)]

=


cos θ

[
(n + )(n + λ)ρn+(x) + n(n + λ – )ρn–

– (n + )(λ + n – )
(cos θ )λn!


(n + λ)ρ(x)Qλ
n+Qλ

n–

]
. (.)

Integrating (.) and using the orthogonality relation (.), and (.), we get

Iθ
(
Qλ

n
)
=

∫ ∞

–∞

[
∂

∂θ
ρn(x)

] 
ρn(x)

dx =
–

cos θ

[
(n + )(n + λ) + n(n + λ – )

]

and the result follows. �
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