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Abstract
In this paper, we introduce a stochastic population model in a closed system. This
model is a nonlinear stochastic integro-differential equation. At first, we solve this
problem via the stochastic θ -method. Then we solve it by using the Bernstein
polynomials and collocation method. This method reduces integro-differential
equation to a system of nonlinear algebraic equations. The results demonstrate
applicability and accuracy of this method.

1 Introduction
Several phenomena in life and sciences, especially in mechanics, engineering and, since
recently, in finance, have been found to depend on random excitations. It therefore seems
natural that a current trend in describing and studying these phenomena is focused on the
use of stochastic mathematical models rather than deterministic ones.
Having in mind that in many cases random excitations are of the Gaussian white noise

type, which is mathematically described as a formal derivative of the Brownian motion,
all such phenomena are mathematically modeled and essentially represented by complex
stochastic differential or integro-differential equations of the Itô type. In mathematical lit-
erature,many populationmodels have been considered, fromdeterministic and stochastic
population models, where the population size is represented by a discrete random vari-
able, to very complex continuous stochastic models [–].
This article deals with a mathematical model of the accumulated effect of toxins on a

population living in a closed system [].We obtain a stochastic model of it. Then we apply
numerical methods to solve the problem. At first, we convert it to a stochastic differen-
tial equation and solve with the stochastic θ -method. Then we convert the problem to
a stochastic integral equation (SIE) and introduce Bernstein polynomials for solving the
SIE.
Bernstein polynomials are differentiable and integrable piecewise polynomials. In recent

years, these polynomials have been used for solving differential and integral equations [–
]. We use them to solve a nonlinear stochastic integro-differential equation (SIDE) that
arises in a population growth model in a closed system. By using Bernstein polynomials
and their derivatives along with the collocation method, SIDE is converted to nonlinear
algebraic equations.
In Section , we review deterministic population growth in a closed system. Section 

introduces the stochastic population growth in a closed system. Section  solves the prob-
lem by using the stochastic θ -method. In Section , we introduce Bernstein polynomials
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and convert SIDE to a nonlinear algebraic system. Finally, the conclusion is given in Sec-
tion .

2 Preliminaries
Definition . (Brownian motion process) A real-valued stochastic process B(t), t ∈
[,T] is called Brownian motion, if it satisfies the following properties

(i) the process has independent increments for  ≤ t ≤ t ≤ · · · ≤ tn ≤ T ,
(ii) for all t ≥ , h > , B(t + h) – B(t) is normally distributed with mean  and

variance h,
(iii) function t −→ B(t) is continuous a.s.

Definition . Suppose  ≤ s ≤ T , let D =D(s,T) be the class of functions

f (t,ω) : [,∞]× � → R

that satisfy
(i) The function (t,ω)→ f (t,ω) is β ×�measurable, where β is the Borel algebra on

[,∞) and � is the σ -algebra on �.
(ii) f is adapted to �t , where �t is the σ -algebra generated by the random variables

B(s); s ≤ t and adapted means that f is determined by B(s); s ≤ t.
(iii) E[

∫ T
s f (t,ω) dt] <∞.

Definition . (The Itô integral) Let f ∈D(s,T), then the Itô integral of f is defined by

∫ T

s
f (t,ω)dB(t)(w) = lim

n→∞

∫ T

s
φn(t,ω)dB(t)(ω),

where, {φn} is a sequence of elementary functions such that

E
[∫ T

s
(f – φ) dt

]
→  a.s. n→ ∞.

See [].

Lemma . Let f (t) be a regular adapted process such that with probability one∫ T
 f (t)dt < ∞. Then the Itô integral

∫ T
 f (t)dB(t) is defined and can be approximated

by

n–∑
i=

f (ti)
(
B(ti+) – B(ti)

)
for all ω,

where, {ti} is a partition of [,T] with δn =max(ti+ – ti) →  as n → ∞.

Proof See []. �

3 Deterministic population growth in a closed system
One possible model for the size of such a population is amodel balancing a standard logis-
tic growthwith the effect of the build up of toxins, which are detrimental to the population
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size. This model may be expressedmathematically as the following Volterra integral equa-
tion []:

du
dt̃

= au – bu – cu
∫ t̃


u(s)ds, u() = u,

where a >  is the birth rate coefficient, b >  is the crowding coefficient and the last term
contains the integral indicating the ‘total metabolism’ or a total amount of toxins pro-
duced since time zero. Since the system is closed, the presence of the toxins term always
causes the population level to fall to zero in the long run. Several analytical and numerical
methods have been proposed to solve the classical population growth model [–].
Before introducing a stochasticmodel, we apply scale time and population by using non-

dimensional variables t = c
b t̃ and defining x = b

au and by defining k = ab
c , we obtain

dx(t)
dt

= kx(t)
(
 – x(t) –

∫ t


x(s)ds

)
, x() = x. ()

This model is a first-order integro-differential equation. In [], the author considered two
cases k = ab

c small and k = ab
c large. He showed that for the case k � , where population

is weakly sensitive to toxins, a rapid rise occurs along the logistic curve that will reach a
peak and then is followed by a slow exponential decay. And for small k, where populations
is strongly sensitive to toxins, the solutions are proportional to sech(t).

4 Stochastic population growth in a closed system
In stochastic form, the coefficient k is not completely definite and depends on some ran-
dom environment effects. We may replace this coefficient by an average value plus a ran-
dom function term

k = r + error,

or

k = r + αW (t),

whereW (t) = dB(t)
dt is a one-dimensional white noise process and B(t) is a one-dimensional

Brownian motion and α is a nonrandom coefficient that shows the intensity of noise at
time t. So, the stochastic form of () is given by

dx(t)
dt

=
(
r + α

dB(t)
dt

)
x(t)

(
 – x(t) –

∫ t


x(s)ds

)
, t ≥ ,

thus, we can write

dx(t) = rx(t)
(
– x(t) –

∫ t


x(s)ds

)
dt +αx(t)

(
– x(t) –

∫ t


x(s)ds

)
dB(t), t ≥ , ()

with x() = x, andB = {B(t), t ≥ } is a standard Brownianmotion defined on a probability
space {�,�, {�t}t≥,P} with a filtration {�t}t≥ that is right continuous.
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5 Numerical solution of SIDE
To find a solution for Eq. (), we can write it as

dx(t) = f
(
t,x(t)

)
dt + g

(
t,x(t)

)
dB(t), ()

with

f
(
t,x(t)

)
= rx(t)

(
 – x(t) –

∫ t


x(s)ds

)
()

and

g
(
t,x(t)

)
= αx(t)

(
 – x(t) –

∫ t


x(s)ds

)
. ()

By using the stochastic θ -method, we get

xn+ = xn + h
[
( – θ )f (tn,xn) + θ f (tn+,xn+)

]
+ g(tn,xn)
Bn, ()

where 
Bn = B(tn) –B(tn–), h = tn – tn–. Here xn denotes the numerical approximation of
x(tn). Also, we use the following approximation to compute the integral term:

∫ tn


x(s)ds� h



(
x + 

n–∑
j=

xj + xn

)
. ()

By substituting (), () and () into (), the model converts to quadratic for xn+ and can
be solved by the quadratic equation.
The results can be seen in Figures  and  with θ = ..

6 Bernstein polynomials and function approximation
The general form of the Bernstein polynomials of the nth degree over the interval [a,b] is
defined by

βi,n(t) =
(
n
i

)
(t – a)i(b – t)n–i

(b – a)n
, a ≤ t ≤ b, i = , , . . . ,n. ()

Note that each of these (n + ) polynomials have degree n and satisfy the following prop-
erties

(i) βi,n(t) =  if i <  or i > n.
(ii)

∑n
 βi,n(t) = .

(iii) βi,n(a) = βi,n(b) = ,  ≤ i≤ n – .
The Bernestein approximation of f : [, ] → R is given by

βn
(
f (t)

)
=

n∑
i=

(
n
i

)
f
(
i
n

)
ti( – t)n–i =

n∑
i=

ciβi,n, ()

where

βi,n =
(
n
i

)
ti( – t)n–i.
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Figure 1 Results of θ -method calculations with r = 2, α = 0 and α = 0.2.

Figure 2 Results of θ -method calculations with r = 100, α = 0 and α = 10.
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Theorem . For all function f in C[, ], the sequence {βn(f );n = , , . . .} converges uni-
formly to f .

Proof See []. �

One of themany remarkable properties of the Bernestein approximation is that the deriva-
tives of βn(f ) of any order converge to the corresponding derivatives of f [].
If f ∈ Ck[, ] for any k ≥ , then

lim
n→∞

(
βn(f )

)(k) = f (k) uniformly on [, ].

7 The numerical method based on Bernstein polynomials
In this section, Bernstein polynomial basis is used to find a solution for the integral form
of Eq. () as

x(t) = x + r
∫ t



[
x(s)

(
 – x(s) –

∫ s


x(z)dz

)]
ds

+ α

∫ t



[
x(s)

(
 – x(s) –

∫ s


x(z)dz

)]
dB(s),

t ≥ . ()

Let

y(t) =
∫ t


x(s)ds, ()

then

dy(t)
dt

= x(t), y() = . ()

To approximate the solution, replace () and () into () and rewrite it as

y′(t) = x + r
∫ t



[
y′(s) –

(
y′(s)

) – y′(s)y(s)
]
ds

+ α

∫ t



[
y′(s) –

(
y′(s)

) – y′(s)y(s)
]
dB(s). ()

Function y(t) can be approximated as follows:

y(t) =
n∑
i=

ciβi,n = CT�(t), n≥ ,  ≤ t ≤ , ()

where, C and �(t) are (n + )×  vectors given by

C = [c, c, . . . , cn]T , �(t) = [β,n, . . . ,βn,n]T ,

so, we can write

dy(t)
dt

= CT d�(t)
dt

. ()
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Figure 3 Results of Bernstein calculations with r = 2, α = 0 and α = 0.2.

By substituting () and () into (), we have

CT�′(t) = x + r
∫ t



[
CT�′(s) –

(
CT�′(s)

) – (
CT�′(s)

)(
CT�(s)

)]
ds

+ α

∫ t



[
CT�′(s) –

(
CT�′(s)

) – (
CT�′(s)

)(
CT�(s)

)]
dB(s). ()

The collocation method with tj = j–
(n+) , j = , . . . ,n + , is used for determination of the

unknown vector C as follows:

CT�′(tj) = x + r
∫ tj



[
CT�′(s) –

(
CT�′(s)

) – (
CT�′(s)

)(
CT�(s)

)]
ds

+ α

∫ tj



[
CT�′(s) –

(
CT�′(s)

) – (
CT�′(s)

)(
CT�(s)

)]
dB(s),

j = , . . . ,n + . ()

We use Lemma . to calculate Itô integrals. By solving the nonlinear system (), we find
the unknown coefficient. Then we get the approximate solution y(t) and x(t).
The figures show the results of a numerical solution generated by the stochastic θ -

method with θ = . and the Bernstein approximation with n =  for two cases of r. The
results show a rapid rise along the logistic curve and then a fast exponential decay to zero
for big r.
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Figure 4 Results of Bernstein calculations with r = 100, α = 0 and α = 10.

They also illustrate a comparison between the numerical solutions of the deterministic
and the stochastic models.

8 Conclusion
This paper suggests a stochastic model for the population growth of a species in a closed
system. We applied two numerical methods to solving a nonlinear integro-differential
equation and showed the results in Figures -. For big values of r, the problem becomes
very stiff and requires very small steps in the numerical methods. In such a case, it is prac-
tical to implement the Bernstein collocation method which is effective and easy to use.
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